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Abstract

Conventional machine learning applications
in the mobile/ToT setting transmit data to
a cloud-server for predictions. Due to cost
considerations (power, latency, monetary), it
is desirable to minimise device-to-server trans-
missions. The budget learning (BL) problem
poses the learner’s goal as minimising use of
the cloud while suffering no discernible loss
in accuracy, under the constraint that the
methods employed be edge-implementable.

We propose a new formulation for the BL
problem via the concept of bracketings. Con-
cretely, we propose to sandwich the cloud’s
prediction, g, via functions A=, hT from a
‘simple’ class so that h~ < g < hT nearly
always. On an instance x, if h™(z) = h™(z),
we leverage local processing, and bypass the
cloud. We explore theoretical aspects of this
formulation, providing PAC-style learnability
definitions; associating the notion of budget
learnability to approximability via brackets;
and giving VC-theoretic analyses of their prop-
erties. We empirically validate our theory on
real-world datasets, demonstrating improved
performance over prior gating based methods.

Edge devices in mobile and IoT applications are battery
and processing power limited. This imposes severe con-
straints on the methods implementable in such settings
- for instance, the typical CPU-based structure of such
devices precludes the use of many convolutional layers
in vision tasks due to computational latency (Zhou
et al. 2019), imposing architectural constraints. In par-
ticular, modern high accuracy methods like deep neural
networks are seldom implementable in these settings.
At the same time, edge devices are required to give fast
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and accurate decisions. Enabling such mechanisms is
an important technical challenge.

Typically, practitioners either learn weak models that
can be implemented on the edge (e.g. Hinton et al.
2015; Kumar et al. 2017; Wu et al. 2019), which suffer
more errors, or they learn a complex model, which is
implemented in a cloud'. The latter solution is also not
ideal - cloud access must be purchased, the prediction
pipeline suffers from communication latency, and, since
communication consumes the majority of the battery
power of such a device (Zhu et al. 2019), such solutions
limit the device’s operational lifetime (see also industry
articles, e.g. Hollemans 2017; Norman 2019). A third
option, largely unexplored in practice, is a hybrid of
these strategies - we may learn mechanisms to filter out
‘easy’ instances, which may be classified at the edge, and
send ‘difficult’ instances to the cloud. The reduction
in cloud usage provides direct benefits in, e.g., battery
life, yet accuracy may be retained. Similar concerns
apply in many contexts, e.g. in medicine, security, and
web-search (Nan and Saligrama 2017a; Xu et al. 2014).

The key challenge in these applications is to maintain
a high accuracy while keeping the usage of the complex
classifier, i.e. the budget, low. To keep accuracy high,
we enforce that on the locally predicted instances, the
prediction nearly always agrees with the cloud. This is
thus a problem of ‘bottom-up’ budget learning (BL).

The natural approach to BL is via the ‘gating formu-
lation’: one learns a gating function 7, and a local
predictor m, such that if v = 1 then 7 is queried, and
otherwise the cloud is queried. Unfortunately, this
setup is computationally difficult, since the overall clas-
sifier involves the product 7+, and optimising over the
induced non-covexity is hard. Previous efforts try to
meet this head on, but either yield inefficient methods,
or require difficult to justify relaxations.

Our main contribution is a novel formulation of the
BL problem, via the notion of brackets, that sidesteps

Lor, more realistically, purchase access to a cloud-based
model owned by a company that has sufficient data and
computational power (e.g. CoreML 2019; ML Kit 2019).



Budget Learning via Bracketing

this issue. For functions h~ < k™, the bracket [h~, h™]
={f:h < f< h‘*‘}. Brackets provide accurate
pointwise control on a binary function - for f € [h~, h'],
if AT (x) = h™(z), then f(z) takes the same value. We
propose to learn a bracketing of the cloud, predicting
locally when this condition holds.

The key advantage of this method arises from the sur-
prising property that we may learn optimal brackets via
two decoupled learning problems - separately approxi-
mating the function from above and from below. These
one-sided problems are tractable under convex surro-
gates, with minimal statistical compromises. Further,
this comes at negligible loss of expressivity compared
to gating - the existence of good gates and predictors
implies the existence of equally good brackets.

Since expressivity is retained, bracketings lead natu-
rally to definitions of learnability that are theoretically
analysable. We define a PAC-style approach to one-
sided learning, and provide a VC-theoretic character-
isation of the same. We also identify the key budget
learning problem as an approximation theoretic ques-
tion - which complex classes have ‘good’ bracketings by
simple classes? We characterise this for a binary ver-
sion of Holder smooth classes, and also provide partial
results for generic classes with bounded VC dimension.

Finally, to validate the formulation, we implement the
bracketing framework on a binary versions of MNIST
and CIFAR classification tasks. With a strong disparity
in the cloud and edge models (§4), we obtain usages of
20 —40% at accuracies higher than 98% with respect to
the cloud. Further, we outperform existing methods in
usage by factors of 1.2 — 1.4 at these high accuracies.

Related Work

A common approach is to simply learn local classifiers
with no cloud usage. If the cloud model is available,
one can use methods such as distillation (Hinton et
al. 2015), and in general one can train classifiers in a
resource aware way (e.g. Gupta et al. 2017; Kumar
et al. 2017; Wu et al. 2019). The main limitation here
of this approach is that if the setting is complex enough
for a cloud to be needed, then in general such methods
cannot attain a similar accuracy level.

Top-Down and Sequential Approaches. are based on suc-
cessively learning classifiers of increasing complexity, in-
corporating the previously learned classifiers (see Boluk-
basi et al. 2017; Nan, Wang, et al. 2016; Trapeznikov
and Saligrama 2013; Wang et al. 2015; Xu et al. 2014).
This approach suffers a combinatorial explosion in the
complexity of the learning problems. Recent efforts
utilise reinforcement learning methods to rectify this
(e.g. Janisch et al. 2019a,b; Peng et al. 2018).

The BL problem is intimately related to learning with

abstention (LwA). Indeed, sending an example to the
cloud is the same as abstaining on it. The twist in BL
is twofold - we assume that a noiseless ground truth,
i.e., the ‘cloud classifier’ exists, while LwA tends to con-
centrate on settings where the labels are noisy; and the
class of locally implementable models is much weaker
than the class known to contain the cloud model, while
the LwA literature is generally not concerned with
‘simple’ classifiers. In addition, no theoretical work on
LwA captures this setting. Perhaps the closest is the
study of ‘perfect selective classification’ by Wiener and
El-Yaniv 2011; El-Yaniv and Wiener 2010, but this
work focuses on the stringent condition of getting per-
fect agreement with certainty, and only gives analyses
for classes with controlled disagreement coefficients.

Plug-in methods utilise a pre-trained low complexity
model, and learn a gate by estimating its low-confidence
regions. We note that much of the theoretical analysis
for LwA concentrates on such methods, e.g. Bartlett
and Wegkamp 2008; Denis and Hebiri 2019; Herbei and
Wegkamp 2006; Shekhar et al. 2019.? The principal
disadvantage here is that these classifiers are not tuned
to the BL problem. However, even crude methods such
as gating by thresholding the softmax response of a
classifier are very effective (see §4), and serve as strong
baselines as observed by Geifman and El-Yaniv 2017,
2019 in the setting of deep neural networks.

A number of methods aim at jointly learning gating and
prediction functions (c.f. §1.4). Some of these belong
to the LwA literature - Geifman and El-Yaniv 2019
propose to ignore the non-convexity, and use SGD to
optimise a loss of the form fi(m # g|y = 1) subject to
a budget constraint, while Cortes et al. 2016 instead
propose the relaxation 7y < (7 + v)/2, and optimise
this upper bound via convex relaxations. In the BL
literature, Nan and Saligrama 2017a,b relax the prob-
lem by introducing an auxiliary variable to decouple
7w and -, and then perform alternating minimisation
with a KL penalty between the gate and the auxiliary.
Note that while each of these papers further specifies
algorithms to train classifiers, their main conceptual
contribution is the method they take to ameliorate the
essential non-convexity of the gating setup. In contrast,
our new formulation sidesteps this issue entirely.

Our approach to one-sided learning is related to
Neyman-Pearson classification (Cannon et al. 2002;
Scott and Nowak 2005), with the difference that instead
of studying the conditional risks, we are concerned
with restricting the total risk subject to one-sided con-
straints. This leads to the generalisation errors of
one-sided learning scaling with the total sample size,
as opposed to the per-class sample sizes (see §2.1).

2Herbei and Wegkamp 2006 also analyse ERM in the
setting where a fixed cost for abstention is available.
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Bracketings are important in empirical process theory
- for instance, ‘bracketable’ classes characterise the uni-
versal Glivenko-Cantelli property (van Handel 2013).
While there are generic estimates of the bracketing
entropies of various function classes (e.g. Ch2 of van
der Vaart and Wellner 1996), these typically do not
constrain for complexity of the resulting brackets, and
thus their application in our setting is limited. Instead,
we explicitly aim to bracket functions by simple func-
tion classes (see §3.2). We note, however, that our
results towards this are preliminary.

1 Definitions and Formulations

We will restrict discussion to binary functions on the
domain X, which is assumed to be compact®. H de-
notes the class of local classifiers, and G the class of
cloud classifiers. We use g € G to denote the high-
complexity ‘cloud’ classifier. The training set is taken
to be {(X;,g9(X;)}, where X; ey u, and p is an un-
known probability on X*. For feasibility of various pro-
grams (particularly Def. 2), we assume that {0,1} C H,
andthat he H < 1—-h e H.

The main problem is to learn approximations to g in H,
with the option to ‘fall back’ to g. We aim at retaining
high accuracy w.r.t. ¢ while minimising usage of ¢ itself.

1.1 Bracketing for Budget Learning

Definition Given a measure p and functions, hy <
ha, the bracket [hy, hsa] is the set of all {0,1}-valued
functions f such that hy < f < hy p-a.s. The p-size
of such a bracket is |[h1, ha]|, = p(h1 # ho).

As an example, on [0,1], the functions 0(x) and
1 {z > 1/2} induce the bracket containing all functions
that are 0 on [0, 1/2]. This bracket has size u(X > 1/2).

Notice that if hy # hs in the above, it is forced that
hi1 =0, hy = 1. We will be concerned with the brackets
that can be built using hs from the local class H.
Definition The set of brackets generated by a class H
is {[h1,ha] : h1 < ho,h1,he € H}. We also say that
these are H-brackets.

Suppose we can find a bracket [h~, h*] in H that con-
tains g. Since h™ = h™ forces g to take the same value,
we offer the classifier

ht(z
C[h*,hﬂ(x) = {g(x() )

if ht(z) =
if ht(z) #

(z)

(z)

3Issues of measurability, and of existence of minimisers
of optimisation problems posed as infima are suppressed,
as is common in learning theory.

41f instead we have a raw dataset and no g, we assume
that g is obtained by training a function in G over this set.

h-
h-

The above has the usage |[h~, h*]|,. The budget needed
by a class H to bracket (g, ut) is the smallest such usage,

— -+ - -+
Blg,u,#) = nf {[[h7,h7]|.: g €[h™, h7]}

This extends naturally to bracketing of sets.

Definition 1 A set of function-measure pairs S =
{(gi, )} is bracket-approximable by a class H if for
every (g, 1), there exists a H-bracket containing g. The
budget required for bracket approximation of S by H is
B(S,H) :== sup B(g,u,H).
(g:m)es

This is a very weak notion of approximation - all it
demands is that for every g, we can find some H-
bracket. Typical study of bracketings concentrates on
real valued functions, and studies how many brackets,
or how large an H, we need to make the loss B smaller
than some given value. We defer such explorations to
§2.2, where we define a notion of budget learning.

For the following discussion, it is useful to define a
relaxed version of brackets.

Definition Let a € [0,1], and hy, he be {0,1}-valued
functions such that u(hy < hy) > 1 — /2. The a-
approzimate bracket [hy, ha] with respect to u is the set
of functions f such that u(hy < f <hg)>1—a. We
call 1 — a the accuracy of the bracketing.

The above brackets are approximate in two ways: the
order of h; and hy may be reversed, and the functions
in the [hq, ho] may leak out from within them.

1.2 One-sided Approximation and Decoupled
Optimisation of Brackets

In order to discuss the decoupled optimisation of brack-
ets, we introduce the notion of one-sided approximation.
Definition 2 For a function-measure pair (g, un), an
approximation from below to g in a class H is any
minimiser of the following optimisation problem

L(g,p, H) :=inf{u(h #g): h e H,h < g}.

We refer to L as the inefficiency of approximation from
below of (g, 1) by H. We analogously define approxima-
tion from above as 1 — h, where h is an approximation
of 1 — g from below.

We use ‘one-sided approximation’ to refer to both ap-
proximation from above and below.

If we let h~ be an approximation of a function g from
below, and A' an approximation from above, then it
follows that h~ < g < h*. Thus, the bracket [h~, h™]
is well-defined. Further, for any bracket containing g,

ph* #h7) = ph* #h7,g=1)+ph*™ #h7,g=0)
p(h™ =0,9=1)+ uh* =1,9=0)
= uw(h™ # g) + u(h™ # g).
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Thus, if AT and h~ are respectively the minimisers of
the right hand side, they must also be minimisers of
the left hand side. Immediately, we have

B(Q,M,H) = L(%M,H) + L(]- - g»ﬂvH)v

and the respective minimisers of the Ls form a u-
optimal H-bracketing of g!

This means that in order to bracket g optimally, it
suffices to separately learn approximations to g from
above and below. This decouples the optimisation
problems inherent in learning these, and allows easy
convex relaxations of both the above problems.

Note that the reverse direction trivially holds - the
optimal bracket containing g provides two functions
which upper and lower approximate g. These functions
are optimal for the respective OSL problems.

1.3 Convex Surrogates and ERM

§1.2 suggests one-sided learning as a method for learn-
ing bracketings. However, in an ML context, the op-
timisation problem of Def. 2 is meaningless since p
is not available. We approach this via empirical risk
minimisation (ERM) (see also §2.1,§3.1).

To handle the intractable 0 — 1 loss, we take the stan-
dard approach of relaxing the h to take values in [0, 1],
subsequently thresholded to get a binary function, and
the loss to a convex surrogate £. We let 6 be a parame-
terisation of h.

Importantly, in a practical context, while solutions that
are always below g may be limited, a slight relaxation
to ‘nearly always’ below can yield tenable classifiers.
Adopting this view, we also relax the constraint, possi-
bly by a different surrogate ¢'°, and allow an explicit
user determined leakage constraint (.

Finally, as is standard, we propose solving a Lagrangian
form of the resulting optimisation problem via SGD
over 6. This gives the practical program

moin Z (1 —:19(13i))+§ Z El(hziﬂﬁi))7 (1)

i:g(xy)=1 i:g(x;)=0

with a Lagrange multiplier &, & np = |{i : g(X;) = b}|.

The resulting bracketing scheme is as follows. The user
may specify (£,¢'), and a leakage constraint ¢ € (0, 1].
Each £ in (1) yields a solution §¢. We propose scanning
over £ € =, for some gridding =. Next, for each &,
we utilise a validation set V' to compute the empirical
means iy (ho, # g) and fiy (hg, = 1,9 = 0), and select
the f¢ which minimises the first, subject to the second
being smaller than (/2 — Bin(|V|,(/2,/2|Z|), where
Bin is the binomial tail inversion function as studied by

Se.g. ¢ may grow faster than ¢ to minimise leakage

Langford 2005. Such a selection gives a h~. Similarly,
we may learn an approximation from above h*. Notice
that with probability at least (1 —d), the [h~,h"] so
constructed is a (-approximate bracket that contains g
(and thus has accuracy at least 1 — { w.r.t. g).

Multi-class Extensions In passing, we point out that
our framework can be extended to multi-class setting.
For an M-class setting, we may represent g as the one-
hot encoding (g1,...,gax). Consistency in g demands
that > ¢g; = 1. We may learn lower-approximations h;
to each g¢;, and predict when only one of the h; is 1.
One issue is that this leads to identifying class-specific
leakage-levels, which then need to be optimised globally
to achieve usage constraints.

1.4 Comparison to Gating Formulation

The BL problem is typically formulated as simultane-
ously learning a gating function y and a local predictor
m, so that for a point z, if v = 1, we predict locally
using 7, and if v = 0, we instead call the function g.
This yields usage p(y = 0) for the overall classifier

ey () = m(@)y(x) + g(x)(1 — y(x)).
Notice that bracketing is in fact a restricted form of
gating and prediction - the gate vy = 1 {h* = h~}, and
the predictor (say) h™. In fact these are essentially
identical in their expressive power for a given ‘richness’:
Suppose one learns gating and predictor functions ~y
and 7 from classes ' and II respectively® Given this,

h+::7-7r+1—’y; h™=vy-m
bracket g with the same usage’. Crucially, the class
of functions H generated by doing the above for every
(v,m) € T x I is a class of complexity equivalent to
that of the pair (T',II), since it can be described by
the same pair. Thus there is no loss of expressivity in
restricting attention to the bracketing setup.

1.5 A Summary of the Conclusions

The sections above establish the core of this paper via
two formal reductions. Let us encapsulate these.

The gating-prediction formulation of budget learning is
equivalent to the bracketing formulation. Further, solv-
ing the bracketing problem is equivalent to solving the
two decoupled one-sided learning problems of learning
from below and from above.

This statement justifies all further explorations in the
paper. Since the bracketing formulation is equivalent,
we may define budget learnability via it. Further, finite

50bserve that these must have comparable complexities,
since they are both to be implemented on the same system.

T if ¢y~ has accuracy a < 1, then these form an approx-
imate bracket of the same accuracy.
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sample analyses for the BL problem may be carried
out via the one-sided learning problems.

2 Learnability

As mentioned in the previous paragraph, we define
notions of one-sided and budget learnability.

2.1 One-sided Learnability

With only finite data, it is impossible to certify that
h < f for most h, rendering the one-sided constraint
tricky. We take the PAC approach, and relax this
condition by introducing a ‘leakage parameter’ \.

Definition 3 A class H is one-sided learnable if for
all (g,8,\) € (0,1)3, there exists a m(e,d, N\, H) < oo,
and a scheme o : (X x {0,1})™ — H such that for

any function-measure pair (g, p), given m samples of

(Xi,9(X))), with X; b w, & produces a function

h € H such that with probability at least 1 —§:

n(g(X) =0,h(X)=1) <A
1L,h(X)=0) <L(g,H,pn) +e.

The above definition closely follows that of PAC learn-
ing in the agnostic setting, with the deviations that
leakage is explicitly controlled, and that the excess risk
control, €, is on L, i.e. it is only with respect to entirely
non-leaking functions. A key shared feature is that
one-sided learnability is a property only of the class H,
and is agnostic to (g, p).

If the class H is learnable, then with m(e, A, d, H) sam-
ples we may learn a approximate-bracketing of any g
with usage at most B(g, u, H) + 2(¢ + A) and accuracy
at least 1 — 2.

Let us distinguish the above from the Neyman-Pearson
classification setting of Cannon et al. 2002; Scott and
Nowak 2005. The latter can be seen as learning from
below, but with explicit control on the conditional prob-
ability u(h = 1|g = 0).® This is too strong for our needs
- we are only interested in emulating the behaviour
of g with respect to u, and so if p(g = 0) < A, then
it is fine for us to learn any h. This induces the dif-
ference that the error rates in the cited papers decay
with min(ng,n), while our setting is simpler and PAC
guarantees follow the entire sample size. Nevertheless,
our claims on the sample complexity(§3.1) are derived
similarly to the setting of ‘NP-ERM’ in these papers,
including a testing and an optimisation phase.

81n addition, the targeted control on this is some level
a > 0, not 0, and a relaxation of the form we use to oo + A
is also utilised. Further, the property of only comparing
against the best classifier at the target level of leakage («
in their case, 0 in ours) is also shared.

2.2 Budget Learnability

The bracket-approximation of Def. 1 suffers from two
problems in the ML context. Firstly, approximation
by classes that are not one-sided learnable is irrelevant.
Secondly, the definition does not control for effective-
ness: a bracket-approximation with B(S,H) = 1, is
not useful - indeed, the trivial class H = {0(x), 1(z)}
attains this for every S. We propose the following to
remedy these.

Definition 4 We say that a set of function-measure
pairs S = {(g, ), ...} is budget-learnable by a class H
if H is one-sided learnable and B(S,H) < 1.

We also, say that H can budget learn S, adding “with
budget B” if B(S,H) < B.

Learning theoretic settings usually require measure
independent guarantees, leading to

Definition 5 A function class G on the measurable
space (X, .F) is said to be budget learnable by a class H
if the set § := G x M is budget learnable by H, where
M is the set of all probability measures on (X,.F).

Notice that strict inequality is required in Def. 4. This
is the weakest notion that is relevant in an ML context.
Also note the trivial but useful regularity property that
if H is one-sided learnable, then B(H x M, H) =0 -
indeed, every h € H, is bracketed by [h, h].

3 Theoretical Properties

This section details some useful consequences of the
above definitions, which serve to highlight their utility.

3.1 One-sided learnability

Standard PAC-learning is intrinsically linked to the VC-
dimension. The same holds for one-sided learnability.
Theorem 1. If H has finite VC-dimension d, then it
is one-sided learnable with

m(e,\,6,H) = O ((i + 612) (d+ 10g(1/5))> .

Conversely, if H is one-sided learnable and has VC-
dimension d > 1, then for § < 1/100,

d—1

m(E,A,(S,H) > m

Particularly, one-sided learnable classes must have fi-
nite VC-dimension.

The proof is left to Appx. A.1. The lower bound is
proved via a reduction to realisable PAC learning, while
the upper bound’s proof is similar to that for agnostic
PAC learning, with the modification of adding a test
that eliminates functions that leak too much.
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The point of the Theorem 1 is to illustrate that sample
complexity analyses for our formulation can be derived
via standard approaches in learning theory. Alternate
analyses via, e.g., Rademacher complexty or covering
numbers are also straightforward (Appx. A.1.1).

3.2 Budget Learnability

The key question of budget learning is one of bias:
what classes of functions can be budget learned by low
complexity classes? This section offers some partial
results towards an answer.

Before we begin, the (big) question of how one measures
complexity itself remains. We take a simple approach
- since one-sided learnability itself requires finite VC-
dimension, we call H low complexity if vC(H) is small.
Certainly VC dimension is a crude notion of complexity.
Nevertheless this study leads to interesting bounds, and
outlines how one may give theoretical analyses for more
realistic settings that may be pursued in further work.

Importantly, we do not expect any one class to be able
to meaningfully budget learn all classes of a given com-
plexity. This follows since the definition of budget learn-
ability implies that if sets S1,Ss of function-measure
pairs are budget learnable, then so is &1 U 8. Such
unions can lead to arbitrary increase in complexity,
which must weaken the budget attained.” Thus, at the
very least, the classes H must depend on G, although
we would like them to not depend on the measure.

3.2.1 Budget Learnability of Regular Classes

The class of Holder smooth functions is a classical
regularity assumption in non-parametric statistics. In
this section, we define a natural analogue for {0,1}-
valued functions, and discuss its budget learnability by
low VC dimension classes. For simplicity, we restrict
the input domain to the compact set X = [0, 1]P. We
use Vol to denote the Lebesgue measure on X.

Definition Let g be a {0, 1}-valued function. A par-
tition & of X is said to be aligned with g if each set
IT € & has connected interior, and if g is a constant
on each such set.

We define a notion of regularity for partitions below.
Recall that a p-dimensional rectangle is a p-fold product
of 1-D intervals.

Definition A partition & is said to be V -regqular if
every part Il € &2 contains a rectangle Ry such that
Vol(Rr) >V and Vol(II\ Ry) < V.

9Formally, this finite union property and the lower
bound Thm. 3 part (i) indicate that if # can budget learn
all classes of VC dimension D on all measures with budget
1 — ¢ for any ¢ > 0 that depends only on D or X', but not
on H, then Vk € N, vc (H) > CkD for a constant C.

The above partitions are well aligned with rectangles
in the ambient space. The notion of regularity for
function classes we choose to study demands that each
function in the class has an associated ‘nice’ partition.

Definition 6 We say that a class of functions G = {g :
[0,1)? — {0,1}} is V-regular if for each g € G, there
ezists a V -regular partition aligned with g.

Essentially the above demands that the local struc-
ture induced by any g can be neatly expressed. This
condition is satisfied by many natural function classes
on the bulk of their support - An important example
is the class of g of the form 1{G(z) > 0} for some
Holder smooth G that admit a margin condition with
respect to the Lebesgue measure (see, e.g. Mammen
and Tsybakov 1999; Tsybakov 2004). Indeed, if {G}
satisfies the margin condition Vol(|G| < t) <7, and is
L-Lipschitz, then {1 {G > 0}} is V-regular on a region
of mass > 1 —n with V' > (2t/L)P.

We offer the obvious class that can budget learn V-
regular functions over sufficiently nice measures - rect-
angles. For x € N, we define the class R%! to consist of
functions h that may be parametrised by k rectangles
{R;} and a label s € {0,1}, and take the form

h(z;{R;},s) = sl {z € UR;} + (1 — s)1 {z ¢ UR;}.

The class R%! above has VC dimension at most 2p(k +
1). The theorem below offers bounds on the budgets
required to learn V-regular classes in p dimensions:

Theorem 2. Let k := |d/2p — 1] < 1/V. Suppose
© < Vol, and dn > p, and G is V-regular. Then

dVol =
ve(RY1) =d, and it can budget learn G x {u} with

B(Gx{u},RY)<1—p b‘; — 1J V/3.

Conversely, for V< 1/2, there exists a V-regular class
G’ such that if va (H) < d, then

B(G' x {Vol},H) > 1 — \/3Vdlog(2¢/V).

For the Lipschitz functions with margin discussed
above, V scales as ©((C/L)~P), where L is the bound
on the gradient, and C' is some constant. The above
shows that all such classes are learnable with budget

1—Q(1) and VC-dim. d iff d > L=p+Oogp)

3.2.2 Budget Learnability of bounded VC
classes

Typically the function classes G that a cloud can imple-
ment are not nearly as rich as the set of all V-regular
functions. This merits the investigation of classes with
bounded (but large) complexity. Following the lines of
study above, we investigate the budget learnability of
finite VC classes, assuming vc (G) = D for large D.
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Unlike covering numbers, bracketing numbers do not,
in general, admit control for VC classes (e.g. construc-
tions of van Handel 2013 and Malykhin 2012). This
renders the budget learnability problem for bounded
VC classes difficult. This is further complicated by the
fact that we are interested in whether such classes can
be meaningfully bracketed by low-complezity classes.
Such questions are non-trivial to answer, and, frankly
speaking, we do not solve the same. However, we of-
fer two lower bounds, illustrating that if one wishes
to non-trivially budget learn such classes with budget
1— (1), and with VC dim. d, then d must grow as
Q(D). Further, we a present a few simple, natural cases
where one can budget learn, irrespective of measure,
with budget ~ 1 — d/D. We briefly discuss an open
question that these classes stimulate.

3.3 Lower Bounds

For simplicity, we assume that X = [1 : N] for some
N > 1, and that .% = 2%, The classes G, H can then
be identified as members of 27 . Our lower bounds are
captured by the following statements

Theorem 3.
(i) (Varying measure) Let G be any class with ve(G) =
D, and H with ve(H) = d. Then there exists a measure

p such that B(G x {u}, ") >1— /34 log <2.

(ii) (Uniform measure) Let N € N, be a multiple of
D such that D < N/8e. There exists a class G of VC-
dimension D on [1 : N]such that for any class H, if
B (G x {Unif([1: N))},H) < B € (D/N,1/4e), then

log(1/4eB)
ve(H) = Docteny

The above bounds, while not very effective, indicate
that to get small budget it is necessary that d grows
linearly with D.

3.4 Some natural budget learnable classes

We present three simple examples:

e Sparse VC class: on the space X = [1 : N, let
G = (2,). Then this G can be budget learned by the

class () of VC dimension d with budget 1 — d/D.

<d

e Convex Polygons in the plane: Let X = R2, and
Pp be the set of concepts defined by marking the
convex hull of any D points as b € {0,1}, and its
exterior by 1 — b. Takacs 2007 shows that Pp has VC
dimension 2D + 2. For d > 4, the class Py (of VC
dimension 2d + 2) can budget learn Pp with budget
1-[21"'~1-(d/D) for D> d.

e Tensorisation of thresholds: Let X = [1: N], and let
G be defined as the following class: Let Gy be the class
on [1: N/DJ of the form 1 {z > k} for some k. We let

G =2 g where g; : [14+iN/D, (i+1)N/D] — {0,1}

are of the form g;(z) = g/(x —iN/D) for some g} € Go.
Again, there exists a H C G of VC dimension d that
can budget learn G with budget 1 — d/D.

Proofs for the above claims are left to Appendix A.4.
There are two important features of the above classes,
and their budget approximation

1. For each of the classes, there is a subset of these
classes that has small VC dimension and can budget
learn at (roughly) the budget 1 — d/D. This subclass
can be chosen irrespective of measure.

2. These classes are all extremal in the sense of satisfy-
ing the sandwich lemma with equality. In the first two
cases they are maximal, while the third class is ample
(see, e.g. Chalopin et al. 2018).

Maximal classes are known to admit unlabelled com-
pression schemes of size equal to their VC dimension,
and have many regularity properties - for instance, sub-
classes formed by restricting the class to some subset
of the input are also maximal (see Chalopin et al. 2018
and references within). It is an interesting open ques-
tion whether maximal classes of VC dimension D can
be budget learned by subclasses of VC dimension d
with usage 1 — ¢d/D for some constant c.

4 Experiments

This section presents empirical work implmenting the
BL via bracketing schema on standard machine learning
data. We explore three binary classification tasks

1. A simple synthetic task in R? that allows easy visu-
alization.

2. The MNIST odd/even task, which requires discrimi-
nation between odd and even MNIST digits.

3. The CIFAR random pair task, which requires dis-
crimination between a pair of randomly chosen CIFAR-
10 classes.'”

The models considered are presented in Table 2. Each
of the local classes chosen are far sparser than the
corresponding cloud classes, which are taken to be the
state of the art models for these tasks.

Bracketing is implemented as described in §1.3. See
Appx. B for detailed descriptions. We compare the
bracketing method to four existing approaches.

1. Sum relazation (Sum Relax.) as proposed by Cortes
et al. 2016, which relaxes the gating formulation to a
sum as 1y < (7 +v)/2, and then further relaxes this
to real valued outputs and convex surrogate losses.

2. Alternating Minimiation (Alt. Min.) as proposed
0Note: supervision is provided after this choice. That is,

if class a and b are chosen, then the algorithms are provided
the class a and class b data.
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Cloud boundary, (b) Bracketing (c) Local thresholding (d) Alt. Min. (e) Sum Relax.
(Acc: 0.997; Usg:0.295) (Acc:0.997; Usg:0.537) (Acc:0.996; Usg:0.563) (Acc:0.948; Usg:0.819)

(a)

and the training set.

Figure 1: Visualisation of classifiers resulting from the various approaches on a synthetic dataset. The red curve indicates
the decision boundary of the cloud classifier, and figure (a) indicates this, and also shows the training set used as coloured
dots. Figures (b)-(e) depict the budget learners learnt by various approaches. In these, the white region is the set of inputs
on which the cloud is queried, while the orange and blue regions describe the decisions of the local predictor when it is
queried. The black lines indicate decision boundaries of the various classifiers, and in figures (c)-(e), the magenta line
indicates the boundary of the gate. Minimum usage solutions with accuracy at least 99.5% (when found) are presented.

Target Bracketing Local Thr. Alt. Min. Sum relax. Sel. Net.

Task Acc. Usg. ROL Usg. ROL Usg. ROL Usg. ROL Usg. ROL C2
MINIST 0.995 | 0457 210 |0.653 153 | 0830 1.20 | 0785 1.27 | 0.658 1.52 | 1.431x
Odd/Even 0.990 0.387 2.58 0.515 1.94 0.740 1.35 0.651 1.54 0.544 1.84 1.332x%
0980 | 0299 3.35 | 0358 2.79 | 0.604 1.66 | 0.651 1.54 | 0.423 2.37 | 1.199x

CIFAR 0.995 | 0363 401 | 0510 225 | 0854 1.19 | 0.620 207 | 0.436 3.04 | 1.280x
Random Paie | 0990 | 0294 566 | 0399 341 | 0754 140 | 0488 3.31 | 0.347 430 | 1265x
0980 | 0214 997 | 0276 638 | 0.611 1.87 | 0.345 581 |0.257 11.67 | 1.195x

Table 1: Performances on BL tasks studied. Usage (usg.) and relative operational lifetimes (ROL), a common metric in
BL which is the inverse of usage, are reported. In each case, the models attain the target accuracy (with respect to cloud)
to less than 0.5% error - see Table 3 in Appx. B.6. Gain is the factor by which the bracketing usages are smaller than the
best competitor. The CIFAR entries are averaged over 10 runs of the random choices. The results for all runs for the best
two methods for are reported in Table 4 in Appx. B.6. Note that these are averages of each entry for each run and so
average ROL is not the same as the inverse of the average usage.

Cloud
Classifier

Local
Accuracy

Cloud
Accuracy

Local

Task I Classifier

solutions at high target accuracy (> 98%). We note
that local thresholding strictly outperforms the sum

Axis-aligned Conic Sections

(2nd order curves) 0.840

Synthetic 4th order curve 1.00

LeNet

CUNIST | 2eom - maxpool ayers 0995 e 0.898 relaxation and alternating minimisation methods. The
ven v 4 maxpool | 57K params ——
params results are reported in Fig. 1 and Table 1. Observe
E Narrow LeNet . . . .
R CIPAR JESNET 32 0980 | 2comr o+ mapool layors 0909 that the bracketing methods show a consistent gain in

1.63K params . . . .
prae usages at high accuracy, with reductions in usage by

Table 2: Classification tasks studied, and the corresponding a factor of 1.2 to 1.5 times over the best competitors

cloud and local classifier classes selected. Cloud accuracy
is reported with respect to true labels, but local accuracy
is with respect to cloud labels.

by Nan and Saligrama 2017a, which introduces an
auxiliary function u to serve as proxy for + during
training, replacing v by umw. The algorithm then opti-
mises a loss over (7, m,u) via alternating minimisation
over (y,7) and then u, using a KL penalty D(ul|y) to
promote u ~ 7.

3. Selective Net (Sel. Net.) as proposed by Geifman
and El-Yaniv 2019 is an architectural modification for
deep networks that essentially optimises the raw gating
setup without any relaxation via SGD.

4. Local Thresholding (Local Thresh.). This is a naive
baseline - one learns a local classifier, and then rejects
points if the entropy of its (soft) output at the point is
too high.

In line with the focus of the paper, we only report

which are local thresholding for MNIST and Sel. Net.
for CIFAR. In addition, the usages themselves are in
the range 20-40% in most of the cases.

It is important to contextualise these usage numbers. In
our choice of cloud and edge models, we are demanding
that the edge models punch far above their weight
when we try to budget learn the stated cloud classifiers
- indeed, the edge models do not come even close to the
clouds in standard accuracy. However, in Table 1, we
see usages of 20-40% at high accuracies, and relative
operational lifetimes of 2.5-5. For settings like IoT
devices, where communication dominates energy costs,
this is a significant gain in operational lifetimes of the
prediction pipeline at near SOTA accuracy.

These results demonstrate that the bracketing method-
ology is practically implementable and effective, with
the resulting budget learners clearly outperforming
existing methods on the studied tasks.
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