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Abstract

We present a distributional approach to
theoretical analyses of reinforcement learn-
ing algorithms for constant step-sizes. We
demonstrate its e�ectiveness by presenting
simple and unified proofs of convergence
for a variety of commonly-used methods.
We show that value-based methods such as
TD(�) and Q-Learning have update rules
which are contractive in the space of distri-
butions of functions, thus establishing their
exponentially fast convergence to a station-
ary distribution. We demonstrate that the
stationary distribution obtained by any al-
gorithm whose target is an expected Bell-
man update has a mean which is equal to
the true value function. Furthermore, we
establish that the distributions concentrate
around their mean as the step-size shrinks.
We further analyse the optimistic policy it-
eration algorithm, for which the contraction
property does not hold, and formulate a
probabilistic policy improvement property
which entails the convergence of the algo-
rithm.

1 Introduction

Basic results in the theory of Markov decision pro-
cesses (MDPs) and dynamic programming (DP) rely
on the two fundamental properties of the Bellman op-
erator: contraction and monotonicity. For instance,
proofs of convergence for value iteration and policy it-
eration follow immediately from the contractive prop-
erties of the Bellman operators and the Banach fixed
point theorem. Similarly, convergence of the policy

Proceedings of the 23rdInternational Conference onArtificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

improvement algorithm to an optimal policy follows
readily from a monotonicity argument (Puterman,
1994).

However, proving the convergence of sample-based
algorithms such as TD-learning (Sutton, 1988) or op-
timistic policy iteration (Tsitsiklis, 2002) requires sub-
stantially more e�ort. The typical stochastic approxi-
mation approach relies on hitting-time or martingale
arguments to bound the sequence of value function it-
erates within progressively smaller regions (see, e.g.,
Bertsekas and Tsitsiklis, 1996, Section 4.3).

In this work we present a distributional framework
for analyzing sample-based reinforcement learning al-
gorithms. Rather than consider the evolution of the
random point estimate produced by the learning pro-
cess, we study the dynamics of the distribution of these
point estimates. As a concrete example, we view the
TD(0) algorithm as defining a sequence of random it-
erates (Vn)n2N whose distributions are recursively de-
fined by the distributional equation

Vn+1(s)
D
= (1�↵)Vn(s)+↵ (R(s,A) + �Vn(S

0)) , (1)

where s is the initial state and (A,R, S
0) is the random

action-reward-next-state transition sampled from the
underlying Markov Decision Process.

We study the constant step-size case. Our main con-
tribution is to show that, for a variety of algorithms,
the random iterates converge in distribution to a fixed
point of the corresponding distributional equation,
even though the random point estimate may not con-
verge. We further characterize this fixed point, show-
ing that it depends on both the step-size and the spe-
cific Markov Decision Process under consideration.
Our framework views the learning process as defin-
ing a time-homogeneousMarkov chain over the space
value functions. We prove convergence by establish-
ing the existence of a stationary distribution for this
Markov chain and demonstrating that the sequence of
random iterates generated by a sample-based learning
rule must converge to this stationary distribution, us-
ing tools from optimal transport (Villani, 2008).
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We first analyze sample-based algorithms whose cor-
responding distributional operator is a contraction
mapping in the infinity norm, including TD(�), Q-
learning, and double Q-learning. Following a proof
technique of (Dieuleveut, Durmus, and Bach, 2017),
we lift these stochastic algorithms to the distributional
setting. We show that this lifting recovers contrac-
tive guarantees, now in the Wasserstein metric us-
ing the infinity norm as a cost function. The con-
traction coe�cient depends on the discount factor, as
usual, but also on the step-size: updates with smaller
step-sizes convergemore slowly to their distributional
fixed point. TD(0), for example, is a contraction map-
ping with coe�cient 1� ↵+ ↵�.

We also analyze the sample-based equivalent of pol-
icy iteration, called optimistic policy iteration (Tsitsik-
lis, 2002) or Monte Carlo control (Sutton and Barto,
1998). The convergence of policy iteration is not
driven by a contraction mapping, but rather by the
monotonicity of the policy iteration operator. We de-
rive a similar, weaker property for the sample-based
setting which we call probabilistic policy improve-
ment. We use this property to show that optimistic
policy improvement also converges to a distributional
fixed point.

By recovering the contraction mapping that under-
lies many dynamic programming algorithms, our dis-
tributional analysis significantly simplifies existing
proofs of convergence for stochastic algorithms, at
least for constant step-sizes. Our approach easily al-
lows us to quantify the limiting behaviour of these al-
gorithms; the same tool even provides us with confi-
dence bounds over the true value function. We believe
this type of analysis should prove useful going for-
ward, including for the study of reinforcement learn-
ing with function approximation.

2 Background

We write P(X ) for the set of probability distribu-
tions on a space X . We consider an agent interacting
with an environment modelled as a finite Markov de-
cision process (S,A,R,P, �). As usual, S is a finite
state space, A is a finite set of actions, R : S ⇥ A !
P([0,R���]) is a bounded reward distribution func-
tion, P : S ⇥ A ! P(S) is a transition distribution
function, and � 2 [0, 1) is a discount factor. The strat-
egy of the agent is captured by a policy ⇡ : S !P(A).
The value function v

⇡ : S ! R of a policy ⇡ is the
expected discounted sum of rewards observed when
starting at state s and following policy ⇡. The value
function is the fixed point of the Bellman operator T ⇡

defined by

T ⇡
v(s) := Ea⇠⇡(·|s)

r⇠R(·|s,a)

⇥
r + �Es0⇠P(·|s,a) [v(s

0)]
⇤
. (2)

The value function of the optimal policy ⇡? is also the
fixed point of the Bellman optimality operator T ?, de-
fined by

T ?
v(s) := max

a

n
Er⇠R(·|s,a)
s0⇠P(·|s,a)

[r + �v(s0)]
o
. (3)

A closely-related object is the action-value function q
⇡ ,

the expected discounted return of first taking action a

and thereafter following policy ⇡. The action-value
function satisfies the Bellman equations q

⇡(s, a) =
T ⇡

q
⇡(s, a) and q

?(s, a) = T ?
q
?(s, a), where T ⇡ and

T ? are defined analogously to Equations (2) and (3)
(Sutton and Barto, 1998). The Bellman operators for
value functions (resp. action-value functions) are
contractions on R|S| (resp. R|S|⇥|A|) with respect to
the infinity norm kvk := kvk1 = maxi |vi| (Puter-
man, 1994). A policy ⇡ is called greedy with respect
to an action-value function Q 2 R|S|⇥|A| if ⇡(s) 2
argmaxa Q(s, a) for each s 2 S .

2.1 Couplings and the Wasserstein Metric

To establish convergence in distribution, we will use
the Wasserstein metric W between distributions (Vil-
lani, 2008). As a cost function, we use the infinity
norm. For two distributions µ, ⌫ 2 P(Rd), a pair of
random vectors (X,Y ) is a coupling of (µ, ⌫) ifX ⇠ µ

and Y ⇠ ⌫. We write ⌅(µ, ⌫) for the set of such cou-
plings. The Wasserstein metric on P(Rd)with the in-
finity norm as a cost function is defined as:

W(µ, ⌫) = inf
(X,Y )2⌅(µ,⌫)

E [kX � Y k1] . (4)

The metric is defined over the set M(Rd) =�
µ 2P(Rd) :

R
kxk1 µ(dx) < +1

 
of measures

with finite first moment. Assuming a bounded
reward function, we will always be dealing with
finite-moment measures. The Wasserstein met-
ric characterizes the weak convergence of measures
(Villani, 2008, Theorem 6.9), or equivalently the
convergence in distribution.

3 Markov Chains on the Space of

Functions

With many value-based RL algorithms, the stochas-
ticity of the algorithm depends only on the sampled
transition and the random current estimate. For ex-
ample, recalling the update rule for TD(0) (Equation
(1)), the value of Vn+1(s) for a particular state is fully
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determined by knowledge of Vn and the action, re-
ward, and successor state which was sampled from
s:

P {Vn+1 | Vn, Vn�1, ..., V1, V0} = P {Vn+1 | Vn} .

We therefore view thesemethods as inducingMarkov
chains on the space of value functions. We note that
their state space is continuous rather than discrete –
we take it to be R|S| when modelling value functions
or R|S|⇥|A| when modelling action-value functions.
When results hold for both cases, we will write the
discussion in terms of Rd, d 2 N. Whenever needed,
we may also restrict ourselves to the subset of realiz-
able functions [0, R���

1�� ]
d ⇢ Rd.

For a given update rule U and step-size ↵, the transi-
tion function for an induced Markov chain is as fol-
lows. Given fk 2 Rd, let fk+1 be the random function
obtained by U and ↵. For a Borel set B 2 Borel(Rd),
we define the Markov kernel KU,↵ as:

KU,↵(fk,B) = P {fk+1 2 B|fk} .

ThisMarkov kernel describes the probability of transi-
tioning from fk to some function in the setB under the
update rule. In the sequel, we omit the subscripts on
the kernel when the update rule is clear from context.
For a given probabilitymeasure µ 2P(Rd), the distri-
bution of functions after one transition of the Markov
chain is given by

µK(B) =
Z

Rd

K(✓,B)µ(d✓).

The distribution of functions after n transitions is
given byK

n, which is defined inductively as:

K
n(✓,B) =

Z

Rd

K(✓0,B)Kn�1(✓, d✓0).

A probability measure  is a stationary distribution for
a Markov chain with kernel K if

 =  K.

An algorithm updates synchronously when all states
or state-actions pairs are updated at every iteration.
In the regime of constant step-sizes and synchronous
updates, the Markov kernels are time-homogeneous

(or time-independent). Thus, the law µn(B) =
P {fn 2 B} of the random variable fn is given by:

µn  µ0(K)n.

3.1 Stochastic operators

In this section, we introduce the notion of a stochastic
operator and provide a general formalism for the anal-
ysis of stochastic update rules. We will distinguish

two classes of stochastic operators which will require
di�erent analyses.

We model the sampling space as a probability space
(⌦,F , ⌘). A stochastic operator is amap between func-
tions which depends on a randomly sampled event
! 2 ⌦.
Definition 3.1 (Stochastic operator). A stochastic op-
erator is a function bT : Rd ⇥ ⌦! Rd.

When operating on functions, a stochastic operator bT
outputs a random function. We will write a number
of stochastic value-based algorithms as

fn+1 = (1� ↵)fn + ↵bT (fn,!), (5)

where fn, fn+1 2 Rd are functions, ↵ is a step-size,
and bT is some algorithm-dependent stochastic opera-
tor. In this notation, the operator bT is the target of the
algorithm. We say that bT is an empirical Bellman opera-

tor if it behaves like a Bellman operator in expectation.
Definition 3.2 (Empirical Bellman Operator). The
stochastic operator bT is an empirical Bellman opera-
tor for a policy ⇡ if

E!⇠⌘[bT (f,!)] = T ⇡
f 8f 2 Rd

.

Similarly, bT is an empirical Bellman optimality opera-
tor if E!⇠⌘[bT (f,!)] = T ?

f .

In general, the sampling distribution of the stochastic
operator may depend on the function which it is act-
ing on. Two examples of methods for which the sam-
pling distribution is independent of the current func-
tion estimates are TD(0), which applies an empirical
Bellman operator, and Q-Learning, which applies an
empirical Bellman optimality operator. TD(0) is de-
fined by the stochastic operator

bT (V, (as, rs, s
0
s)s2S)(s) = rs + �V (s0s),

where (as, rs, s0s) is a transition sampled for every
state, and Q-Learning is defined by the operator

bT (Q, (rs,a, s
0
s,a)(s,a))(s, a) = rs,a + �max

a0
Q(s0s,a, a

0),

where (rs,a, s0s,a) is a transition sampled for every
state-action pair. Convergence of these methods is
covered in Section 4. On the other hand, methods for
which the sampling of the update rule depends on the
function being updated are more akin to policy itera-
tion, which applies Bellman operators that depend on
the current greedy policy. We will see an example of
such a method in Section 6.
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4 Convergence via Contraction to a

Stationary Distribution

In this section we demonstrate that common value-
based algorithms converge to a stationary distribu-
tion when updated synchronously and with constant
step-sizes. The convergence follows by showing that
their Markov kernels are contractive with respect to
the Wasserstein metric. To illustrate our approach,
we provide a proof of convergence for TD(0). With
the same proofmethod, we also establish convergence
and give convergence rates for Monte Carlo evalua-
tion, Q-Learning, TD(�), SARSA, Expected SARSA
(Van Seijen et al., 2009), and Double Q-Learning
(Hasselt, 2010). The proofs for these other algorithms
are given in Appendix A.

Recall the update rule of the synchronous TD(0) al-
gorithm given by Equation (1).
Proposition 4.1. For any step size 0 < ↵  1, the TD(0)
algorithm has a contractive Markov kernel K↵:

W(µK↵, ⌫K↵)  (1� ↵+ ↵�)W(µ, ⌫),

for all µ, ⌫ 2M(R|S|).

Proof. Let µ(1)
, µ

(2) 2M(R|S|) be two distributions of
function estimates. Let V (1)

0 ⇠ µ
(1)

, V
(2)
0 ⇠ µ

(2) be the
couplingwhichminimizes theWassersteinmetric, i.e.:

W(µ(1)
, µ

(2)) = inf
(X,Y )

E[kX � Y k] = E
h
kV (1)

0 � V
(2)
0 k

i
.

Such an optimal coupling always exists (Villani, 2008,
Theorem 4.1). We couple the updates (V (1)

1 , V
(2)
1 ) to

sample the same transitions at each state:

V
(1)
1 (s) = (1� ↵)V (1)

0 (s) + ↵

⇣
rs + �V

(1)
0 (s0s)

⌘

V
(2)
1 (s) = (1� ↵)V (2)

0 (s) + ↵

⇣
rs + �V

(2)
0 (s0s)

⌘
,

(6)

for the same a ⇠ ⇡(·|s), rs ⇠ R(·|s, a), and
s
0
s ⇠ P(·|s, a). Note that this is a valid coupling of
(µ(1)

K↵, µ
(2)

K↵) since V
(1)
1 and V

(2)
1 sample transi-

tions from the same distributions. We upper-bound
W(µ(1)

K↵, µ
(2)

K↵) with the coupling above.

W(µ(1)
K↵, µ

(2)
K↵)  E

h
kV (1)

1 � V
(2)
1 k

i

 (1� ↵)E
h
kV (1)

0 � V
(2)
0 k

i

+ ↵E
h
max

s

�� (rs � rs) + �
�
V

(1)
0 (s0s)� V

(2)
0 (s0s)

���
i

(7)

We note that the expectation is over the pair
(V (1)

0 , V
(2)
0 ) as well as the random samples as, rs, s

0
s.

By our coupling construction,

E
h
max

s

�� (rs � rs) + �
�
V

(1)
0 (s0s)� V

(2)
0 (s0s)

���
i

= �E
h
max

s
|V (1)

0 (s0s)� V
(2)
0 (s0s)|

i

 �E
h
max

s
|V (1)

0 (s)� V
(2)
0 (s)|

i
= �W(µ(1)

, µ
(2)) (8)

The inequality follows since V (1)
0 and V

(2)
0 sample the

same set of successor states: themaximum is the same
if each s samples a di�erent s0s and is lesser otherwise.
Using Equation (8) in Equation (7) gives:

W(µ(1)
K↵, µ

(2)
K↵)

 E
h
(1� ↵)kV (1)

0 � V
(2)
0 k+ ↵�kV (1)

0 � V
(2)
0 k

i

= (1� ↵+ ↵�)W(µ(1)
, µ

(2)).

Since 1 � ↵ + ↵� < 1, the kernel K↵ is a contraction
mapping.

The contraction property readily entails the conver-
gence to a stationary distribution. We initialize with
any V0 drawn from an arbitrary distribution of finite
first moment.
Theorem 4.1. For any constant step size 0 < ↵  1 and

initialization V0 ⇠ µ0 2M(R|S|), the sequence of random
variables (Vn)n�0 defined by the recursion (1) converges in

the Wasserstein metric to a unique stationary distribution

 ↵ 2M(R|S|).

Proof. The space of probability measures M(R|S|)
metrized with W is a complete metric space (Villani,
2008, Theorem 6.16), and therefore it follows from Ba-
nach’s fixed point theorem that (µ0K

n
↵)n�0 converges

exponentially quickly to a unique fixed point  TD(0)
↵ .

The distribution  TD(0)
↵ is a stationary distribution by

the fixed point property:

 
TD(0)
↵ K↵ =  

TD(0)
↵ .

As evidenced by the above, lifting the analysis to dis-
tributions over value functions greatly simplifies the
proof. The key is in the choice of a proper cou-
pling. The same technique extends to a broad class
of algorithms, with relatively few modifications. This
avoids, for example, the additional hurdles caused
by the greedy probability kernel in Q-learning (Tsit-
siklis, 1994). We further note some surprising con-
nections with distributional reinforcement learning
(Bellemare, Dabney, and Munos, 2017). For ↵ = 1,
the fixed point of TD(0) is in fact Bellemare, Dab-
ney, and Munos’s return distribution. The same cou-
pling, which forces two processes to sample the same
transitions, has also been implicitly used to study the
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MC Evaluation TD(�) SARSA Expected SARSA QL Double QL

Contraction factor 1� ↵ 1� ↵+ ↵� 1��
1��� 1� ↵+ ↵� 1� ↵+ ↵� 1� ↵+ ↵� 1

2 (2� ↵+ ↵�)

Table 1: Di�erent sample-based algorithms which imply a contraction mapping in the Wasserstein metric
over distributions on value functions. For each method, we also provide the corresponding contraction factor.
Acronyms: Monte Carlo (MC), Q-Learning (QL).

behaviour of distributional algorithms (Lyle, Castro,
and Bellemare, 2019).

To demonstrate the power of the approach, we sum-
marize in Table 1 a series of results regarding common
sampling-based RL algorithms. Under similar condi-
tions to Theorem 4.1, each algorithm listed in Table 1
converges to a stationary distribution (which is in gen-
eral di�erent for di�erent algorithms, as we show in
the next section). Each proof only requires small ad-
justments to the basic proof template, for example an
extended state space (Double Q-Learning). Full de-
tails, along with the proof template, are given in the
appendix.

5 The Stationary Distributions

In this section, we characterize the stationary distribu-
tions which are attained by any algorithm whose tar-
get is a Bellman operator or Bellman optimality oper-
ator in expectation. In our notation, these algorithms
are defined in terms of empirical Bellman (optimality)
operators. As before, we write the discussion in terms
of Rd since results will hold for both value functions
and action-value functions.

What do these distributions look like? We first con-
sider the case of policy evaluation algorithms, which
have as expected operator T ⇡ . In that case, their mean
corresponds to the fixed point of T ⇡ , i.e. the value
functions v⇡ or q⇡ . Second, they concentrate around
this mean in inverse proportion to the step-size ↵.
Hence, as expected, small step sizes lead to a more
accurate distribution at the cost of a larger contrac-
tion factor. The full distributions are not symmetric or
easily described, however; as a simple example, take
↵ = 1 in TD(0), corresponding to the return distri-
bution (Bellemare, Dabney, and Munos, 2017). In the
case of optimality operators, we show that the mean
of the stationary distributions is in fact greater than
the fixed points v? or q?.

5.1 Sample-based Evaluation Algorithms

Theorem 5.1. Suppose bT ⇡
is an empirical Bellman opera-

tor for some policy ⇡ and that the updates (5)with step-size
↵ converge to a stationary distribution  ↵. Let f↵ ⇠  ↵

and f
⇡
be the fixed point of T ⇡

. Then E[f↵] = f
⇡
.

Proof. Let f0 be distributed according to  ↵. By sta-
tionarity,

f1 = (1� ↵)f0 + ↵bT ⇡(f0,!) (9)

is also distributed according to  ↵. We write f↵ :=
E [f0]. Taking expectations on both sides, and using
that E![bT ⇡(f,!))] = T ⇡(f) for any f :

f↵ = (1� ↵)f↵ + ↵E!, ↵ [bT ⇡(f0,!)]

f↵ = E ↵ [T ⇡
f0]

f↵ = T ⇡E ↵ [f0] = T ⇡
f↵

And therefore f↵ = f
⇡ since it is the unique fixed

point of T ⇡ .

We remark again that this characterization will hold
for any algorithmwhich converges and performs Bell-
man updates in expectation. Although they have the
same mean, the stationary distributions will depend
on the update rule. These di�erences will be reflected
in their higher moments. To this e�ect, we next derive
a closed-form expression for the covariance of the sta-
tionary distribution. We write AT for the transpose of
a matrixA. The outer product of two vectors x, y 2 Rd

is the matrix xy
T 2 Rd⇥d defined by (xyT)i,j = xiyj .

Thus, E[( ~X � ~µ)( ~X � ~µ)T] is the covariance of a ran-
domvector ~X withmean ~µ. The proof of the following
result is provided in Appendix B.
Theorem 5.2. Let bT ⇡

be an empirical Bellman operator

for some policy ⇡. Suppose bT ⇡
is such that the updates (5)

with step-size ↵ converge to a stationary distribution  ↵.

Define ⇠!(f) = bT ⇡(f,!)� T ⇡
f , and

C(f) := E![⇠!(f)⇠!(f)T]

to be the covariance of the zero-mean noise term ⇠!(f) for a
given function f . Define C = (1� (1� ↵))2. The covari-
ance of f↵ ⇠  ↵ is given by

CE
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T

⇤
=

↵
2(�P⇡)E

⇥
(f↵ � f

⇡)(f↵ � f
⇡)T

⇤
(�P⇡)T

+ ↵(1� ↵)(�P⇡)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T

⇤

+ ↵(1� ↵)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T

⇤
(�P⇡)T

+ ↵
2

Z
C(f) ↵(df).
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Theorem 5.2 provides a recursive definition for the
covariance of the stationary distribution  ↵. The in-
tegral in the final line corresponds to the expected
covariance of the empirical Bellman operator when
sampling from the distribution. Under the assump-
tion that states are updated independently, this “one-
step” covariance is diagonal. More generally, the co-
variance matrix is scaled by ↵, suggesting that the
distribution concentrates around its mean when ↵ is
close to 0. The following makes this precise. We write
kAkop = sup {kAvk : kvk  1, v 2 Rd} for the operator
norm of a matrix A.
Corollary 5.2.1. Assume that the state space of the

Markov chain is bounded. Let C := ( 2R���1�� )2. Then,

we have that
��E

⇥
(f↵ � f

⇡)(f↵ � f
⇡)T

⇤��
op

is mono-

tonically decreasing with respect to ↵. In particular,

lim↵!0

��E[(f↵ � f
⇡)(f↵ � f

⇡)T]
��
op

= 0, and we have

that:

P
n
min
i
|f↵(i)� f

⇡(i)| � "
o
 C

d"2
↵
2

1� (1� ↵+ ↵�)2

↵!0�! 0.

We remark that the boundedness of the state space
(e.g. by [0, R���

1�� ]
d ⇢ Rd) is easily satisfied in the pres-

ence of bounded rewards in the MDP. Furthermore,
the above results about the mean and covariance can
easily be extended beyond Bellman operators to any
operator which has a unique fixed point and com-
mutes with expectation.

5.2 Sample-Based Control Algorithms

Abovewe saw that themean of the stationary distribu-
tion of a sample-based method using a fixed policy is
the value function for that policy. This no longer holds
in the presence of optimality operators, for example
in what is called the control setting (Sutton, 1988). To
conclude this section, we use our distributional ap-
proach to highlight behavioural characteristics of con-
trol algorithms.

Theorem 5.3. Suppose bT ?
is an empirical Bellman opti-

mality operator such that the updates (5) with step-size ↵

converge to a stationary distribution  
?
↵. Let f↵ ⇠  ?↵ and

f
?
is the fixed point of T ?

. Then

E[f↵] � f
?
.

Equality holds if and only if the expectation and the maxi-

mum commute, i.e. EbT f = bT Ef

Proof. As before, let f0 be distributed according to  ?↵.
Taking expectations on both sides of f1 = (1� ↵)f0 +

↵bT ?(f0,!) and writing f↵ := E [f↵] gives:

f↵ = (1� ↵)f↵ + ↵E!,f0 [bT ?(f0,!)]

f↵ = Ef0 [max
⇡

T ⇡
f0]

f↵ � max
⇡

Ef0 [T ⇡
f0]

f↵ � max
⇡

T ⇡
f↵ = T ?

f↵

By the linear programming formulation of MDPs
(Puterman, 1994, Section 6.9.1), we conclude that
f̄↵ � f

? = minf{f � T ?
f}.

The theorem shows that in general, sample-based con-
trol methods such as Q-learning produces a biased
(in an expected sense) estimate of the optimal Q-
value. This brings fresh evidence about the algo-
rithm’s well-known overestimation problem, which
double Q-learning seeks to correct.

6 Convergence via Monotonicity:

Optimistic Policy Iteration

In a previous section, we showed that a number of
sampling-based algorithms induce a contractionmap-
ping in the Wasserstein metric between distributions
over value functions. In this section we analyze a
non-contractive example, namely the optimistic pol-
icy iteration (OPI) algorithm. The OPI algorithm is
a sampling-based analogue of the classic policy iter-
ation (PI) algorithm. The latter is driven to conver-
gence by the monotonicity of the greedy policy up-
dates. We show in this section that our Markov chain
approach can regain a distributional analogue of the
monotonicity property, which we call probabilistic pol-
icy improvement, and that this property can be used to
analyze the algorithm in a restricted setting.

The convergence of optimistic policy iteration is more
di�cult to prove than that of most sample-based algo-
rithms, and has been previously been established for
Robbins-Monro decreasing stepsizes by using mono-
tonicity arguments and assumptions on the sampling
distribution (Tsitsiklis, 2002).

Optimistic policy iteration proceeds by constructing
a greedy policy from its current value function, sam-
pling one trajectory per state-action pair from this pol-
icy, then updating its value function towards the re-
turn of these trajectories. We will write

G⇡(s0, a0) =
1X

t=0

�
t
rt(st, at)

for a sampled discounted return starting at state s0,
taking first action a0, and thereafter following policy
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⇡. For any Q 2 R|S|⇥|A|, we write ⇡Q for the greedy
policy corresponding toQ (assuming a consistent tie-
breaking so that this is well-defined). Let Q0 be some
initial estimate and ⇡0 = ⇡Q0 . The update rule of OPI
is as follows (↵ 2 (0, 1]):

Qn+1(s, a) = (1� ↵)Qn(s, a) + ↵G⇡n(s, a)

⇡n+1 = ⇡Qn+1 . (10)

Analyzing optimistic policy iteration in the distribu-
tional setting poses a few challenges. First, the dis-
tribution of sampled trajectories depends on the ex-
act value function. Informally, the greedy mapping
from value functions to policies induces a greedy parti-
tion (Bertsekas and Tsitsiklis, 1996, Figure 6.9), with
a di�erent empirical Bellman operator correspond-
ing to each region of this partition. This rules out a
simple coupling argument, as functions with di�er-
ent greedy policies may have arbitrarily di�erent re-
turn distributions. Bertsekas and Tsitsiklis point out
that optimistic policy iteration can lead to chattering,
where the greedy policy fails to converge even the
value function converges. For our analysis, we con-
sider the simpler case ↵ = 1; we discuss the extension
to ↵ < 1 at the end of the section.
Theorem 6.1. For ↵ = 1 and initialization Q0 ⇠ µ0 2
M(R|S|⇥|A|), the sequence of random variables (Qn)n�0

defined by the recursion (10) converges to a unique station-

ary distribution '1 2P(R|S|⇥|A|).

The key lemma is to extend themonotonicity property
of the policy iteration operator to the distributional
case. In policy iteration, the greedy policy ⇡0 = ⇡Q⇡

with respect to Q
⇡ leads to an improved value func-

tion:
Q
⇡0
� Q

⇡
.

The role of Q⇡ is therefore to provide us with the im-
proved policy ⇡0. We will show that the same holds
true for the sampled returns: there is some probabil-
ity that the greedy policy with respect to G⇡ is ⇡0. This
allows us to argue that there is a chance that optimistic
policy iteration follows the correct “greedy path” to
⇡
⇤. We will call this property probabilistic policy im-

provement.

We analyze the case ↵ = 1 by considering a Markov
chain over policies. Formally, ⇧ = {⇡ : S ! A} will
be our state space, with the Markov kernel:

K(⇡,⇡0) := P {⇡0 = ⇡G⇡}
= P {⇡0 is greedy for G⇡} .

ThisMarkov chain reflects theOPI process since, at ev-
ery step, the greedy policy ⇡n corresponding to Qn is
su�cient to determine the distribution ofQn+1. Since
the set ⇧ of deterministic policies is finite, K is a dis-
crete Markov chain.

Lemma 6.1 (Probabilistic policy improvement). Sup-

pose ⇡
0 = ⇡Q⇡ . Then K(⇡,⇡0) > 0.

The proof of Lemma 6.1 is given in Appendix C. This
shows that there is a nonzero probability that the
chain improves on the current policy. This implies
that there is some probability that OPI applied from
⇡
⇤ produces ⇡⇤ as a greedy policy.

Lemma 6.2 (⇡⇤ is aperiodic). The optimal policy ⇡
?
is

aperiodic. In particular: K(⇡?,⇡?) > 0.

Proof. Since the optimal policy ⇡
? is greedy with

respect to Q
?, from Lemma 6.1 we conclude that

K(⇡?,⇡?) > 0.

All that remains to show is that the optimal policy ⇡?
is reachable from any other policy with positive proba-
bility.
Lemma 6.3 (⇡⇤ is reachable from any initial ⇡0). For

every ⇡0 2 ⇧, there exists an n(⇡0) 2 N such that

K
n(⇡0)(⇡0,⇡?) > 0.

Proof. Let ⇡0 be an initial policy. Let Q⇡0 , Q
⇡1 , ..., Q

⇡?

be the sequence of action-value functions obtained
from classical PI. Since PI converges in a finite number
of steps (say n⇡0) and is a deterministic process, this
sequence is well-defined. For every i 2 {1, .., n(⇡0)},
we have thatK(⇡i,⇡i+1) > 0 byLemma6.1 (since⇡i+1

is greedy with respect to Q
⇡i by construction). Thus

we have thatK(⇡0,⇡1)K(⇡1,⇡2) · · ·K(⇡n(⇡0)�1,⇡
?) >

0 and in particular Kn(⇡0)(⇡0,⇡?) > 0.

Finally, the reachability and aperiodicity of ⇡? allow
us to apply the ergodic theorem for finite Markov
chains.

Proof (of Theorem 6.1). The policy ⇡
? must be con-

tained in a communicating class C ? of policies (per-
haps consisting of only ⇡?) which is aperiodic since
⇡
? is. There may be other communicating classes in

the Markov chain, but by Lemma 6.3 they must all
be transient since they can reach ⇡?. By the Markov
chain convergence theorem (Levin and Peres, 2017,
Theorem 4.3), any initial distribution converges to a
stationary distribution '1 2 P(⇧) with support over
C ?.

Our result shows that optimistic policy iteration, ap-
plied with a step-size of ↵ = 1, converges to a sta-
tionary distribution '1 over aperiodic policies (and
thus to a stationary distribution over value functions
through the possible returns of these policies). We
note that the convergence happens in the Total Varia-
tion (TV)metric, as opposed to previous results Since
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K(⇡⇤
,⇡

⇤) < 1 in general, we know that this distribu-
tion has support on suboptimal policies; in fact, we
know that

'1(⇡
⇤) =

1

1�K(⇡⇤,⇡⇤)

X

⇡ 6=⇡⇤

'1(⇡)K(⇡,⇡⇤).

By “continuity”, this suggests that the algorithm
should also converge for the general case ↵ 2 [0, 1).
Unfortunately, our proof technique does not immedi-
ately carry over. The issue is that, for ↵ < 1, we no
longer have a Markov chain over policies: the greedy
policy depends on the history of past policies, through
the value function. One path forwardmay be to study
theMarkov chain over value functions, but the known
brittleness of optimistic policy iteration suggests that
its distributional behaviourmay be quite complex. We
leave as open questions whether the algorithm does
converge, and to which distribution.

7 Related Work

In the constant step-size case, convergence in distri-
bution results are typically derived using tools com-
mon to stochastic approximation theory such as the
meanODEmethod and Lyapunov functions (see, e.g.,
Kushner and Yin (2003, Chapter 8) and Borkar (2009,
Chapter 9)). In RL, examples of constant step-size
analyses which feature these methods include Srikant
and Ying (2019), Chen et al. (2019), and Lakshmi-
narayanan and Szepesvári (2017).

The Markov chain perspective has previously been
used in the stochastic approximation literature
(Borkar and Meyn, 2000; Yu, 2016). The convergence
of Markov chains in continuous spaces has mainly
been studied with respect to the Total Variation
metric (e.g. Meyn and Tweedie, 2012, Chapters
13-16). In applications to the analysis of RL algo-
rithms, this type of convergence (stronger than the
Wasserstein convergence) does not hold without
restrictive assumptions (see Appendix D for a simple
counterexample). For example, Assumption (2.6) in
(Borkar and Meyn, 2000) fails to hold in the case of
deterministic rewards. On the other hand, results
about weak convergence of RL algorithms (Yu, 2016)
have established the convergence of the averaged
iterates rather than the full sequence of distributions.
The methods are also di�erent, and rely on the weak
Feller property (Meyn and Tweedie, 2012) amongst
other stochastic approximation techniques (Kushner
and Yin, 2003). As far as we are aware, the use of the
Wasserstein metric and the result that RL algorithms
are contractive with respect to this metric are novel.
The resulting proofs of convergence in distribution
using said properties are therefore simpler than the
existing literature.

Some of our methods are similar to the work of
Dieuleveut, Durmus, and Bach (2017), which devel-
ops the theory of constant step-size stochastic gradi-
ent descent (in the context of supervised learning).
In particular, the proof method we present in Section
4 is inspired from the proof of their Proposition 2, al-
though simplified and adapted to the RL setting, and
the results in Section 5 follow the methods of their
Proposition 3.

8 Conclusion and Future Work

We studied the convergence properties of sample-
based reinforcement learning algorithms by consid-
ering how they induce distributions over value func-
tions. Many of these algorithms are in fact contractive
not in the space of functions but in the lifted space
of distributions of functions. The proof methods re-
lies on coupling the events sampled by two executions
of the algorithm, and can be re-used for many algo-
rithms. Using the same Markov chain approach, we
also analyzed a restricted version of optimistic pol-
icy iteration, which is not amenable to a contraction
mapping-type analysis. One of the key results is to
make explicit that constant step-size reinforcement
learning algorithms do converge, albeit in the weaker
distributional sense. As an upside of using a constant
step size, we obtain exponentially fast convergence (as
indicated by the presence of a contraction factor). By
controlling the step-sizes, the stationary distributions
thus obtained can be tailored to yield values close to
the true value function with high confidence. In the
control setting, this should enable us to better explain
the performance of practical reinforcement learning
schemes.

Our work opens a number of interesting avenues for
future research. First, it would be valuable to fully
characterize the stationary distribution of sample-
based methods, for example by deriving a closed-
form expression for their characteristic functions. A
deeper understanding of the distributions obtained
by control algorithms is also of interest. Second,
we did not analyze the case of decaying step-sizes
or online updates, which would correspond to time-
inhomogenenous Markov processes. More broadly,
the coupling method has historically been invaluable
for many applications in probability theory. It would
be interesting to see if our approach can be applied
to policy-based methods, for example policy gradient
or actor critic, which are closer in spirit to optimistic
policy iteration. Finally, the simplicity of our analysis
suggests that it may be carried to the function approx-
imation setting, perhaps eventually shedding light on
the behaviour of reinforcement learning with nonlin-
ear approximation methods such as deep networks.
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