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Abstract

In this paper we propose a new ensemble method based on conformal instance transfer. The
method combines feature selection and source-instance selection to avoid negative transfer
in a model-independent way. It was tested experimentally for different types of classifiers
on several benchmark data sets. The experiment results demonstrate that the new method
is capable of outperforming significantly standard instance transfer methods.

Keywords: Instance Transfer, Conformal Prediction, Ensembles

1. Introduction

Instance transfer received a significant attention in the last decade (Pan and Yang, 2010;
Weiss et al., 2016). It aims at improving the generalization performance of classification
models for a target domain of interest using the data from an auxiliary source domain (Pan
and Yang, 2010; Weiss et al., 2016). In this paper we consider the case when the target and
source domains share the same input feature space and the same class-label set but differ in
the underlying probability distributions. In this context, if the source domain is found to be
relevant to the target domain; i.e. the source distribution is close to the target distribution,
the source data can be transferred to the target data and a classification model can be
trained for the target domain. This can significantly improve the model’s generalization
performance (Torrey and Shavlik, 2009), especially for small target data (Dai et al., 2007b).

In many practical situations, however, the source distribution is not close enough to the
target distribution. In this case we either do not use the source data or we do transfer the
source data which causes usually a drop in the generalization performance of the target
classification model, an indication of negative transfer. To avoid negative transfer, we can
follow one of the three scenarios that we summarize below (Zhou et al., 2018):

• source-instance selection: we select a subset of the source instances that corre-
sponds to a component of the source distribution estimated to be close to the target
distribution 1. If the subset is non-empty, we add it to the target data and then train
the target classification model.

1. The source-instance selection implicitly assumes that the source distribution is a mixture distribution.
The selected instances are expected to be those that are generated by a component of the source distri-
bution that is close to the target distribution.
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• feature selection: we select a subset of (input) features for which the source distri-
bution is estimated to be close to the target distribution. If the subset is nonempty,
the target and source data are represented by the selected features only. The source
data is added to the target data, and, then, the target classification model is trained.

• feature selection and source-instance selection: we select a subset of features
and a subset of source data that corresponds to a component of the source distribution
estimated to be close the target distribution on the selected features. This scenario
assumes that selecting features and selecting source data are mutually dependent, and
thus cannot be realized by a mechanical combination of the instance-transfer methods
based on feature selection and instance-transfer methods based on source-instance
selection.

So far two methods were proposed that combine feature selection and source-instance
selection in a mutual dependent way. The first method is model dependent (Zhou et al.,
2017b). It builds decision trees (Quinlan, 1993) by selecting features on the target and
selected source data. The second method is model independent (Zhou et al., 2018). It
is essentially a wrapper method that selects subsets of features based on the target and
selected source data. We note than both methods implement source-data selection using
procedures from conformal instance transfer (Zhou, 2017). This is due to the fact that the
conformal instance transfer provides statistical guarantees for transfer decisions.

In this paper we propose a new model-independent method for combining feature se-
lection and source-instance selection: Ensembles based on Conformal Instance Transfer
(ECIT). Given a classification model that needs instance transfer, ECIT examines the space
of feature subsets according to a chosen search strategy. When it evaluates a set of features,
it considers only the target data represented by these features. If the generalization perfor-
mance of the classification model on the target data is acceptable, the method selects the
largest relevant set of source instances using the conformal source-subset selection procedure
from (Zhou et al., 2017c) 2. Then, it trains a classification model on the target data and
largest relevant source subset, and adds that model to an ensemble. Once ECIT has visited
all the feature subsets according the chosen search strategy, it outputs the ensemble. The
ensemble consists of all the classification models generated while searching in the space of
possible feature subsets. The models can be very different (i.e. diverse) due to the feature
variety and instance transfer. The models’ diversity can result in accurate ensemble rules
from a repertoire of rules (Sagi and Rokach, 2018) from majority vote, score averaging etc.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the related work. The classification task in context of instance transfer is formulated
in Section 3. Section 4 provides basics of the conformal instance transfer: it introduces
a conformal test for transfer decisions and its corresponding source-subset selection proce-
dure employed by the ECIT method. The method itself is introduced in Sections 5. The
experiments are provided in Section 6. Section 7 concludes the paper.

2. We note that source-subset selection can be implemented using other approaches for reliable prediction
such as version spaces (Smirnov, 1992; Smirnov et al., 2004, 2006b) and ROC analysis (Vanderlooy et al.,
2006).
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2. Related Works

As it was stated in the previous section there exist three types of methods for instance
transfer when the relevance of the source domain is not sufficient for the target domain. In
this section we provide an overview of the methods within these three types.

2.1. Methods based on Source-Instance Selection

Methods based on source-instance selection transfer relevant source instances to improve
classification models for the target domain (Zhou et al., 2017c). Source-instance selection
can be done in two ways: soft selection and hard selection. The soft selection picks the
source instances implicitly. It assigns weights to source instances proportionally to their
relevance to the target data. In this way the influence of the less relevant source instances
is restricted compared with that of most relevant ones when the final classification model
is being trained. The hard selection picks the source instances explicitly. It directly selects
source instances depending on their relevance to the target data. In this way only the most
relevant source instances influence training of the final classification model.

The soft selection was implemented in several boosting-based methods, e.g., TrAdaBoost
(Dai et al., 2007a; Zhou et al., 2015) and Dynamic-TrAdaBoost (Al-Stouhi and Reddy,
2011). These methods are similar to the AdaBoost algorithm (Freund and Schapire, 1996)
but employ two opposite weight-update schemes depending on the type of the instances: (1)
the weights of misclassified target instances are increased, and (2) the weights of misclassified
source instances are decreased. In theory the average weighted training loss of boosting-
based algorithms on the source data is guaranteed to converge to 0 as the number of
iterations approaches infinity (Dai et al., 2007a). This implies that in this case the relevant
source instances will be classified correctly and the irrelevant source instances will receive a
weight of 0; i.e., there will be a perfect selection of the source instances. However, in practice
when most of the source instances are irrelevant, these algorithms are likely to stop at very
first iterations because the training error on target data exceeds 0.5 in early iterations. In
this case, the irrelevant source instances are not filtered out and cause a negative effect on
the final classification model.

The hard selection is implemented in several bagging-based methods. There are two
types of implementations: direct and indirect. Double-Bootstrap (Lin et al., 2013) is an
example of direct implementation. It first constructs an ensemble of classification models
trained on bootstrap samples from the target data. Then the ensemble classifies the source
instances and those of them that are correctly classified are selected. Thus, when most of
the source instances are irrelevant, this method tends not to select source instances; i.e.,
the instance transfer process stops.

TrBagg (Kamishima et al., 2009) is an example of an indirect implementation of the hard
instance selection. It first randomly generates a set of bootstrap samples from the combined
target and source data, and then trains several base classification models on those samples.
Finally, a subset of the base classification models are selected by minimizing the empirical
error on the target data. The latter means that source subsets that are contained in the
bootstrap samples are indirectly selected through selecting the base models. Although
TraBagg is simple, it has similar problem as the boosting methods when the source data
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is rather irrelevant. In this case TrBagg requires a large number of bootstrap iterations to
filter out irrelevant source instances which makes it computationally inefficient.

2.2. Methods based on Feature Selection

Methods based on feature selection aim at finding relevant features for which the source
distribution becomes closer to the target distribution. Historically, in instance transfer these
methods were preceded by feature transformation methods (Pan et al., 2008, 2011). That is
why, for the sake of completeness of the presentation we first consider feature transformation
methods and then feature selection methods.

The feature transformation methods operate as follows. First they search for a low-
dimensional feature space where the target data and source data are relevant. Then, they
train classification models on the target data and source data in that space. The Maximum
Mean Discrepancy Embedding (MMDE) is of one of the first representative of the feature
transformation methods (Pan et al., 2008). It first learns a kernel matrix corresponding to a
nonlinear transformation that projects the target data and source data to a latent space in
which the distance between the two data sets is minimized. The distance between the data
sets is measured by Maximum Mean Discrepancy (MMD) score (Borgwardt et al., 2006).
Then, MMDE applies Principal Component Analysis (PCA) (Jolliffe, 2011) on the learned
kernel matrix to obtain a low-dimensional feature space for the target data and source data.
The new space allows any classification algorithm to be trained on the target and source
data. Recently the computational inefficiency of MMDE was addressed in (Pan et al.,
2011). As a result a new feature transformation method was proposed, namely Transfer
Component Analysis (TCA). TCA has proven itself as effective as MMDE but much more
computationally efficient.

Maximum Mean Discrepancy (f-MMD) is a feature selection methods that was proposed
in (Uguroglu and Carbonell, 2011). It is based on the MMD score as well. However, instead
of finding a low-dimensional representation for the target data and source data jointly, f-
MMD identifies a subset of features (called variant features) which contribute the most to
the MMD score and excludes them. The problem of finding variant features is formulated
as a convex optimization problem. More precisely, a weight matrix, the diagonal of which
corresponds to the weights of all the features, is incorporated in the MMD calculation.
The variant features are expected to receive higher weights after optimization, since they
minimize the negative MMD score in the objective function. That is to say the variant
features are defined as those that contribute most to maximizing the MMD between data
sets.

Analyzing the methods considered in this subsection we note mainly two drawbacks.
First, these methods may impair geometric or statistical properties of the original target
and source data due to the dimensionality reduction. Second, these methods learn the
low-dimensional space in an unsupervised manner and dismiss the relevance of the input
features for the class labels. Some of the removed features may have a strong class relevance
and influence the performance of resulting classification models.
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2.3. Methods based on Feature Selection and Source-Instance Selection

As it is stated in the previous section there exist two methods that combine feature selection
and source-instance selection. Below we summarize the two methods.

Decision Trees based on Conformal Instance Transfer (DTCIT) are a model dependent
method. They employ the standard decision-tree algorithm (Quinlan, 1993). Univariate
instance transfer is performed on the level of feature selection for test nodes of decision
trees. More precisely, at each test node the method first selects for every feature the
largest relevant source subset which is relevant to the target data when only considering
this feature. The relevance of source instances is decided by a statistical test, namely
conformal test (Zhou et al., 2017a). Then, the method estimates the predictive power of
this feature on the target data and the selected source subset using some measures. Once
the predictive power of all features were estimated, the method selects the feature with the
highest predictive power for this test node (i.e. the best feature is determined based on
the target data and most relevant source instances and its predictive power). We note that
constructing a decision tree consists of a series of such steps of univariate instance transfer
and feature selection. Thus, the conformal decision trees are essentially an embedded multi-
variate feature selection method for instance transfer based on univariate source instance
selection and feature selection.

Feature-Selection Wrappers based on Conformal Instance Transfer (FSWCIT) are a
model independent method. Given a classification model that needs instance transfer,
FSWCIT examines the space of feature subsets according to a chosen search strategy. When
it evaluates a set of features, it considers both target and source data represented by these
features only. Under this constraint, the method first selects the largest relevant set of
source instances using a conformal source-subset selection procedure proposed by (Zhou
et al., 2017c). Then, it estimates the generalization performance of the classification model
on the target data and selected source instances. Once the method has visited all the
feature subsets according the chosen search strategy, it determines a subset of features
with the maximal generalization performance. This subset is outputted together with the
corresponding largest relevant set of source instances.

The FSWCIT method starts the process of examining the space of feature subsets from
the full set of features. This results in relatively large final subsets of features. Thus, the
FSWCIT method outputs large subsets of features and the largest relevant subsets of source
data that can be generated by the target distribution w.r.t. the selected features.

In this paper we propose a new method for combining feature selection and source-
instance selection. The method is model-independent in contrast to the DTCIT method
and it is computationally efficient in contrast to the FSWCIT method. Below we provide a
necessary background information and description of the next method.

3. Classification Tasks and Solutions

Let X be a instance space defined by K input features Xk, k ∈ {1, 2, . . . ,K} and Y be a
finite class set. A domain is defined as a tuple consisting of a labeled space (X × Y ) and
a probability distribution P over (X × Y ). We consider first a domain 〈(X × Y ), PT 〉 that
we call a target domain (domain of interest). The target data set T is a multi set of mT

instances (xt, yt) ∈ X×Y drawn from the target distribution PT under the i.i.d assumption.
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Given a test instance xmT+1 ∈ X, the target classification task is to find an estimate ŷ ∈ Y
for the true class of xmT+1 according to PT .

Let us consider a second domain 〈(X × Y ), PS〉 that we call a source domain. The
source data S is a multi set of mS instances (xs, ys) ∈ X × Y drawn from the source
distribution PS under the i.i.d assumption. Assuming that the source domain is relevant to
the target domain (i.e. PS is close to PT ), the instance-transfer classification task is to find
an estimate ŷ ∈ Y for the true class of xmT+1 according to PT using source data S as an
auxiliary training data.

To solve the classification tasks defined above we train a classifier h(x) in a hypothesis
space H of classifiers h (h : X → R|Y |). We note that for the target classification task h(x)
is based on T . For the instance-transfer classification task the classifier h(x) is based on
T and selected source instances from S. Once the classifier is available, it outputs for any
test instance xmT+1 a posterior distribution of scores {sy}y∈Y . The class y with the highest
posterior score sy is the estimated class ŷ for the instance x.

4. Conformal Instance Transfer

As it is stated in Section 1 the ECIT method that we propose in this paper is based on the
conformal instance transfer. In this section we first introduce the conformal test (CT) for
transfer decision (Zhou et al., 2017a). Then, we explain and compare two different ways to
use the CT for source relevance estimation. Finally, we introduce the algorithm we used
for selecting the largest relevant source subset based on the CT.

4.1. Conformal Test

The CT is proposed under the exchangeability assumption of data generation (Aldous, 1985)
3. It works with data sequences. Given a target data sequence T and a source data sequence
S , it decides the relevance of S to T by testing the null hypothesis that the concatenated
data sequence TS was generated by the target distribution PT under the exchangeability
assumption.

To test the null hypothesis, CT makes use of the conformal prediction framework that
was introduced in (Shafer and Vovk, 2008; Vovk, 2014). The test employs the nonconformity
scores of subsequences of TS as statistics for the null hypothesis. The nonconformity score
of a subsequence can be computed based on the nonconformity scores of the instances
contained in the subsequence. Given the concatenated sequence TS, the nonconformity
score α of an instance (x, y) ∈ TS is a positive real number that indicates how strange
the instance (x, y) is for the sequence T . To compute the instance nonconformity scores
we need an instance nonconformity function A. If (X × Y )(∗) represent the set of all
sequences defined over (X × Y ), the instance nonconformity function A is a mapping from
(X×Y )(∗)×(X×Y ) to R+∪{+∞} that measures the degree of strangeness of an instance in
relation to a sequence. There exist several nonconformity functions defined in a general way
and in a model-specific way (Shafer and Vovk, 2008; Smirnov and Kaptein, 2006; Smirnov
et al., 2006a, 2009).

3. The exchangeability assumption is a weaker assumption than the randomness assumption. It holds for
a sequence of random variables if and only if the joint probability distributions of any two permutations
of those variables coincide.

6



Ensembles based on Conformal Instance Transfer

To compute the sequence nonconformity scores we need a sequence nonconformity func-
tion. Given the concatenated sequence TS and a subsequence U of some elements of T ∪S,
the sum sequence nonconformity function returns a score αU indicating how strange the
subsequence U is with respect to all subsequences with size |U | of the data sequence TS.

Definition 1 (Sum Sequence Nonconformity Function) Given an instance noncon-
formity function A, data sequences T and S, and a subsequence U of some elements of T∪S,
the sum sequence nonconformity function A∗ : (X × Y )(∗) × (X × Y )(∗) → R+ ∪ {+∞} is
defined as

A∗(T,U) =
∑

(x,y)∈U

α(x,y),

where α(x,y) =

{
A(T \ {(x, y)}, (x, y)) for (x, y) ∈ T

A(T, (x, y)) for (x, y) ∈ S.

The CT employs sequence nonconformity scores as test statistics. The p-value function
of the CT is defined as follows.

Definition 2 (p-Value Function)The p-value function is a function t : (X×Y )(∗)×(X×
Y )(∗) → [0, 1] defined as:

t(T, S) =
|{U ∈ P(TS,mS) : αU ≥ αS}|

|P(TS,mS)|
,

where P(TS,mS) is the set of all subsequences of TS with length |S| = mS, αU and αS are
sequence nonconformity scores returned by A∗(T,U) and A∗(T, S), respectively.

The validity of the p-value function t was proven in (Zhou et al., 2017a). The higher
the p-value is, the more relevant the source sequence is to the target sequence. Therefore,
this p-value can be viewed as a non-symmetrical measure of relevance of the source data to
the target data.

The CT employs the p-value function t for testing the exchangeability of the concate-
nated data sequence TS. The source data sequence is relevant to the target data sequence
at the significance level εt ∈ [0, 1] if and only if the returned p-value is greater than or equal
to εt.

The CT was extended for data sets (since the sum sequence nonconformity function
A∗(T,U) is independent of the ordering of the sequence U) (Zhou et al., 2017a). The
p-value function t is redefined as follows:

t(T, S) =
|{U ∈ C(T ∪ S,mS) : αU ≥ αS}|

|C(T ∪ S,mS)|
,

where T and S are the target and source data sets, respectively, and C(T ∪ S,mS) is the
set of all subsets of T ∪ S with size mS = |S|.
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4.2. Measure Individual Relevance and Set Relevance by the p-Value Function

As it was mentioned in the previous subsection, the p-value returned by the function t can
be viewed as a non-symmetrical measure of relevance of the source data to the target data.
Since the p-value function t can be applied to source data with arbitrary size, it allows
for measuring the relevance of source data in two different ways. When the size of the
source data S equals 1 (mS = 1), function t estimates the individual relevance of a source
instance (xs, ys) with value t(T, {(xs, ys)}). When the size of the source data is greater
than 1 (mS > 1), function t estimates the relevance of the source set as a whole with value
t(T, S).

Comparing to individual relevance, set relevance is more precise in terms of source
relevance estimation. According to the latter definition of function t, if S = {(xs, ys)} then
mS = 1 and |C(T ∪ S,mS)| = mT + 1 which implies that the number of possible individual
p-values is bounded by mT + 1. If mS > 1, the number of possible set p-value is bounded
by |C(T ∪S,mS)|, which quickly grows much larger than mT + 1. Therefore, the set p-value
can better distinguish sets with different nonconformity scores.

Source-subset selection based on individual relevance is computationally more efficient
than that based on set relevance. Assume that all instances in the source data S are sorted
in increasing order of nonconformity scores. According to Definition 2, we have that the
individual relevance of the source instance with index s(s > 1) is always less than or equal
to that of the source instance with index s − 1, i.e., t(T, {(xs, ys)}) ≤ t(T, {(xs−1, ys−1)}).
That is to say the individual relevance is a decreasing function of the index s, and through
the index s, it is also a decreasing function of the nonconformity score. When individual
relevance is employed to select the largest subset of source instances that passes the CT at
a significance level εt, we can simply apply binary search on the sorted source set to quickly
find the last instance that has p-value no less than εt. The largest relevant source subset is
then formed by adding all the instances before this instance and the instance itself.

The set relevance in general is not a monotonic function of the index s, and is not a
monotonic function of the nonconformity scores as well. Let Ss be a subset consisting of first
s(s > 1) instances of the sorted data S. For each s we may have either t(T, Ss) ≤ t(T, Ss−1)
or t(T, Ss) ≥ t(T, Ss−1). To better illustrate this claim, we provide the following example.
Assume that TS consists of target instance t1, t2, t3 associated with nonconformity scores
1,4,5, and source instances s1, s2, s3 associated with nonconformity scores 2,3,6 (note that
the source instances are sorted by increasing order of the nonconformity scores). In this case,
we have t(T, S1) = 0.75, t(T, S2) = 0.8 and t(T, S3) = 0.5. Due to the non-monotonicity,
source-subset selection based on set relevance is computationally inefficient.

4.3. Pre-training Approximate Selection for the Relevant Source Subset

If a source subset is generated by the target distribution, it can be transferred. Interesting
enough the expected p-value of this subset is close to 1

2 and, thus, it is known as relevant

source subset S
1
2 (see (Zhou et al., 2017c)). Due to the non-monotonicity of the source

relevance finding the largest relevant source subset S
1
2 may involve repeated application of

the function t. To reduce the computational overhead, a pre-training approximate selection
algorithm for the relevant source subset (denoted as PASS) was proposed in (Zhou et al.,
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2017c). The algorithm finds a close approximation Ŝ
1
2 of the largest relevant subset S

1
2 at

a small computational cost.
To illustrate the key idea behind the PASS algorithm assume that the source data S is

sorted in increasing order of the nonconformity scores α(xs,ys) and Sn is a subset consisting
of the first n instances of the ordered source data S. By Theorem 3 from (Zhou et al.,
2017c), if the average of individual p-values of all instances in the source subset Sn equals
1
2 + 1

2(mT+1) , then the set p-value of Sn is approximately equal to 1
2 . For large target data

the term 1
2(mT+1) can be ignored. Therefore, the PASS algorithm finds the largest subset Sn

with the average individual p-value equals 1
2 , which in this case is the approximate subset

Ŝ
1
2 .

The PASS algorithm is presented in Algorithm 1. Given a target data set T , a source
data set S, and an instance nonconformity function A, it first computes the nonconformity
scores α(xs,ys) for the source instances (xs, ys) ∈ S using the instance nonconformity function
A. Then, the source data set S is sorted in increasing order of the nonconformity scores
α(xs,ys); i.e. it becomes sorted in decreasing order of the individual p-values. This implies
that the average p̄n of individual p-values of the instances in Sn is decreasing with the index
n. Therefore, the PASS algorithm employs the binary-search method on the sorted source
data S to generate the largest relevant source subset Sn with the average individual p-value
greater than or equal to 1

2 .

Algorithm 1 PASS: Pre-training selection algorithm based on individual relevance

Input: Target data T , Source data S, Instance nonconformity function A.
Output: Largest source subset Sn with the mean individual p-value p̄n equal to 1

2 .

1: for each source instance (xs, ys) ∈ S do
2: Set the nonconformity score α(xs,ys) equal to A(T, (xs, ys));
3: end for
4: Sort the source data S in increasing order of the nonconformity scores α(xs,ys);
5: Set the left counter L equal to 1 and the right counter R equal to mS − 1;
6: while L ≤ R do
7: Set the middle index n equal to

⌊
L+R
2

⌋
;

8: Set p̄n as the mean of the individual p-values of the instances in Sn;
9: Set p̄n+1 as the mean of the individual p-values of the instances in Sn+1;

10: if p̄n ≥ 1
2 and p̄n+1 <

1
2 then

11: break;
12: else if p̄n > ε then
13: Set L equal to n+ 1;
14: else
15: Set R equal to n− 1;
16: end if
17: end while
18: output Sn.
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5. Ensembles based on Conformal Instance Transfer

Ensembles based on conformal instance transfer (ECIT) form an ensemble method which
diversity is based on feature variety and instance transfer. The ECIT method searches
in the search space of possible combinations of the input features. If the generalization
performance of the current feature subset is acceptable on the target data, ECIT determines
the largest source subset Ŝ

1
2 for that feature subset. Since Ŝ

1
2 can be viewed as generated by

the target distribution, the method trains a classifier on the target data and source subset
Ŝ

1
2 , and adds that classifier to the final ensemble. Thus, the classifiers’ diversity within

the ensembles is realized due to different feature subsets selected and different source data
transferred.

The pseudo-code for the ECIT method is given in Algorithm 2. Given a classifier h,
all the input features Xk, target data T , source data S, a search algorithm SA and a
performance threshold λ, the method operates as follows. It first initializes: (a) the set V
of index sets of the visited feature subsets equal to an index set I ⊆ {1, 2, . . . ,K} 4, and (b)
the final ensemble classifier set hE equal to the empty set. Then, the ECIT method employs
the search algorithm A to determine the index sets K of the feature subsets {Xk}k∈K that
will be visited next (Steps 4 to 5). If the generalization performance (e.g., AUC) of the
classifier h on a feature set {Xk}k∈K is estimated to be higher or equal to the performance
threshold λ (Steps 7 and 8), the feature set is considered as useful. In this case the largest

subset Ŝ
1
2 of source data corresponding to {Xk}k∈K is selected (Steps 9 and 10). After

that, a candidate classifier h is built on the target data and Ŝ
1
2 , and h is added to the final

ensemble hE (Step 11 and 12). The method repeats Steps 3 to 17 until there is no feature
sets {Xk}k∈K that can be visited using the search algorithm SA. When this happens the
method outputs an ensemble hE .

The ensemble hE outputted by the ECIT method is a set of classifiers h. Thus, any
ensemble classification rule is applicable (e.g., majority vote) (Sagi and Rokach, 2018). In
our experiments we applied the rule of averaging class probabilities (Pal et al., 2016).

6. Experiments and Results

This section presents our experimental set-up, results, and analysis. The instance-transfer
tasks under study are described in Subsection 6.1. The experimental set-up is provided in
Subsection 6.2. In Subsection 6.3, the generalization performance of the FSWCIT method
and ECIT method as well as the generalization performance of other standard instance-
transfer methods are evaluated and compared. Subsection 6.4 discusses the influence of
performance-threshold parameter λ on the ECIT ensembles.

6.1. Instance-Transfer Classification Tasks

In the experiments, we considered five instance-transfer classification tasks defined on real-
world data sets that are commonly used in transfer learning research. Each task is given
with a target data set and a source data set specified in Table 1. The instance-transfer
tasks are briefly described below.

4. We note that any feature subset is represented by index set I ⊆ {1, 2, . . . ,K} that contains the indices
of the features in the subset.
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Algorithm 2 ECIT: Ensembles based on Conformal Instance Transfer

Input: K input features Xk, Target data T , Source data S
Classifier h, Search algorithm SA, Performance threshold λ,
Initial index set I ⊆ {1, 2, . . . ,K}.

Output: Ensemble classifier hE .

1: Set the set V of the index sets of the visited feature sets equal to {I};
2: Set the ensemble classifier hE equal to {};
3: repeat
4: Determine the set C of the candidate index sets from the members of V according to

the search algorithm SA;
5: Determine the set R of the index sets that are directly reachable in the search space

from the index sets in C according to the search algorithm SA;
6: for all index sets K in R do
7: Evaluate the generalization performance P of the classifier h trained on the feature

subset {Xk}k∈K and the target data T ;
8: if P ≥ λ then
9: Represent the target data T and the source data S with the features Xk for

k ∈ K;
10: Select the largest subset Ŝ

1
2 of the source data S with set p-value close to 1

2
(using the PASS algorithm with the general non-conformity function based on
h);

11: Train a candidate classifier hk on T ∪ Ŝ
1
2 ;

12: Set hE equal to hE ∪ hk;
13: end if
14: end for
15: Retain in R those index sets that result in a better generalization performance of h

compared with that for any index set in C;
16: Set V equal to V ∪R;
17: until R = ∅
18: if hE = ∅ then
19: Train a classifier h on the target data T ;
20: Set hE equal to hE ∪ h;
21: end if
22: Output Ensemble classifier hE .
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• The first instance-transfer classification task is the landmine detection task (Xue et al.,
2007). The landmine detection data is a collection of data sets related to detecting
landmine in different geographical locations. It consists of 29 data sets from 29 land-
mine fields. The 29 data sets have different distributions due to various ground surface
conditions. For example, the data sets “Mine 1” to “Mine 15” correspond to regions
that are relatively foliated while the data sets “Mine 16” to “Mine 29” correspond
to regions that have bare earth. We used the data set “Mine 29” as the target data,
and use the data set “Mine 1” as the source data. To guarantee that the target data
and the source data are distributed differently for some features, we manipulated the
marginal distribution of the feature with the highest information-gain ratio for the
source data by adding random noise generated from the standard uniform distribution.

• The second instance-transfer classification task is the wine quality task (Cortez et al.,
2009). The wine quality data consists of 1599 red-wine and 4898 white-wine instances.
Each instance is represented by 11 physiochemical features (e.g. PH values) and a
grade given by experts. We used a random sample from the red wine data as the
target data and used a random sample of the white wine data as the source data. To
guarantee that the target data and the source data are distributed differently for some
features, random noise generated from the standard uniform distribution was added
to two features with the highest information-gain ratios for the source data.

• The third instance-transfer classification task is the survival prediction task from
the Trial of Intensified versus Standard Medical Therapy in Elderly Patients With
Congestive Heart Failure (TIME-CHF)(Brunner-La Rocca et al., 2006). Each patient
instance is described by 18 bio-markers, and a class label indicating the survival or
death of a patient within 5.5 years follow-up. The patient bio-markers and class labels
are collected from five different medical centers after the first follow-up period. We
used the data from Center 5 as the target data set and data from the other four
centers were combined together in a source data set.

• The fourth and fifth instance-transfer classification tasks are defined on the exam
records of students from two Portuguese schools: Gabriel Pereira and Mousinho da
Silveira (Cortez and Silva, 2008). Each exam record is considered as an instance that
is represented by a series of demographic, social, and school related features and a
binary grade (pass or no pass). In the experiments, we defined a binary classification
task on the grades. The two instance-transfer tasks are defined as follows: the fourth
task (referred to as Student 1) use the students’ Mathematics exam records of school
Mousinho da Silveira as the target data, and use the Portuguese exam records of the
same group of students as the source data; the fifth task (referred to as Student 2)
employ the same target data as the first task, but use the students’ Mathematics exam
records of school Gabriel Pereira as the source data.

6.2. Experimental Set-up

The ECIT method was initialized as follows. The search method for the feature-subset
space was the best-first search method. The method employed the general nonconformity

12
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Table 1: Descriptions of the data sets for instance-transfer classification tasks

Task
Number of Data set size
Classes |T | |S|

Landmine 2 449 690

Wine Quality 3 159 1499

TIME-CHF 2 81 453

Student 1 2 46 46

Student 2 2 46 349

function based on the classifier used. The generalized performance of the feature subsets
was evaluated using the Area Under the ROC Curve (AUC) (Bradley, 1997). The internal
procedure for classifier evaluation in the ECIT method was 5-times repeated 5-fold cross
validation (see Step 7 in Algorithm 2). The parameter λ (performance threshold) was set
to a value in the range of AUCBC ± 0.1 for which the generalization performance of that
classifier is maximized, where AUCBC is the AUC of a base classifier.

The ECIT method was compared with the nine instance-transfer methods presented in
Section 2. The methods based on feature selection were represented by the MMDE method
and the f-MMD method. The methods were initialized as follows: (1) the dimension size of
the reduced feature space for the MMDE method was set equal to 10; (2) the features for the
f-MMD method with weights higher than 0.1 were excluded. The methods based on source-
instance selection were represented by the TrAdaBoost method, the Dynamic-TrAdaBoost
method, the TraBagg method, and the DoubleBootStrap method. The methods were ini-
tialized for iteration number equal to 100. The methods based on feature selection and
source-instance selection were represented by the FSWCIT method.

The methods from the experiments were applied for three types of base classifiers: C4.5
decision trees (DT) (Quinlan, 1993), support vector machines (SVM) (Boser et al., 1992)
with linear kernel, and Naive Bayes classifiers (Mitchell, 1997). When the base classifiers
were C4.5 decision tree, all the methods were compared with Decision trees based on confor-
mal instance transfer (DTCIT) (given in Subsection 2.3), since this a method that combines
both feature selection and source-subset selection. The implementation of DTCIT was that
based on the C4.5 decision trees (Mitchell, 1997).

The external procedure of evaluation for all the methods was 10-times repeated 10-fold
cross validation on the target data; i.e., the source data was used as auxiliary training
data only. The generalization performance of all the methods was evaluated using AUC.
The performance of C4.5, SVM (linear kernel) and NaiveBayes for the case of no instance
transfer was used as baseline. A paired t-test was performed with significance level 0.05 to
find significantly better (or worse) results with respect to the corresponding base classifier.

6.3. Results

The results when the C4.5 trees were used as base classifiers are presented in Table 2. From
the table we see that the ECIT method achieves the best generalization performance for
most of the instance-transfer classification tasks (4 out of 5). It achieves the maximal gain
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of 0.12 over the AUC of the C4.5 trees (base) for the TIME-CHF task. The DTCIT method
achieves the second best generalization performance (2 out of 5 wins). The FSWCIT method
has the third best generalization performance. It achieves significant better results than
the base classifier, the methods based on feature selection, and most of the methods based
on source-instance selection.

Tasks Base FSWCIT ECIT DTCIT MMDE f-MMD
TrAda-
Boost

Dynamic
TrAda-
Boost

TraBagg
Double-
Bootstrap

Landmine 0.55 0.58∗ 0.59∗ 0.59∗ 0.56 0.52− 0.57 0.56 0.56 0.57

Wine
Quality

0.60 0.64∗ 0.67∗ 0.66∗ 0.58 0.59 0.62 0.63 0.64∗ 0.66∗

TIME-
CHF

0.58 0.64∗ 0.70∗ 0.66∗ 0.55− 0.61∗ 0.60 0.60 0.64∗ 0.64∗

Student
1

0.71 0.74∗ 0.81∗ 0.77∗ 0.67− 0.68− 0.65− 0.74 0.61− 0.68−

Student
2

0.71 0.74∗ 0.75∗ 0.78∗ 0.70 0.71 0.71 0.74∗ 0.85∗ 0.71

Table 2: AUCs of FSWCIT, ECIT , DTCIT, MMDE, f-MMD, TrAdaBoost, Dynamic-
TrAdaBoost, TraBagg and DoubleBootStrap employing C 4.5 as the base classifier.
∗(−) denotes significantly better (worse) results w.r.t the base classifier.

The results when SVMs and Naive Bayes were used as base classifiers are presented in
Tables 3 and 4, respectively. From the tables we see that the FSWCIT method has the best
generalization performance compared with the other instance transfer methods: it achieves
3 wins out of 5 for both SVMs and Naive Bayes. The second best is the ECIT method
with 3 wins out of 5 for SVMs and 1 wins out of 5 for Naive Bayes. Moreover, FSWCIT
and ECIT never result in negative transfer while any other instance transfer method has at
least one experiment with negative transfer.

If we analyze the results presented in Tables 2, 3, and 4 we may conclude that the
superior generalization performance of the ECIT method, the FSWCIT method, and the
DTCIT method is due to the fact that these methods implement both feature selection and
source-instance selection in contrast to other approaches to instance transfer. The three
methods managed to find in all the experiments sufficiently large subset of features and the
largest subset of source data that can be generated by the target distribution w.r.t. the
selected features.

If we compare the ECIT method and the DTCIT method (for the case of decision trees),
we observe that ECIT has a better generalization performance. This is mainly because
DTCIT performs a multivariate instance transfer as a series of univariate instance transfers
while ECIT performs a series of non-decomposable multivariate instance transfers. This
means that ECIT is capable of extracting more diverse source information than DTCIT.

If we compare the ECIT method and the FSWCIT method, we may conclude that the
ECIT method has more potential. This is due to three reasons. First, as mentioned above
ECIT performs a multivariate instance transfer as a series of non-decomposable multivariate
instance transfers while FSWCIT performs just one non-decomposable multivariate instance
transfer. Second, the ECIT method is an ensemble method and thus it is capable of reducing
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the variance component of the error of the classifier 5. Third, the ECIT method is more
computationally efficient: in contrast to FSWCIT it transfers only for those feature sets
which generalization performance is acceptable on the target data only.

Tasks Base FSWCIT ECIT MMDE f-MMD
TrAda-
Boost

Dynamic
TrAda-
Boost

TraBagg
Double-
Bootstrap

Landmine 0.59 0.62∗ 0.62∗ 0.62∗ 0.58 0.55 0.56 0.64∗ 0.59

Wine Quality 0.72 0.74 0.73 0.67− 0.72 0.67− 0.66− 0.70 0.74

TIME-CHF 0.68 0.70∗ 0.72∗ 0.62− 0.70∗ 0.64− 0.64− 0.67 0.69

Student 1 0.63 0.70∗ 0.71∗ 0.64 0.65 0.63 0.65 0.67 0.71∗

Student 2 0.63 0.80∗ 0.78∗ 0.72∗ 0.74∗ 0.63 0.64 0.78∗ 0.72∗

Table 3: AUCs of FSWCIT, ECIT, MMDE, f-MMD, TrAdaBoost, Dynamic-TrAdaBoost,
TraBagg and DoubleBootStrap employing SVM as the base classifier. ∗(−) denotes
significantly better (worse) results w.r.t the base classifier.

Tasks Base FSWCIT ECIT MMDE f-MMD
TrAda-
Boost

Dynamic
TrAda-
Boost

TraBagg
Double-
Bootstrap

Landmine 0.56 0.58∗ 0.57 0.63∗ 0.59∗ 0.47− 0.47− 0.56 0.56

Wine Quality 0.72 0.75 0.73 0.66− 0.73 0.69− 0.69− 0.74 0.75

TIME-CHF 0.71 0.74∗ 0.76∗ 0.59− 0.74∗ 0.76∗ 0.76∗ 0.72 0.74∗

Student 1 0.68 0.79∗ 0.74∗ 0.69 0.70 0.63 0.61− 0.73∗ 0.71

Student 2 0.68 0.77∗ 0.75∗ 0.66 0.71∗ 0.62 0.62 0.75∗ 0.73∗

Table 4: AUCs of FSWCIT, ECIT, MMDE, f-MMD, TrAdaBoost, Dynamic-TrAdaBoost,
TraBagg and DoubleBootStrap employing NaiveBayes as the base classifier. ∗(−)
denotes significantly better (worse) results w.r.t the base classifier.

To understand the impact of ensemble method and instance transfer on the performance
of ECIT, we compared the performance of ECIT with that of Feature-Selection Ensemble
(FSE) which is essentially ECIT without instance transfer. The results are given for C4.5,
SVM and Naive Bayes in Table 5. As we can see from the table, FSE outperforms the
base classifiers in most of the cases, especially for high-variance classifiers. It confirms our
conclusion that an ensemble method is capable of reducing the variance component of the
classification error. Comparing the performance of ECIT and FSE, ECIT achieves better
results in all of the cases, which demonstrates the benefit brought by instance transfer.

6.4. Study of the Size of the ECIT Ensembles

The size of the ECIT ensembles and thus their generalization performance are controlled
by the performance-threshold parameter λ. Figures 1(a) and 1(b) show the number of
classification models and the generalization performance (AUC) of a ECIT ensemble in the
range of λ from 0.6 to 0.7 for the wine quality task.

5. This explains that ECIT outperforms FSWCIT for high-variance classifiers such as decision trees.
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Task
C4.5 SVM Naive Bayes

Base FSE ECIT Base FSE ECIT Baseline FSE ECIT

Landmine 0.55 0.58∗ 0.59∗ 0.59 0.58 0.62∗ 0.56 0.55 0.57

Wine Qual-
ity

0.60 0.64∗ 0.67∗ 0.72 0.70 0.73 0.72 0.71 0.73

TIME-
CHF

0.58 0.62∗ 0.70∗ 0.68 0.72∗ 0.72∗ 0.71 0.75∗ 0.76∗

Student 1 0.71 0.73∗ 0.81∗ 0.63 0.67∗ 0.71∗ 0.68 0.66 0.74∗

Student 2 0.71 0.73∗ 0.75∗ 0.63 0.67∗ 0.78∗ 0.68 0.66 0.75∗

Table 5: AUCs of FSE and ECIT employing C4.5, SVM and NaiveBayes as base classifiers,
respectively. ∗ denotes significantly better results w.r.t the base classifier.

The plots show that the number of the classification models in the ECIT ensembles
increases as the value of λ decreases. The ECIT generalization performance first grows with
the number of the classification models (λ decreases from 0.7 to 0.67). The growth is due
to the increasing number of the classification models which diversity is boosted by instance
transfer. Then we observe a pick and a non-monotonic decrease of that performance (λ
decreases from 0.67 to 0.6). The decrease can be explained by the fact that the classification
models become too diverse; i.e. the number of very different selected source subsets based
on different feature subsets becomes too big.

Figure 2(a) and 2(b) show the number of classification models and the generalization
performance (AUC) of a ECIT ensemble for the TIME-CHF task. The plots show similar
patterns and can be explained analogously as for the wine quality task.

When comparing the plots for the wine quality task and the TIME-CHF task, we find the
maximal generalization performance of the ECIT ensembles is achieved with 5 classification
models for the wine quality task and with 27 classification models for the TIME-CHF task.
The reason for this big difference in the number of classification models is the different
relevance of the source data w.r.t. the target data (computed by the p-value function t).
For the TIME-CHF task the relevance is higher, and thus diversity that instance transfer
brings to the classification models is lower. Thus, more classification models are needed.
For the wine quality task the situation is opposite: the relevance of the source data is lower,
and thus diversity that instance transfer brings to the classification models is higher. Thus,
less classification models are needed.

7. Conclusion

In this paper we propose a new method Ensembles based on Conformal Instance Transfer
(ECIT). The distinctive feature of the method is that it employs instance transfer for
ensemble diversification. The ECIT method belongs to the family of methods that combine
feature selection and source-instance selection to avoid negative transfer. In contrast with
the other members of that family the ECIT method is simultaneously model independent
and computationally efficient.
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Figure 1: Number of classification models and AUCs of with different λ for the wine quality
task.
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Figure 2: Number of classification models and AUCs of with different λ for the TIME-CHF
task.

Future research will focus on speeding up the ECIT method, especially the conformal
part of source selection. We plan to employ for this purpose cross conformal predictors
(Vovk, 2015) and their faster version (Beganovic and Smirnov, 2018).
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