A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms

Appendices

Appendix A Laundry List of Convergent Algorithms
We outline the general proof recipe, which will be re-using for the following examples.
Proof strategy

(P1) Let 1V, 4@ be initial distributions and (f$", £{*) be the optimal coupling which minimizes W(u(1), 1(2));

(P2) Define an appropriate coupling fl(l) ~ WK, f1(2) ~ P K - e.g. by defining them to follow the same
trajectories if the updates sample from the same distributions;

(P3) Use the upper bound WMWK, u®?K) < E||fY = £2|| and bound E||fM — || <

PE ||| fél) — fé2) || for some p < 1 (usually follows from the recursive nature of the updates) to show that
u — pK is a contraction.

A1l Convergence of synchronous Monte Carlo Evaluation with constant step-sizes

We prove that Monte Carlo Evaluation with synchronous updates & constant step-size converges to a stationary
distribution. The algorithm aims to evaluate the value function of a given policy 7 using Monte Carlo returns.
The update rule is given by:

VseS: Vutri(s) =(1—a)Vu(s)+ agl(s) (MCE)

where G77(s) = >, <0 7" "n(8n, an) is the return of a random trajectory (s, an, 7, )n>0 starting from s, following
an ~ 7(|8n); T ~ R(:|sn,an), and s, 11 ~ P(:|sn, an).

Theorem A.1. For any constant step size 0 < o < 1 and initialization Vo ~ o € M(RIS!), the sequence of random
variub‘{sels) (Vi )n>o defined by the recursion (MCE) converges in distribution to a unique stationary distribution ¢, €
M(RIST).

Proof. Following the proof strategy outlined above, we skip to step (P2) of the proof. We define the coupling of
the und (1) 1,(2) ; ‘e
pdates (V;/, V}*’) to sample the same trajectories:

Vi (s) = (1 — )V (s) + aGfi(s)

) ) for the same G, (s) (11)
Vi (s) = (1 - a)Vy 2 (s) +agz;<s>.} ’

Note that this is a valid coupling of (1" K, u'? K,,), since Vl(l) (s) and Vl(z) (s) have access to the same sampling
distributions. We upper bound W (" K, 1 K,,) by the coupling defined in Equation (11). This gives:
WO K, tPKa) <E {Hvl(l) _ Vl(z)m
=FE {H(l — )V +agf — ((1 — )V + agf)

= [l - 1]

I

=(1-)E [HVO(U - VO(Q)‘H = (1= )W, u?)
Since 1 — o < 1, K, is a contraction mapping and we are done. O

A.2  Convergence of synchronous Q-Learning with constant step-sizes

We prove that Q-Learning with synchronous updates & constant step-sizes converges to a stationary distribu-
tion. The algorithm aims to learn the optimal action-value function Q*. The updates are given by:

V() €Sx A Quilsia) = (1-a)Qu(s.a) +a (r+ymaxQu(s', ). (Qu)
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where r ~ R(:|s,a),s’ ~ P(:|s,a), and a > 0.

Theorem A.2. For any constant step size 0 < o < 1 and initialization Qo ~ o € M(RISIXIAI), the sequence of
random variables (Q,)n>0 defined by the recursion (QL) converges in distribution to a unique stationary distribution
£o € M(RISH.

Proof. We use the proof outline given above, and jump straight to step (P2). We witness the same-sampling
coupling again:

D (5,0) = (1 - )4 (5,0) +a (r + 7 max QL (', o)

QP (5.0) = (1= Q" (s:0) + (7 + 7 max QP (')

~ R(s,a),
~P(|s a)

T
for the same o

The bound follows similarly, but with one additional step. Again we write T(Q)(s,a) = r+ymax, Q{50 @)
for the empirical Bellman (optimality) operator.

B[ @)~ @] = sl -+ (g0 @t )|

|

QW (s,a) — Q(Q)(s,a)” =K {HQ(I) a Q(2)‘H -

= ~E |max
s,a

<9E |max max ‘Q(l)(szsﬂ), a') — Q(2)(s’(57a), a’)”

s,a a

Hza;x Q(l) (SZS,a)’ CL/) o H}E’X Q(Q) (Sl(sxa)’ a/)

< AE |max

s,a

The first inequality follows from |max, Q1 (s, a’) —max, Q2(s,a’)| < maxy |Q1(s,a’) —Q2(s,a’)|, and the second
inequality follows since Q! and Q? sampled the same s’. Concluding the proof as before we see that the kernel
is contractive with Lipschitz constant 1 + o« — ay < 1, and we are done.

A3 TD()\)

We prove that TD(\) with synchronous updates & constant step-size converges to a stationary distribution. The
algorithm aims to evaluate the value function of a given policy 7 using a convex combination of n-step returns.
The update rule is given by:

oo k
Vst Vura(s) = (1— a)Va(s,a) + a(1 = 2) A (Z Yir(si ai) + vkwsk)) (TD(A)
k=1 i=0
where each n-step trajectory is sampled starting from s and following policy 7.

Theorem A.3. For any constant step size 0 < o < 1 and initialization Vo ~ py € M(R!S!), the sequence of random
variables (V,,)n>0 defined by the recursion (TD(\)) converges in distribution to a unique stationary distribution (, €
M(RISh,

Proof. Again, we jump straight to step (P2) of the template given above. We couple every n-step trajectory to
sample the same n rewards, actions, and successors states.

00 n—1
Vk(}r)l(s) =(1- oz)Vk(l)(s) +a(l-N) Z At (Z y'ri(siyai) + 'ank(l)(sn)> same

=0 (sia ai7ri)?:0

VEP(s) = 1= )V (s) +a(l— ) Y ant (Z Viri(si, ai) + v”v,f)(sn)) n

=0

n=1

n=1

By the coupling, the reward terms will cancel in every n-step trajectory. We write RY = Z?;Ol Yiri(si, a;) +
"V (s,) for the n-step return and 7(V)(s) = 325° Ak~ (Zf:o yir(si,a;) +~* Vn(sk)) for the empirical Bell-
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man operator of TD(A).
E[|T0v®) - Fv@)|] =& _msax i AR - i A"1R2)

L n=1 n—=1

=E _mgx i Al (RS) - RSP)
L n=1

=E -msax i ATl (V(l)(sn) - V(Q)(sn)> H (reward terms cancel)
L n=1

<E -i ATy max ‘ (V(l)(sn) - V(Q)(sn)> ” (triangle inequality)
Ln=1

< i AR [m;ax ‘V(l)(s) — V(z)(s)H (by the coupling)

n=1

- S e v o s - v

n=1

Concluding the proof as before, we have W(uV K, u> K) < (1—a+ay 11:/\’\A/)W(u(1), 1), Since 1 —a+ary 11’/\)‘7

i 1 we are done. O

A.4 SARSA with e-greedy policies

In this example we will example the use of e-greedy policies for control. In particular, we examine SARSA
updates with e-greedy policies. Let 7(-|s) be some base policy. The updates are as follow:

(1 —-a)Qx(s,a) + a(r(s,a) + vQr(s',a’)) w.p. €

(1—a)Qk(s,a) + a(r(s,a) + ymaxy, Qr(s’,a’)) wp.1—¢ (SARSA)

Qr+1(s,a) = {
where r ~ R(:|s,a) and s’ ~ P(:|s, a) in both cases and a’ ~ 7 (+|s’) in the first case.

Theorem A.4. For any constant step size 0 < « < 1 and initialization Qo ~ oy € M(RISI¥IAD) the sequence of
random variables (Q.,)n >0 defined by the recursion (SARSA) converges in distribution to a unique stationary distribution
B € M(RISIXIAI);

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling, where le)

takes the greedy action if and only if Q(12) does. In the non-greedy case, they sample the same a’ ~ 7 (-|s’). Inall
cases, both functions sample the same (s, a) and s'.

r+~Q(s',a") wp. e

r+ymaxy Q(s',a ) wp. 1 —¢

The bound follows similarly to the examples of ()-learning and TD(0). We omit the subscripts on the Q-
functions.

We write 7(Q)(s,a) =

E {Hf“(Q(l)) - 7‘(62(2))”} = [P {greedy action chosen} E {H;%xfﬂ(n}ﬁx QW(s',a') — max Qs a/)|]
+ P {non-greedy action chosen} E [nsl,a}lxh(Q(l) (s, a") — QA (s, a)) q
<ok [V - @] + (1 —enE [|@® - @]
=E[IQW - @]

The bound E [max,,v|(max, QW (s',a') —maxy QP (s',a)]] < AE[|QW —Q®@|]] follows from
|max, Q1 (s,a’) — maxy Qa(s,a’)] < maxy|Qi(s,a’) — Qa(s,a’)|, and since Q) and Q) sampled the
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same s’ in the greedy case. The bound E | QW (s',a') — QP (s, a))]] < E[|QW —Q@||] follows
since Q") and Q(? sampled the same state-action pair in the non-greedy case. Concluding the proof as before,
we have that E [||Q§1) - ||} (I-a+ay)E [HQ(()D (2) ||] and thus the kernel is a contraction. O

A.5 Expected SARSA with c-greedy policies

In this example we examine the Expected SARSA updates with e-greedy policies. Let 7(-|s) be some base policy.
Define 7.(:|s) as the e-greedy policy which takes the greedy action with probability 1-¢ and 7 otherwise. The
updates are as follow:

Qr+1(s,a) = (1 — @)Qi(s,a) + « (r(s a) + 72775 15)Qk (s, a )) (Expected-SARSA)

where r ~ R(:|s,a) and s’ ~ P(:|s, a) in both cases and a’ ~ 7 (+|s’) in the first case.

Theorem A.5. For any constant step size 0 < o < 1 and initialization Qo ~ o € M(RISIXIAI) the sequence of
random variables (QQn)n>0 defined by the recursion (Expected-SARSA) converges in distribution to a unique stationary
distribution B, € M(RISIXIAD),

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling.

We write 7(Q)(s,a) = r+~ 3., 7(a’|s)Q(s', a’). The bound follows similarly to the examples of Q-learning and
TD(0). We omit the subscripts on the Q-functions.

E|

T(QW) 77A'(Q(2))H} = max*y|Z7r NQW(s',a') Zw (s a’)|]

IN
=

max’yZﬂ NQW(s',a') — Q(z)(sl,a’)|]

1 (Sla a/) - Q(z)(slv a,)

<E max’yZﬂg(a’
<9E (1M - Q@]

Concluding the proof as before, we have that E {HQ& Q1 ||} (1-—a+ay)E [||Qél) - Qéz) H} , and thus the
kernel is a contraction. O
A.6 Double Q-Learning

In this example we will have to modify our state-space and introduce a new metric on pairs of Q-functions. The
Double Q-Learning algorithm (Hasselt, 2010)! maintains two random estimates (Q*, Q) and updates Q* with
probability p and QF with probability 1 — p. Should Q“ be chosen to be updated, the update is:

Qﬁ—&-l(sv (I) = (1 - OL)Q;?(& a) + o (T(Sa a) + VQE(Sa argmaxa/ Qﬁ(slv a/))) .
Analogously, the update for QF is
QE+1(5? a) = (1 - OL) 5(57 CL) + (T(Sv CL) + ’YQ;?(S? argmaxa/ QE(Slv a,))) .

In both cases, we have s’ ~ P(-|s,a). For this algorithm, the updates are Markovian on pairs of action-value
functions. Thus we set the state space to be RISI*IAl x RISIXIAL We choose the product metric defined by
di((Q4,QF), (B4, RP)) = [[Q* — RA|| + [|[@" — RP||.

!This is the original algorithm, not the deep reinforcement learning version given in (Van Hasselt, Guez, and Silver, 2016).
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Theorem A.6. For any constant step size 0 < o < 1 and initialization (Qf', QF) ~ o € M(RISIXIAL x RISIXIAL,
the sequence of random variables (Q2, QB),,>¢ defined by the Double Q-Learning recursion converges in distribution to a
unique stationary distribution x, € M(RISXIALx RISIXIAL,

Proof. As before, let (1), ) M(RISI*II x RISIXIAI) be arbitrary initializations and (Qf', QF) and (R4, RY) be
the optimal coupling of W(u™), u(?)). We couple (Qf',Q¥) and (R{!, RP) to sample the same function to be
updated and the same s’. Assume for a moment that Q“ and R are chosen to be updated. Proceeding as in the
proof of Q-Learning (cf. Theorem A.2), we find that

E[[Qi - &|] < 0 - E[[|Qq - R[l] + B [|Q7" - R7|] -
Analogously, if Q7 and R® are chosen to updated, we have:
EfflQr - BY|] < 1 - E[[Q5 - BF[] + B[] Q5 - Ro'[] -
Putting everything together, the full expectation is:
E[d(Q1, Q7). (R, RY))] = E[|QF" — BY|| + [|QF — RP]
=P{Aisupdated} E [|Qf — R{|| + ||@F — RY||]
+P{Bis updated} E [||Qf' — R{"|| + ||@ — R[]
= pE [[Q - B +[|@0 - R
+(1-pE[|Q0 - Ryl| +[|@f - B
<p(1-E[[Q5 - B[] + 1+ anE[||Q7 - B7|])
+(1=p) (A +anE[|Q5 - By ] + (1 - E[[|Q5 - &F[])

< lovor—a) E[lQf - 7] +E[IQF - B]) =1

— DN

= 5(2 + ay — (X)E [d((QS‘v QOB)7 (RE)L" R(?))]

Since 0 < 1/2(2 4+ ay — a) < 1, so we are done. We note that the first equality only follows since, under the
coupling, either A or B is updated for both functions. O

Appendix B Proofs of Section 5

Theorem B.1. Suppose T™ is such that the updates (5) with step-size o converge to a stationary distribution 1. If T is
an empirical Bellman operator for some policy , then E[f,] = f™ where fo ~ 1o and f7 is the fixed point of T™.

Proof. Let fy be distributed according to v,. Rewriting equation (5):
fi=QQ=a)fo+aT™ fo+ at(fo), (12)

where £(fo) = T7(fo,w) — T™ fo is a zero-mean noise term. Taking expectations on both sides, and using that
f1 is also distributed according to 1, by stationarity and that E[£(f)] = O for any f:

fa=Q1-a)fa+aE[T" fo]
afo = aE[R™ ++P" fo]
Jo=R" +vP"E[fo]
fo=T"fa
And therefore f, = f7 since it is the unique fixed point of 7. O

Theorem B.2. Suppose T is such that the updates (5) with step-size o converge to a stationary distribution 1., and that
T™ is an empirical Bellman operator for some policy . Define

C(f) =B [(T™(fow) = T T (fow) = T"f)7]
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to be the covariance of the zero-mean noise term Tr(f,w)=T"f for a given function f. Then, the covariance of fo ~ a
is given by

(1= (1= ))E [(fo = [ (fa = [T = 2OPOE [(fa = ) (fa = [T (PT)T
+a(l = a)(yPTE [(fo— ) (fo = f™)"]
+ O‘(l - O‘)E [(fa - fﬂ)(fa - fﬂ)T} (’YPW)T

+a? / CYbu(df)

Furthermore, we have that ||E [(fo — f™)(fa — f™)7] ||op is monotonically decreasing with respect to v, where ||-||, denotes

the operator norm of a matrix. In particular, lima o ||E[(fa — f™)(fa — f™)7] Hop = 0, and we have that:
P{mﬂh@—fﬂmzs}t§OV5>O

We preface the proof with some useful identities. We will write the covariance in terms of the tensor product
for ease of manipulations

Lemma B.1. Write £(f) == (T (f,w) — T™f). In the same setup as Theorem 5.2:
E [(fo = )T fo = 7+ &(f0)T] = E [(fo = ) (fa = )] (4PT)T
and

E[(T"fa = %)+ 6Ua) (T fa = ) + €U = OPPE [(fa = £ = )] (P

+ /C’(v)wa(dv)

Proof. Let fo ~ 14, by (5) wehave f1 = (1 —a)fo+a(T™ fo+£(fo)) and f1 ~ 9. Furthermore, the distribution
of fo is independent of the distribution of w. By independence,

E [(fo = [)E(fo)'] = EgBu [(fo = fT)E(fo) '] (by independence of fo and £(-))
=Ey, [(fo— FM)(EE(fo)T] =0 (Eu[£(f)] = 0 for every f)
For the first identity, note that

E[(fo=F)NT"fo = F)T] =E[(fo— ") RT + 7P (fo) = R =P (f))"]
=E[(fo— [P (fo— f*)7]
=E[(fo— fM)(fo— M) (vP)]
=E [(fo - fﬂ)(fo - fW)T] (’YPTF)T

The first identity then follows by using E [(fo — f™)&(fo)"] = 0 and linearity of expectations.
For the second identity, expanding the outer product gives:
E[((T™fo = £7) +€Uo) (T™fo = F7) + €D T| =E [T fo = )T fo = )7
E [(€(fo))(€(fo)T]
+E (T fo—FETo)) ']
+ W
(P (fo = F) AP (fo = [T))7]

/ C(v)ald
= (YPO)E [(fo— f™)(fo— f7)] (vP™)T
+ [ epatan
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where we used E [(T™ fo — f™)(£(fo))T] = 0. O

Proof (of Theorem 5.2). Again let fy be distributed according to t,. Subtracting f™ from equation (12),

fHi—=fT=0=a)(fo—fT)+a(T fo— f7 +&(fo))-
and taking outer products:
(i =)A= =0=a)*(fo— ) (fo— )T
+0® (T fo— 7+ &) (T™fo = 7 +£(fo))
+a(l—a)(fo— FT fo— f7+€(fo))T
+a(l—a)(T fo— fT+Efo))(fo— )T

Taking expectations on both sides, and using Lemma B.1:
E[(fi = M1 =07 =1 = )’E [(fo — f)(fo = [)T] + 2 (yPOE[(fo — M) (vP™)"
+a? [ )
+a(l —a)(YPOE [(fo— f)(fo— f)7]
+a(l=a)E [(fo— ) (fo— /)] (vPT)T

Since E [(f1 — f™)(f1 = f™)T] = E[(fo — f™)(fo — [™)T] by stationarity, re-arranging to the LHS and factoring
gives:
(1= A= a))E[(fa = ) fa = 7)) = ?(PTE [(fa = fT)(fa = )] (PT)T
+a(l = a)(yPOE [(fo = f7)(fo — f7)T]
+a(l=a)E [(fa = ) (fa = 7] (P)T

+a? / C(f)ba(df)

For the remainder of the proof we re-write the above expression in terms of tensor products. The tensor product
of two vectors z, y is the matrix defined by z ® y = xy". By extension, the tensor product of two matrices A, B
is the operator defined by (A ® B)X = AXB'. Then, the above expression can be re-written as:

(1= (= DE[(fa — SV o — /)] = 2 (PEE [(fu — ) (fa — f)]
Fa(l—a)(yP* @ DE [(fo— 7)(fo— /7)T]
Fa(l— a)A&VPME [(fa — ) (fa — )]
To? / CUaldf).

Factoring the tensor products further gives:

1= (=1 +arP B[ - 19%] = o [ eratan)

We show that the matrix on the LHS is invertible. By (Puterman, 2014, Corollary C.4) it will follow from
showing that p (((1 —a)l + ayP’T)®2> < 1, where p(A) is the spectral radius of matrix A. Writing [|A[,, =
max; » ;| A(i, j)| for the operator norm of a matrix A, and using that p(A) < [|A|,,, [|A ® Bl|o, = [|Allo 1Bl
and [[P7|op = [ 1]]gp = 1:

op’ op’

H((l — a)I + ayP)®?

= |1 =) +avP™[5, < (1—a) +av)® < 1, (13)

op
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where the last inequality followed since v < 1. Finally, for the limit o — 0, we use the following identity: if A is
such that || — A|| < 1then ||[A7}|| < Ty Welet A =1 —((1—a)l +ayP™)®?, by the calculation in (13)
we have || — A|| < 1. So we calculate the operator norm of the covariance matrix:

1B [(fo— f™)(fo— fM)T]|| = @?

[I —((1—a) + aypﬂ)‘@?} B /C(v)wa(dv)

< a?

[I —((1—a) + a’yP”)®2} N H H/C(v)%(dv)

1= HI —I+((1 —1a)l + prw)mH H/C(Uwa(dv)

<a?

9 1
YL H((l —a) + mP”)®2H H/C(U)%(dv)
, 1
= A at s a1 )
<ot | [ SO @)

Finally, since the state space is bounded in [0, Rmax/(1 - ¥)]", we have ( I) < RMAx/ (1 —v)and (T f); <
Rmax/(1~7) foreachi. Then, we have |&, ()€ (f);| = [(Tf)i(Tf); = (T£)i(Tf);~ DT F+(T (T Fl <
4(RMAX Thus we have [|C(f)| < 4(I§Mﬁ;‘)2 = M and thus
2
IE [(fo = £7)(fo = )7 < M . =

1-(1—-a+ay)?

For the concentration inequality, we will use a multivariate Chebyshev inequality (Marshall and Olkin, 1960,
Theorem 3.1), whos statement is as follows:

Theorem B.3. Let X = (X1, ..., X,,) bea random vector withEX = 0and E[XTX]| = X. Let T =Ty U{x : —x € T},
where T'y C R™ is a closed, convex set. If A = {a € R" : {a,x) > 1V € T}, then

P{X €T} < inf a' Za
acA

Let e > 0. We first bound a" Y'a with the operator norm of X. Note that
a"Ya= Z a;(Xa);

2
S Zai ||Z(l|| S n ||2H0p ||(1H
[

We define T’} to be the intersection of half-planes the {z|z; > €}, so that Ty = {z|z; > ¢ Vi}. Since the half-planes
are closed and convex, T is also closed and convex since it is an intersection of closed and convex sets.Then,
T =T, U{x:—xeTy} = {z|x; >eViorz; < —eVi}. Note thatx € T <= min;|z;] > . We define
X = fo — f7 which has zero-mean. Finally, Theorem B.3 states that

P{X €T} =P{fo— [T €T} < inf a’Ya<n [ Zlop inf llall?.

Note that inf, [|a||* is bounded since a = (L, L, ..,-L)isin Aand llal® (na)z So ninfeeq ||a]® < C for

some constant C' independent of o. From the previous result, we can take the limit of « — 0 of ||2||Op =
[E [(fa = £7)(fa = F7)7] |, and obtain:

P{fo— " €T} =P {minlfa(i) = /()| 2 e} < C-|[E [(fa = /) Ja = )], = 0

op
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Appendix C Proofs of Section 6

Lemma C.1. Suppose 7'(s) = argmax, Q7 (s, a) for each s. Then K (m, ') = P{n’ is greedy with respect to G™} > 0.

We will prove an intermediate probability lemma. Let X1, ..., X;, be mutually independent random variables
bounded in [g, b], and F;(z) = P{X; < =} denote the cumulative density functions of X; for i = 2,..,n. Note
that

b 1
]P){Xl ZXQ,X:[ 2X3,...7X1 ZXn}:/ / / dP((El,...,.’En)
ab a awl
— / / e / dP; (z1)dPe(z2)dP,(x,) by mutual independence
a a a

b
:/ Fy(x1) -+ Fo(x1)dPr(21)
= E [Fo(X1)F3(Xq) -+ Fo(Xq)] (14)

Then, we have:
Lemma C.2. Suppose that E[F;(X1)] > 0Vi = 2,...,n. Then also

E[Fp(X1) - Fo(X1)] >0

Proof. It is easy to see that H(z1) = II! ,F;(z1) is also a CDF. In particular, H starts at 0, ends at 1, and it
monotone and right-continuous. In fact, by Equation (14) it corresponds to the CDF of max(Xy, ..., X,). Assume
for a contradiction that E [F»(X7) - - - F,(X1)] = 0. By positivity, monotonicity, and right-continuity, we have that
H(z1) = 0Vz; € [a,b). Then, for every x we have

H(z) =0 = F;(z) =0 for some i.

Since we have H(b) = 1 and H(xz) = 0 otherwise, note that there must exist one i’ such that F;/(b) = 1 and
Fy(xz) = 0 otherwise. If not, then for all i there exists a ¢; > 0 such that F;(b — ¢;) > 0. By monotonicity,
F;(b — min; &;) > 0Vi, and thus H (b — min; ¢;) > 0. Thus we have E[F}/ (z)] = 0, a contradiction. O

Proof (Lemma C.1). Note that
K(m,7") = P{r’ is greedy with respect to G} = P {for each s,G" (s, 7'(s)) > G"(s,a) Va}.

Fix a state s, write X;(s) := G™(s,a;), and without loss of generality assume that 7'(s) = a;. We first show
that E[F;(X1)] > 0, i.e. P{G"(s,a1) > G"(s,a)} > 0 for all a. Suppose that it is not so, and pick a such that
P{G"(s,a1) > G"(s,a)} = 0. Then

Q"(s,a1) = E[G7(s,a1)]
=P{G7(s,a1) > G"(s,a)}E[G"(s,a1) [ {G" (5,01) = G"(s,0)}]
+P{G"(s,a1) <G (5,a)}E[G"(5,a1) [ {G"(s,01) <G (5, 0)}]
=0+ E[G7(s,a1){G"(s,a1) <G (s,a)}]
<E[G7(s,0)] = Q7 (s, a),

which contradicts the fact that n’ is greedy wrt Q™. Hence E[F;(X7)] > 0, and we apply Lemma C.2 to this set
to conclude that for each s,
P{G"(s,a1) > G"(s,a),Ya} > 0.

Because the returns are mutually independent, we further know that
P{G™(s,a1) > G"(s,a),¥s,a} = H P{G"(s,a1) > G"(s,a),Va} > 0,
seS

completing the proof. O
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Appendix D On weak convergence and total variation convergence

Recall the definition of the Total Variation metric:

Definition D.1. The total variation metric between probability measures is defined by:

dTV(,lL, l/) - sup ‘ILL(A) - V(A)|7
BeBorel(R?)

for p,v € 2(R9).

Consider a bandit with a single arm that has a deterministic reward of 0. Consider any of the classic algorithms
covered in this paper, which will sample a target of 0 at every iteration. It is easy to see that the unique stationary
distribution of the algorithm in this instance is a Dirac distribution at 0 (denoted dy).

Suppose a step-size of a < 1. If we initialize with some f; # 0 then we can see that the algorithm will never
converge to the true stationary distribution in Total Variation distance. This is because a Dirac distribution at
any z # 0 is always a constant distance of 1 away from a Dirac at 0. In other words,

dT\/((S()7 5fn) =1 Vn
despite the fact that f,, — 0. On the other hand, we have
W(dg, d5,,) — 0,

since the Wasserstein metric takes into consideration the underlying metric structure of the space.



