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A Proofs of simple regret for the uniform
strategies

Results in the deterministic and stochastic cases with
known smoothness parameters were also reported in Hren
and Munos (2008) and Bubeck and Munos (2010).

A.1 Deterministic case

Deterministic feedback Let us consider the uniform ex-
ploration that evaluates all the cells at the deepest possible
depth H with a budget of n and recommends x(n) the x
with the highest observed f(x). We have H the largest
value such that KH ≤ n. Therefore H = blogK(n)c.
Because of Assumption 1 we have rn ≤ νρH . Therefore

rn = O
(

(K/n)
log 1/ρ
logK

)
.

Proof. Consider one global optimum x?. For all i ∈ [KH ],
let xH,i be the element selected for evaluation by the uni-
form exploration in PH,i. Then,

f(x(n))
(a)
≥ f(xH,i?H )

(b)
≥ f(x?)− νρH .

where (a) is because uniform has opened all the cells at
depth H and x(n) = arg maxPH,i∈T f(xH,i), and (b) is
by Assumption 1. Therefore rn = f(x?) − f(x(n)) ≤
νρH = νρblogK(n)c = νρblogK(n/K)+1c ≤ νρlogK(n/K) =

ν
(

(K/n)
log 1/ρ
logK

)
.

A.2 Stochastic case without knowledge of the
smoothness parameters ν, ρ

Proof. Consider one global optimum x?. For all i ∈ [KH ],
let us fix xh,i be the element selected for evaluation by the
uniform exploration in Ph,i each of the

⌊
n
KH

⌋
times this

cell is selected. We define and consider event ξδ and prove
it holds with high probability.

Let ξδ be the event under which all average estimates in
the cells receiving at least one evaluation from uniform are
within their classical confidence interval, then P (ξδ) ≥ 1−
δ, where

ξδ ,

{
∀i ∈

[
KH

]
,
∣∣∣f̂H,i − f(xH,i)

∣∣∣ ≤ b√ log(2n/δ)

n/KH

}
·

We have P (ξδ) ≥ 1 − δ, using Chernoff-Hoeffding’s in-
equality taking a union bound on all opened cells. On ξδ

we have,

f(x(n))
(a)
≥ f̂(x(n))− b

√
log(2n/δ)

n/KH

(b)
≥ f̂H,i? −

√
log(2n/δ)

n/KH

(a)
≥ f(xH,i?)− 2b

√
log(2n/δ)

n/KH

(c)
≥ f(x?)− νρH − 2b

√
log(2n/δ)

n/KH
.

where (a) is because ξδ holds and (b) is because uni-
form has opened all the cells at depth H and x(n) =

arg maxPh,i∈T f̂(xh,i), and (c) is by Assumption 1. We

have νρH ≤ ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and

√
log(2n/δ)
n/KH ≤

√
log(2n/δ)

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
.

Therefore rn = f(x?)− f(x(n)) ≤ νρH − 2b
√

log(2n/δ)
n/KH .

rn = Õ

(
log(1/δ)ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

))

A.3 The non-stochastic case

Theorem 1 (Upper bounds for ROBUNI). Consider any se-
quence of functions f1, . . . , fn such that |ft(x)| ≤ fmax
for all x ∈ X and t ∈ [n]. Let f = 1

n

∑n
t=1 ft, and x? be

one of the global optima of f with associated (ν, ρ). Then
after n rounds, the simple regret of ROBUNI is bounded as:

E[rn] = O

(
log(n/δ)

(
K

nρ2

) 1
logK
log 1/ρ

+2

)

Proof. Let us fix some depth H and consider a collection
of functions f1, . . . , fn. Given f1, . . . , fn, after n rounds
the random variables f̃H,i(t) are conditionally independent
from each other for all i at depth H and for all t ∈ [n] as
we have P(xt ∈ PH,i ∩ h ≥ 0) = P(xt ∈ PH,i) ≥ 1/KH

are fixed for all i at depth H and t ∈ [n].

The variance of f̃H,i(t) is the variance of a scaled
Bernoulli random variable with parameter P(xt ∈ PH,i) ≥
1/KH and range

[
0,KHEx∼U(Ph,i)[ft(x)]

]
, therefore

we have |f̃H,i(t) − Ex∼U(Ph,i)[ft(x)]| ≤ KH , and
σ2
f̃H,i(t)−Ex∼U(Ph,i)[ft(x)]

= σ2
f̃H,i(t)

≤ 1/KH(1 −

1/KH)K2H f̃2H,i(t) ≤ KHf2max.

We define and consider event ξδ and prove it holds with
high probability. Let ξδ be the event under which all av-
erage estimates in all the cells at depth H are within their
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classical confidence interval, then P (ξδ) ≥ 1− δ, where

ξδ ,
{
∀PH,i,

∣∣∣F̃H,i(n)− FH,i(n)
∣∣∣

≤
√

2nf2maxK
H log(n2/δ) +

f2max
3

KH log(n2/δ)

}
·

We have P (ξδ) ≥ 1 − δ, using Bennett’s inequality
from Theorem 3 in Maurer and Pontil (2009) and from
taking a union bound on all opened cells. We denote
Bh =

√
2nKh log(n2/δ) + bKh log(n2/δ) and we de-

note by h(n) the depth of x(n). On ξδ we have, for any
H ∈ [blogK(n)c],

E[f(x(n))]
(a)
≥ 1

n

(
F̃ (x(n))−Bh(n)

) (b)
≥ 1

n

(
F̃H,i? −BH

)
(a)
≥ 1

n
(FH,i? − 2BH)

(c)
≥ f(x?)− νρH − 2BH/n. (5)

where (a) is because ξδ holds (b) is by definition of x(n) as
x(n)← arg max

xh,i

F̃h,i(n)−Bh, and (c) is by Assumption 1.

In order to maximize the lower bound in 5 we
set H =

⌊
logK/ρ2(n)

⌋
. We have νρH ≤

ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and

√
log(n2/δ)KH/n ≤

√
log(n2/δ)

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and bKH/n log(n2/δ) =

O

(√
log(n2/δ)

((
K
nρ2

) 2
logK
log 1/ρ

+2

))
.

Therefore Eνn [rn] = f(x?) − E[f(x(n))] ≤ νρH+1 −

2B/n. rn = O

(
log(n/δ)

(
K
nρ2

) 1
logK
log 1/ρ

+2

)

B Proofs of simple regret for VROOM

The non-stochastic feedback case

Proof. Let us fix some depthH and consider a collection of
functions f1, . . . , fn. Given f1, . . . , fn, after n rounds the
random variables f̃H,i(t) can be dependent of each other
for all h ≥ 0 and i ∈ [KH ] and t ∈ [n] as ph,i,t depends
on previous observations at previous rounds. Therefore,
we use the Bernstein inequality for martingale differences
by Freedman (1975).

The variance of f̃H,i(t) is the variance of a
scaled Bernoulli random variable with parame-
ter P(xt ∈ PH,i) ≥ 1/KH log2

K(n) and range[
0,KHEx∼U(Ph,i)[ft(x)) log2(n)

]
,

therefore we have |f̃H,i(t) − Ex∼U(Ph,i)[ft(x)]| ≤
KH log2

K(n)fmax , and σ2
f̃H,i(t)−Ex∼U(Ph,i)[ft(x)]

=

σ2
f̃H,i(t)

≤ 1/KH(1− 1/KH)K2H f̃2H,i(t) ≤ KHf2max.

Then, following the same reasoning as in the proof of
Theorem 1, but replacing the Bernstein inequality by the
Bernstein inequality for martingale differences of Freed-
man (1975) applied to the martingale differences f̃k,t−f̃k,t,
we obtain the claimed result for the adversarial case.

The i.i.d. stochastic feedback case

Proof. Note that as the regret guaranties proved in the non-
stochastic case also hold in the stochastic case. So we are
left to prove E[rn] = Õ

(
1
n

) 1
d+3 .

We place ourselves in the i.i.d. stochastic setting described
in Section 1. Let us consider a fixed depth H which value
will be chosen towards the end of the proof in order to min-
imize the simple regret with respect to this H .

We consider one global optimum x? of f with associ-
ated (ν, ρ), C > 1, and near-optimality dimension d =
d(ν, C, ρ).

We define nα ∈ [n] and will analyze how VROOM explore
the depth h ≤ blogK(nα)c.

First, we define the rounds used for comparisons.

We define the times nh = βnα

∑h
h′=1

1
h′

logK(nα)
for h ∈

blogK(nα)c and where β > 1 is a constant that we will
fix later such that nh ≤ n. To ease the notation and with-
out loss of generality, for each depth h, we assume that the
cells are sorted by their means so that cell 1 is the best,
fh,1 ≥ fh,2 ≥ . . . ≥ fh,Kh .

We define and consider event ξδ and prove it holds with
high probability.

Let ξδ be the event under which all average estimates in all
the cells at depth H are within their classical confidence
interval, then P (ξδ) ≥ 1 − δ, where ξδ is decomposed in
three sub-events ξδ = ξ1δ ∩ ξ2δ ∩ ξ3δ where

ξ1δ ,{∀Ph,i, h ≤ blogK(n)c :∣∣∣F̃h,i(n)− nfh,i
∣∣∣ ≤ Badvh,i (n)

and
∣∣∣F̃h,i(n)− Fh,i(n)

∣∣∣ ≤ Badvh,i (n)
}

,

ξ2δ ,{∀Ph,i, h ≤ blogK(n)c,∀t ∈ [n],∣∣∣f̂h,i(t)− fh,i∣∣∣ ≤ Biidh,i(t)},
ξ3δ ,{∀h ≤ blogK(nα)c,

∀t ≥ 8nα log3(n), Th,i?(t) ≥ E
[
Th,i?(t)

2

]}
·

We have P (ξ1δ ) ≥ 1 − δ/2. Indeed to bound
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∣∣∣ we use the Bernstein inequality for mar-

tingale differences of Freedman (1975) applied to the mar-
tingale differences f̃k,t − fk,t and from taking a union
bound on all cells at depth h ≤ blogK(n)c. We have
P (ξ1δ ) ≥ 1− δ/2. Indeed, to bound

∣∣∣f̂h,i(t)− fh,i∣∣∣ we use
the Chernoff-Hoeffding inequality and take a union bound
on all cells at depth h ≤ blogK(n)c. Finally we have
P (ξ3δ ) ≥ 1 − log(n)/n. Indeed, using a Chernoff bound
we have for ∀h ≤ blogK(nα)c,∀t ≥ 8nα log3(n),

P
(
Th,i?(t) ≤ E

[
Th,i?(t)

2

])
≤ exp

(
−1

8
E
[
Th,i?(t)

2

])
≤ exp

(
−1

8
E

[
t−1∑
s=1

P(xs ∈ Ph,i?)

])
(a)
≤ exp

(
−1

8

t−1∑
s=1

1

nα log2(n)

)

≤ exp

(
−1

8

8nα log3(n)

nα log2(n)

)
= exp(− log(n)) =

1

n

where (a) is because P(xt ∈ Ph,i?) ≥
ph,i?,t = 1

h〈̂i?〉h,tlogK(n)
≥ 1

logK nαKhlogK(n)
≥

1
logK nαnαlogK(n)

≥ 1
nα log2

K(n)
≥ 1

nα log2(n)
.

We can therefore decompose the regret rn as

E[rn] =

(
δ +

log(n)

n

)
E[rn|ξcδ ] +

(
1− δ − log(n)

n

)
E[rn|ξδ]

≤
(
δ +

log(n)

n

)
fmax + E[rn|ξδ]. (6)

As we will set δ = 4b
fmax

√
n

the first term of Inequality 6 is
already smaller than the claimed result of the Theorem so
we now focus on bounding the second term.

For any x?, we write

⊥h =
{
h′ ≥ 0 : ∀t ≥ nh, ̂〈Ph′,i?〉h′,t ≤ Cρ

−dh′
}

that contains all the depth h such that for all time t ≥ nh the
cell containing x? at depth h is ranked with a smaller index
than Cρ−dh by VROOM. As explained above we are trying
here to introduce tools that will help us to upper bound the
ranking of the best arm to be able then to upper bound the
variance of its estimates.

On ξδ we have, for all H ∈ [blogK(n)c]

E[f(x(n))]
(a)
≥ 1

n

(
F̃h(n),i(n) −Bh(n),i(n)(n)

)
(b)
≥ 1

n

(
F̃⊥H ,1 −B⊥H ,1(n)

)
(a)
≥ 1

n

(
nf⊥H ,1 − 2B⊥H ,1(n)

)
(c)
≥ f(x?)− νρ⊥H − 2B⊥H ,1(n)/n. (7)

where (a) is because ξδ holds (b) is by definition of x(n)

as x(n) ← arg max
xh,i

F̃h,i(n) − Bh,i(n), and (c) is by As-

sumption 1.

We now need to bound ⊥H and bound B⊥H ,1(n) for some
H ∈ [blogK(nα)c]. To obtain a tight bound we try to have
νρ⊥H and B⊥H ,1(n) of the same order.

We use for that Lemma 2 that provide sufficient condition
in Equation 17 to lower bound ⊥H . We now define the
quantity h̃ that verify this condition. h̃ is so that the νρ⊥H

and Biid⊥H ,1(n) are equal. We denote h̃ the real number sat-
isfying

nαν
2ρ2h̃

Kh̃b2 log2(2n2/δ)
= Cρ−dh̃. (8)

Our approach is to solve Equation 8 and then verify that it
gives a valid indication of the behavior of our algorithm in
term of its optimal h. We have

h̃ =
1

(d+ 2) log(1/ρ)
W

(
ν2nα(d+ 2) log(1/ρ)

KCb2 log2(2n2/δ)

)
where standard W is the Lambert W function.

Using standard properties of the b·c function, we have

nαν
2ρ2bh̃c

K
⌊
h̃
⌋
b2 log2(2n2/δ)

≥ nαν
2ρ2h̃

Kh̃b2 log2(2n2/δ)

= Cρ−dh̃ ≥ Cρ−dbh̃c.

From the previous inequality we also have, as d ≤
log(K)/ log(1/ρ),

nα ≥

nαν
2ρ2bh̃c

K
⌊
h̃
⌋
b2 log2(2n2/δ)

≥ Cρ−dbh̃c ≥ Kbh̃c.

which leads to
⌊
h̃
⌋
≤ blogK(nα)c. Having

⌊
h̃
⌋
∈

[blogK(nα)c] and using Lemma 2 we have that if β ≥
8 log3(n)blogK(nα)c then ⊥bh̃c ≥

⌊
h̃
⌋

.

To boundB⊥H ,1(n) we use Lemma 1. Therefore, choosing
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H =
⌊
h̃
⌋

, we get to rewrite Equation 7 as

E[f(x(n))] ≥ f(x?)− νρ⊥bh̃c − 2B⊥bh̃c,1(n)/n

≥ f(x?)− νρbh̃c

− 4fmax

√√√√log3(2n2/δ)

(
n2α
n2

+
Cρ
−d⊥bh̃c

n

)
(9)

Moreover, as proved by Hoorfar and Hassani (2008), the
Lambert W (x) function verifies for x ≥ e, W (x) ≥
log
(

x
log x

)
. Therefore, if ν2nα(d+2) log(1/ρ)

KCb2 log(2n2/δ) > e we have,
we have the first term in Equation 9

ρbh̃c ≤ ρ
1

(d+2) log(1/ρ)
W

(
ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

)
−1

≤ ρ
1

(d+2) log(1/ρ)
log

 ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

e log2
(
ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

)


=

 ν2nα(d+2) log(1/ρ)
KCb2 log2(2n2/δ)

e log
(
ν2nα(d+2) log(1/ρ)
KCb2 log2(2n2/δ)

)


−1
(d+2)

Then we have, from Equation 8,√
Cρ
−d⊥bh̃c

n
≤

√
Cρ−dh̃

n
=

√
nαν2ρ2h̃

nKh̃b2 log2(2n2/δ)

≤ νρh̃√
Kb log2(2n2/δ)

,

which is bounded above.

Then in Equation 9, using that
√
a′ + b′ ≤

√
a′ +

√
b′ for

two non negative numbers (a′, b′), we have three terms of

the shape: n
−1
d+2
α +nα/n+n

−1
d+2
α . As explained in the sketch

of proof we need to have nα of order n
d+2
d+3 in order to min-

imize the previous sum.

More precisely we set nα = n
d+2
d+3 /(8 log4(n)) and set β =

8 log4(n) and δ = 4b
fmax

√
n

and obtain the claimed result.

Lemma 1. If β ≥ 8 log4(n)blogK(nα)c, for any global
optimum x? with associated (ν, ρ) from Assumption 1, any
C > 1, for any δ ∈ (0, 1), on event ξδ defined above, for
any depth h ∈ [blogK(nα)c], we have that if

nα
K
ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−d(ν,C,ρ)h, (10)

that

B⊥h,1(n) ≤ 2fmax

√
log3(2n2/δ)(n2α + nCρ−d⊥h).

Proof. The assumptions of Lemma 2 being verified we
have h ∈ ⊥h. Also we have,

B⊥h,1(n) (11)

= fmax

√√√√2⊥h(n)logK(n) log 2n2/δ

n∑
s=1

〈̂1〉h,s (12)

+ fmaxlogK(n)
log 2n2/δ

3
. (13)

We bound the first term by having

n∑
s=1

〈̂1〉h,s =

blogK(nα)c−1∑
h=0

nh∑
s=nh+1

〈̂1〉h,s

+

n∑
s=nblogK (nα)c+1

〈̂1〉h,s

(a)
≤
blogK(nα)c−1∑

h=0

nh∑
s=nh+1

Kblog(nα)c

+

n∑
s=nblogK (nα)c+1

Cρ−d⊥h

≤
blogK(nα)c−1∑

h=0

nh∑
s=nh+1

nα + nCρ−d⊥h

≤ n2α + nCρ−d⊥h

where (a) is because h ∈ [blogK(nα)c] and ⊥h ≥ h.

Because in Equation 11 the second term is smaller than the
first, we have

B⊥h,1(n) (14)

= 2fmax

√
2 logK(nα)logK(n) log(2n2/δ)(n2α + nCρ−d⊥h)

(15)

≤ 2fmax

√
2 log3(2n2/δ)(n2α + nCρ−d⊥h). (16)

Lemma 2. If β ≥ 8 log4(n)blogK(nα)c, For any global
optimum x? with associated (ν, ρ) from Assumption 1, any
C > 1, for any δ ∈ (0, 1), on event ξδ defined above, for
any depth h ∈ [blogK(nα)c], we have that if

nα
K
ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−d(ν,C,ρ)h, (17)

that h ∈ ⊥h.

Proof. To simplify notation we write d(ν, C, ρ) as d. We
place ourselves on event ξδ defined above. We prove the
statement of the lemma, given that event ξδ holds, by induc-
tion in the following sense. For a given h, we assume the
hypotheses of the lemma for that h are true and we prove
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by induction that h′ ∈ ⊥h′ for h′ ∈ [h].
1◦ For h′ = 0, we trivially have that 0 ∈ ⊥h′ .
2◦ Now consider h′ > 0, and assume h′ − 1 ∈ ⊥h′−1 with
the objective to prove that h′ ∈ ⊥h′ . Therefore, for all
t ≥ nh′−1, ̂〈Ph′−1,i?〉h′−1,t ≤ Cρ

−d(h′−1).

For the purpose of contradiction, let us assume that their ex-
ists t ≥ nh′ , such that ̂〈Ph′,i?〉h′,t > Cρ−dh

′
. This would

mean that there exist at least Cρ−dh
′

cells from {Ph′,i},
distinct from Ph′,i?h , satisfying f̂−h′,i(t) ≥ f̂−h′,i?

h′
(t). This

means that, for these cells we have

fh′,i
(b)
≥ f̂−h′,i(t) ≥ f̂

−
h′,i?

h′
(t)

(b)
≥ fh′,i?

h′
(t)− 2b

√
log(2n2/δ)

2Th′,i?
h′

(t)

(c)
≥ fh′,i?

h′
(t)− 2b

√√√√ log(2n2/δ)
βnα

hblogK(nα)cCKρ−dh′−1

≥ fh′,i?
h′

(t)− 2b

√
log(2n2/δ)

nα
hblogK(nα)cCKρ−dh′

(d)
≥ fh′,i?

h′
− 2νρh ≥ fh′,i?

h′
− 2νρh

′
,

where (b) is because ξδ holds, (d) is because
by assumption (Equation 17) of the lemma,
for h′ ∈ [h], nα

K ν2ρ2h
′
/(b2h log2(2n2/δ)) ≥

nα
K ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−dh ≥ Cρ−dh

′
.

(c) is because on ξδ , as β ≥ 8 log3(n)blogK(nα)c and h ≤
blogK(nα)c, ∀t ≥ nh = βnα

∑h
h′=1

1
h′

logK(nα)
≥ 8nα log3(n),

have

Th′,i?
h′

(t) ≥ E

[
t−1∑
s=1

P(xs ∈ Ph′,i?)

2

]

≥ E

 nh′∑
s=nh′−1

P(xs ∈ Ph′,i?)

2


(e)
≥

nh′∑
s=nh′−1

1

2CKρ−dh′−1

≥ β nα
2hblogK(nα)cCKρ−dh′−1

,

where (e) is because we have 〈Ph′−1,i?〉h′−1,t ≤
Cρ−d(h

′−1) which gives P(xt ∈ Ph,i) ≥ 1
KCρ−d(h′−1) as

fh′,i?
h′
≥ f(x?) − νρh

′
by Assumption 1, it follows that

Nh′(3νρh
′
) >

⌊
Cρ−dh

′
⌋

. This leads to having a contra-
diction with the function f being of near-optimality dimen-
sion d as defined in Definition 1. Indeed, the condition
Nh′(3νρh

′
) ≤ Cρ−dh

′
in Definition 1 is equivalent to the

condition Nh′(3νρh
′
) ≤

⌊
Cρ−dh

′
⌋

as Nh′(3νρh
′
) is an

integer. Reaching the contradiction proves the claim of the
lemma.
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