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5 SUPPLEMENT

5.1 Additional Background

Definition inducing path: Let X and Y be two vari-
ables in an ancestral graph and L be a set of variables
not containing X or Y . A path π between X and Y
is called an inducing path relative to L if every non-
endpoint on π is in L or a collider on π, and every
collider on π is an ancestor of X or Y . If L = ∅, then
π is called a primitive inducing path.

Proposition 1. (Richardson and Spirtes, 2002) An
ancestral graph is maximal if and only if there are
no primitive inducing paths between any two non-
adjacent variables.

Definition discriminating path: In a MAG, a path
π = 〈X, . . . , Q,B, Y 〉 between X and Y is a discrimi-
nating path for B if,

(i) π includes at least three edges;

(ii) B is a non-endpoint of π and adjacent to Y on π;

(iii) X is not adjacent to Y , and every variable be-
tween X and B on π is a collider on π and a
parent of Y .

Definition collider with order : Let Di (i ≥ 0) be the
set of triple of order i in a MAG G, defined recursively
as follows:

Order 0: A triple 〈A,B,C〉 ∈ D0 if X and Z are not
adjacent.

Order i+1: A triple 〈A,B,C〉 ∈ Di+1 if

(i) for all j < i+ 1, 〈A,B,C〉 6∈ Dj , and

(ii) there is a discriminating path
〈X,Q1, . . . , Qp, B, Y 〉 for B with
〈A,B,C〉 = 〈Qp, B, Y 〉 or 〈Y,B,Qp〉
and the p colliders

〈X,Q1, Q2〉, . . . , 〈Qp−1, Qp, B〉 ∈
⋃
j≤i

Dj .

If a triple 〈A,B,C〉 ∈ Di is a collider, then the triple
is a collider with order i.

Proposition 2. (Ali et al., 2009) Two MAGs (over
the same variables) are Markov equivalent if the share
they same adjacencies and colliders with order.

Definition partial mixed graph A partial mixed graph
is a vertex edge graph that can contain four kinds of
edges: {→,↔, ◦−◦, ◦→}.

Definition uncovered path: In a PMG, a path π =
〈X1, . . . , Xk〉 is said to be uncovered if for every 2 ≤
i ≤ k−1, Xi−1 andXi+1 are not adjacent, that is, if ev-
ery consecutive triple on the path is unshielded. Def-
inition potentially directed path: In a PMG, a path
π = 〈X1, . . . , Xk〉 is said to be potentially directed
from X1 to Xk if for every 1 ≤ i ≤ k − 1, the edge
between Xi and Xi+1 is not into Xi or out of Xi+1.

5.2 Orientation Rules

FCI uses a set of orientation rules (Zhang, 2008).
Rules R5 -R7 have to do with selection and are omit-
ted, the other rules are listed below. An asterisks edge
mark is used to denote that we are agnostic to the
actual edge mark of an edge (it may be either a tail,
arrowhead, or circle).

R0 For each unshielded triple 〈α, γ, β〉 in P, orient it
as a collider α∗→ γ ←∗β if and only if γ is not in
sepset(α, β).

R1 If α∗→ β ◦−∗ γ, and α and γ are not adjacent,
then orient the triple as α∗→ β → γ.

R2 If α→ β∗→ γ or α∗→ β → γ, and α ∗−◦ γ, then
orient α ∗−◦ γ as α∗→ γ.

R3 If α∗→ β ←∗γ, α ∗−◦ θ ◦−∗ γ, α and γ are not ad-
jacent, and θ ∗−◦ β, then orient θ ∗−◦ β as θ∗→ β.

R4 If π = 〈θ, . . . , α, β, γ〉 is a discriminating path
between θ and γ for β, and β ◦−∗ γ; then if
β ∈ sepset(θ, γ), orient β ◦−∗ γ as β → γ; oth-
erwise orient the triple 〈α, β, γ〉 as α↔ β ↔ γ.

R8 If α→ β → γ or α−◦β → γ, and α◦→ γ, orient
α◦→ γ as α→ γ.
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R9 If α◦→ γ, and π = 〈α, β, θ, . . . , γ〉 is an uncovered
potentially directed path from α to γ such that
γ and β are not adjacent, then orient α◦→ γ as
α→ γ.

R10 Suppose α◦→ γ, β → γ ← θ, π1 is an uncovered
potentially directed path from α to β, and π2 is
an uncovered potentially directed path from α to
θ. Let µ be the vertex adjacent to α on π1 (µ
could be β), and ω be the vertex adjacent to α on
π2 (ω could be θ). If µ and ω are distinct and not
adjacent, then orient α◦→ γ as α→ γ.

5.3 Proofs

Let G = (O,E) be a MAG where the variables may be
partitioned into three distinct subsets O = A∪B∪W .
Lemma 1 proves the necessary and sufficient graphical
constraint for G to satisfy the exogenous background
knowledge ebkAB .

Lemma 1. Let G = (O,E) be a MAG and A, B, and
W be three disjoint sets of variables that partition O.
G violates ebkAB if and only if there exists A ∈ A and
B ∈ B such that A↔ B or B → A in G.

(⇒) If G violates ebkAB then there exists A ∈ A and
B ∈ B such that A↔ B or B → A in G.

If G violates ebkAB , then there exists A ∈ A and B ∈
B such that A and B are adjacent and A is not an
ancestor of B. Therefore, A↔ B or B → A in G.

(⇐) If there exists A ∈ A and B ∈ B such that A↔ B
or B → A in G then G violates ebkAB .

If there exists A ∈ A and B ∈ B such that B → A or
A ↔ B in G then A and B are adjacent and A is not
an ancestor of B. Therefore, G violates ebkAB .

Let G = (O,E) be a MAG where the variables may be
partitioned into three distinct subsets O = A∪B∪W .
Lemma 2 proves that if G satisfies ebkAB , then the graph
constructed by removing from G the variables in W
and the edges connecting two members of A ∪W is
also a MAG satisfying ebkAB .

Lemma 2. Let G = (O,E) be a MAG and A, B, and
W be three disjoint sets of variables that partition
O. If G satisfies ebkAB , then H = RmA

B(G) is a MAG
satisfying ebkAB .

Note that H may be constructed from G by removing
variables and edges.

Assume that H is not a mixed graph. Then H must
contain an edge not in {→,↔} or more than one edge
between a pair of adjacent variables. Since H may be
constructed from G by removing variables and edges,
any edge in H must also be in G. But then G must
also contain an edge not in {→,↔} or more than one

edge between a pair of adjacent variables. This is a
contradiction since G is a mixed graph. Therefore, H
is a mixed graph.

Similarly, assume that H is not ancestral. Then H
contains a directed or an almost directed cycle. Since
H may be constructed from G by removing variables
and edges, any path in H must also be in G. But
then G must contain a directed cycle or an almost di-
rected cycle. This is a contradiction since G is ances-
tral. Therefore, H is ancestral.

Lastly, assume that H is not maximal. Then, by
Proposition 1, a primitive inducing path π exists be-
tween two non-adjacent variables X,Y ∈ O in H.
Since H may be constructed from G by removing vari-
ables and edges, any path in H must also be in G.
However, G is maximal so, by Proposition 1, X and
Y are adjacent in G. Thus, the edge between X and
Y must have been removed by RmA

B(·). Accordingly,
X,Y ∈ A since RmA

B(·) removes all of the edges be-
tween any two members of A ∪W and the variables
in W . Additionally, π must contain B ∈ B since ev-
ery edge in H includes a member of B. Therefore,
by the definition of inducing path, B is an ancestor
of X or Y . But then there exists B′ ∈ B such that
B′ is a parent of X or Y in G. Note that it is pos-
sible that B′ = B, but not possible that B′ = X or
B′ = Y since X,Y ∈ A. This is a contradiction since
G satisfies ebkAB . Therefore, H is maximal.

Since G satisfies ebkAB , by Lemma 1, there does not
exist A ∈ A and B ∈ B such that A ↔ B or B → A
in G. Since H may be constructed from G by removing
variables and edges, there does not exist A ∈ A and
B ∈ B such that A ↔ B or B → A in H. Therefore,
H satisfies ebkAB .

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 3 proves that if G satisfies ebkAB , then the
graph constructed by adding to RmA

B(G) the vari-
ables in W = {W1, W2} and the directed edges
W1 → A ← W2 for all A ∈ A is also a MAG satis-
fying ebkAB .

Lemma 3. Let G = (O,E) be a MAG and A and
B be two disjoint sets of variables that partition O.
If G satisfies ebkAB , then H = AddA

B(G) is a MAG
satisfying ebkAB .

Let H′ = RmA
B(G); by Lemma 2, H′ is a MAG

satisfying ebkAB . Note that H may be constructed
from H′ by inserting W = {W1,W2} and the edges
{W → A | A ∈ A,W ∈W }.

Applying AddA
B(·) to H′ inserts directed edges be-

tween non-adjacent variables (the newly inserted mem-
bers of W are initially not adjacent to any variable).
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Therefore, H is a mixed graph.

Similarly, since the members of W have no parents or
spouses, any paths resulting from AddA

B(·) cannot be
part of a directed or almost directed cycle. Therefore,
H is ancestral.

Lastly, assume H is not maximal. By Proposition 1,
a primitive inducing path π exists between two non-
adjacent variables X,Y ∈ O in H. By construction,
the set of all paths in H′ is a subset of those in H.
Therefore, π is either a primitive inducing path in H′
which is a contradiction because H′ is maximal, or π
is not in H′. The latter implies that π includes an
edge inserted by AddA

B(·). Accordingly, W ∈ W is
an endpoint on π and A ∈ A must be a collider on
π. But the only path in H on which A is a collider
is 〈W1 → A ← W2〉. However, A is not an ancestor
of W1 or W2 which means π is not an inducing path.
Therefore, H is maximal.

By Lemma 1, since H′ satisfies ebkAB , there exists no
A ∈ A and B ∈ B such that A ↔ B or B → A in
H′. Since H may be constructed from H′ by inserting
the members of W and edges between the members
of A ∪W , there exist no A ∈ A and B ∈ B such
that A ↔ B or B → A in H. Therefore, H satisfies
ebkAB .

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 4 proves that if G satisfies ebkAB , then inserting
the edges in G connecting two members of A into a
member of the Markov equivalence class constrained
with ebkAB for the MAG constructed by removing from
G the edges connecting two members of A is a MAG
satisfying ebkAB.

Lemma 4.

Let G = (O,E) be a MAG, A and B be two dis-
joint sets of variables that partition O, and G′ ∈
[RmA

B(G) + ebk]. If G satisfies ebkAB , then H =
Ins(G′,Edges(G,A)) is a MAG satisfying ebkAB .

By Lemma 2, G′ is a MAG. Note that H may be con-
structed from G′ by inserting the edges Edges(G,A).

Applying Ins(·,Edges(G,A)) to the mixed graph G′
inserts directed and bi-directed edges between non-
adjacent variables (the edges between the members of
A in G are either directed or bi-directed and the mem-
bers of A in G′ are not adjacent). Therefore, H is a
mixed graph.

Assume H is not ancestral. Then there exists X,Y ∈
O such that H contains a directed path π from X
to Y and X ↔ Y or X ← Y . But π cannot be a
path containing only the members of B since G′ is
ancestral, or a path containing only the members of

A since G is ancestral. Therefore π must contain both
a member of A and a member of B. But G′ satisfies
ebkAB so every edge between A ∈ A and B ∈ B in
G′ is directed A → B. But by construction, H has
the same edges as G′ between a member of A and a
member of B. It follows π must have endpoints X ∈ A
and Y ∈ B. This is a contradiction since X ↔ Y or
X ← Y . Therefore, H is ancestral.

Similarly, assume thatH is not maximal. Then a prim-
itive inducing path π must exist in H between two
non-adjacent variables X,Y ∈ O.

Suppose π is a path containing only the members of B.
Then by construction, π is in G′. But G′ is maximal so
π cannot be a primitive inducing path in G′. Since H
and G′ share the same edges between the members of
B, X and Y are not adjacent in G′. Therefore, π must
not be an inducing path in G′. But the ancestral rela-
tionships between the members of B inH are the same
as they are in G′ because no B ∈ B can have a mem-
ber of A as a descendant. That is, Ins(·,Edges(G,A))
cannot induce new paths between the members of B.
Thus, if π is not inducing in G′, it cannot be inducing
in H. Therefore π cannot be a path containing only
the members of B.

Suppose π is a path containing only the members of A.
Then by construction, π is in G. But G is maximal so π
cannot be a primitive inducing path in G. Since H and
G share the same edges between the members of A, X
and Y are not adjacent in G. Therefore, π must not be
an inducing path in G. But the ancestral relationships
between the members of A in H are the same as they
are in G because no A ∈ A can have a member of B
as an ancestor. That is, Ins(·,Edges(G,A)) cannot
induce new paths between the members of A. Thus,
if π is not inducing in G, it cannot be inducing in
H. Therefore π cannot be a path containing only the
members of A.

Therefore there exists A ∈ A and B ∈ B such that
the edge A→ B is in π. Accordingly, π must be of the
form 2b. (see Table 2). But by construction G and G′
have the same adjacencies and colliders with order.

Additionally, the parent relationships between the
members of π in H are the same as they are in G′
because no B ∈ B can have a member of A as a child.
It follows that G′ and H have the same adjacencies
and that any collider with order of the form 2b. in G′
will be in H. But then π is a primitive inducing path
between non-adjacent variables X,Y in G′. This is a
contradiction because G′ is maximal. Therefore, G is
maximal.

By Lemma 1, since G′ satisfies ebkAB , there exists no
A ∈ A and B ∈ B such that A↔ B or B → A in G′.
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Since H may be constructed from G′ by inserting edges
between the members of A, there exists no A ∈ A and
B ∈ B such that A ↔ B or B → A in H. Therefore,
H satisfies ebkAB .

Table 1: Colliders with Order One

Case Collider X∗→Z←∗Y

1a. 〈A,A,A〉 A∗→A←∗A

1b. 〈A,B,A〉 A→ B ← A

1c. 〈A,B,B〉 A→ B ←∗B

1d. 〈B,B,B〉 B∗→B←∗B

Table 2: Colliders with Order Greater Than One

Case Collider X∗→Q1 ↔ · · · ↔ Qp ↔ Z ↔ Y

2a. 〈A,A,A〉 A∗→A↔ · · · ↔ A↔ A↔ A

2b. 〈B,B,B〉 A→ B ↔ · · · ↔ B ↔ B ↔ B

2c. 〈B,B,B〉 B∗→B ↔ · · · ↔ B ↔ B ↔ B

Let G = (O,E) be a MAG, A and B be two disjoint
sets of variables that partition O. Tables 1 and 2 il-
lustrate the possible forms of colliders with order in G
that satisfy ebkAB . More specifically, for all A ∈ A and
B ∈ B, any collider with order where an A←∗B edge
exists has been disregarded. Within the tables, A and
B are used to denote arbitrary members of A and B,
respectively. These tables are used to aid the proofs
of several lemmas.

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 5 proves that if G satisfies ebkAB , then the m.i.
PAG constructed by removing from the m.i. PAG con-
strained with ebkAB for the MAG G the edges connect-
ing two members of A is equivalent to the Markov
equivalence class constrained with ebkAB for the MAG
constructed by removing from G the edges connecting
two members of A.

Lemma 5. Let G = (O,E) be a MAG and A and B
be two disjoint sets of variables that partition O. If G
satisfies ebkAB , then RmA

B([G] + ebkAB) ≡ [RmA
B(G)] +

ebkAB .

(⇒) If G satisfies ebkAB then RmA
B([G] + ebkAB) ⊆

[RmA
B(G)] + ebkAB .

Let H′ ∈ ([G] + ebkAB) and H = RmA
B(H′). By Lemma

2, H is a MAG satisfying ebkAB . Additionally, H′ and
G have the same adjacencies and colliders with order
because they are Markov equivalent.

Applying RmA
B(·) removes the same edges fromH′ and

G. Therefore H and RmA
B(G) have the same adjacen-

cies since RmA
B(·) removed the same edges from H′

and G.

Applying RmA
B(·) removes only colliders with order of

the forms 1a. and 2a. (see Tables 1 and 2) from H′
and G. A collider with order of the form 1b., 1c., or
1d. only depends on the edges in the collider. Thus,
a collider with order of the form 1b., 1c., or 1d. is un-
affected by RmA

B(·) because the collider does not lose
any edges. A collider with order of the form 2b. or 2c.
is unaffected by RmA

B(·). The path π that defines the
collider does not lose any edges and the parental re-
lationships between the endpoints and non-endpoints
of π do not change because RmA

B(·) only removes the
members of A and no B ∈ B can be a parent of a
member of A. Therefore H and RmA

B(G) have the
same collider with order since RmA

B(·) removed the
same colliders with order from H′ and G.

Therefore, H ∈ [RmA
B(G)] + ebkAB which implies

RmA
B([G] + ebkAB) ⊆ [RmA

B(G)] + ebkAB .

(⇐) If G satisfies ebkAB then [RmA
B(G)] + ebkAB ⊆

RmA
B([G] + ebkAB).

Note that G = Ins(RmA
B(G),Edges(G,A)) because

RmA
B(·) removes the edges between the members of A

which are then added back by Ins(·,Edges(G,A)).

Let H ∈ ([RmA
B(G)] + ebkAB) and H′ =

Ins(H,Edges(G,A)). By Lemma 4, H′ is a MAG
satisfying ebkAB . Additionally, H and RmA

B(G) have
the same adjacencies and colliders with order because
they are Markov equivalent.

Applying Ins(·,Edges(G,A)) inserts only colliders
with order of the forms 1a. and 2a. (see Tables 1 and
2) into H and RmA

B(G). A collider with order of the
form 1b., 1c., or 1d. only depends on the edges in the
collider. Thus, a collider with order of the form 1b.,
1c., or 1d. cannot be inserted by Ins(·,Edges(G,A))
because none of the necessary edges are added. Sim-
ilarly, a collider with order of the form 2b. or 2c.
cannot be inserted by Ins(·,Edges(G,A)) because
none of the necessary edges are added. A collider
with order of the form 2b. or 2c. cannot be in-
duced by Ins(·,Edges(G,A)). The parental rela-
tionships between the endpoints and non-endpoints
of paths of the form 2b. or 2c. do not change be-
cause Ins(·,Edges(G,A)) only inserts the members
of A and no B ∈ B can be a parent of a member of
A. Therefore H and RmA

B(G) have the same collider
with order since Ins(·,Edges(G,A)) inserts the same
colliders with order into H′ and G.

Therefore H′ ∈ [G] + ebkAB . Accordingly, H ∈
RmA

B([G] + ebkAB) which implies [RmA
B(G)] + ebkAB ⊆
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RmA
B([G] + ebkAB).

Since RmA
B([G] + ebkAB) ⊆ [RmA

B(G)] + ebkAB and
[RmA

B(G)] + ebkAB ⊆ RmA
B([G] + ebkAB), RmA

B([G] +
ebkAB) ≡ [RmA

B(G)] + ebkAB .

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 6 proves that if G satisfies ebkAB , then the
Markov equivalence class with ebkAB of the MAG con-
structed by removing from G the edges connecting two
members of A is equivalent to the induced subgraph
over A∪B of the m.i. PAG for the MAG constructed
by removing from G the edges connecting two members
of A then adding the variables in W = {W1, W2} and
the directed edges W1 → A←W2 for all A ∈ A.

Lemma 6. Let G = (O,E) be a MAG and A
and B be two disjoint sets of variables that parti-
tion O. If G satisfies ebkAB , then [RmA

B(G)] + ebkAB
≡ [AddA

B(G)](A ∪B).

By Lemma 3, AddA
B(G) is a MAG satisfying ebkAB . Let

H ∈ [AddA
B(G)] and note that H has no edges con-

necting two members of A. Therefore, RmA
B(·) only

removes the members of W . Accordingly, H(A∪B) =
RmA

B(H). Furthermore, note that RmA
B(AddA

B(G)) =
RmA

B(G) because RmA
B(·) removes the variables and

edges added by AddA
B(·). It follwos that, using Lemma

3 and 5,

[AddA
B(G)](A ∪B) ≡ RmA

B([AddA
B(G)])

≡ RmA
B([AddA

B(G)] + ebkAB)

≡ [RmA
B(AddA

B(G))] + ebkAB

≡ [RmA
B(G)] + ebkAB .

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 7 proves that if G satisfies ebkAB , then the in-
duced subgraph over A∪B of the m.i. PAG output by
FCI run with AddA

B(G) as a conditional independence
oracle is equivalent to the m.i. PAG output by FCI
run with G as a conditional independence oracle and
mbkAB .

Lemma 7. Let G = (O,E) be a MAG and A and B
be two disjoint sets of variables that partition O. If G
satisfies ebkAB , then Fci(AddA

B(G))(A∪B) ≡ Fci(G+
mbkAB).

By Lemma 3, AddA
B(G) is a MAG and therefore

may be used a conditional independence oracle. Us-
ing AddA

B(G) and G as conditional independence or-
acles, FCI will return graphs with the adjacencies of
AddA

B(G) and G respectively. Applying mbkAB to the
latter will return a graph with a subset of adjacencies
of G where the members of A are not adjacent. Thus,

Fci(AddA
B(G))(A ∪B) and Fci(G +mbkAB) will have

the same adjacencies.

For orienting edges, the FCI algorithm steps through
a series of rules. We will examine the application of
these rules in conjunction with mbkAB and note the
effect on Fci(AddA

B(G)) and Fci(G + mbkAB). As
shorthand, we use A to denote a member of A and B
to denote a member of B. Before the application of
any rules, mbkAB will orient all A ◦−◦B adjacencies as
A→ B in Fci(G +mbkAB).

Consider cases of R0:

B → B ← B: colliders of this form will be in both
Fci(AddA

B(G)) and Fci(G+mbkAB). ThereforeR0

will be applied in both.

A→ B ← B: colliders of this form will be in both
Fci(AddA

B(G)) and Fci(G+mbkAB) Therefore R0

will be applied in both.

A→ B ← A: colliders of this form will be in both
Fci(AddA

B(G)) and Fci(G+mbkAB). ThereforeR0

will be applied in both.

Consider cases of R1:

Colliders W1◦→ A←◦W2 will orient all A ◦−◦B
adjacencies as W1◦→ A→ B in Fci(AddA

B(G)).
But orientations of this nature have been ap-
plied to Fci(G + mbkAB) through mbkAB . Thus,
Fci(AddA

B(G)) and Fci(G +mbkAB) will have the
same orientations among the members of A ∪B.

Consider cases of R4:

A∗→ · · · ↔ Aα ↔ Aβ → Bγ : paths of this form
are impossible because the members of A are
not adjacent in either Fci(AddA

B(G)) or Fci(G +
mbkAB).

A/B∗→ · · · ↔ Bα ↔ Bβ → Bγ : the A ↔ B case
is impossible, but otherwise paths of this form will
be in both Fci(AddA

B(G)) and Fci(G + mbkAB).
Therefore the Bβ will be in the sepset of Bα and

Bγ in both Fci(AddA
B(G)) and Fci(G + mbkAB).

Accordingly, R4 will orient Bβ → Bγ in both.

A/B∗→ · · · ↔ Bα ↔ Bβ ↔ Bγ : the A ↔ B case
is impossible, but otherwise paths of this form will
be in both Fci(AddA

B(G)) and Fci(G + mbkAB).
Therefore the Bβ will not be in the sepset of

Bα and Bγ in either Fci(AddA
B(G)) or Fci(G +

mbkAB). Accordingly, R4 will orient Bα ↔ Bγ ↔
Bγ in both.

All the remaining rules propagate preexisting orienta-
tions throughout the graph. Therefore Fci(AddA

B(G))
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and Fci(G + mbkAB) will have the same adjacencies
and orientations among the members of A ∪ B and
Fci(AddA

B(G))(A ∪B) ≡ Fci(G +mbkAB)

Let G = (O,E) be a MAG where the variables may
be partitioned into two distinct subsets O = A ∪B.
Lemma 8 proves that if G satisfies ebkAB , then running
FCI using G as a conditional independence oracle and
incorporating modified background knowledge mbkAB
recovers the sound and complete set of edges that con-
nect two members of B.

Lemma 8. Let G = (O,E) be a MAG and A and
B be two disjoint sets of variables that partition O.
If G satisfies ebkAB , then RmA

B([G] + ebkAB) ≡ Fci(G +
mbkAB).

FCI is sound and complete in the sense that, given
a conditional independence oracle, FCI will return
the m.i. PAG (Spirtes et al., 2000; Zhang, 2008).
Thus, for a MAG AddA

B(G), we have [AddA
B(G)] ≡

Fci(AddA
B(G)). It follows that, using Lemmas 5, 6,

and 7,

RmA
B([G] + ebkAB) ≡ [RmA

B(G)] + ebkAB

≡ [AddA
B(G)](A ∪B)

≡ Fci(AddA
B(G))(A ∪B)

≡ Fci(G +mbkAB).

Let G be a MAG where the variables may be parti-
tioned into n > 1 disjoint subsets T = {T1, . . . ,Tn}.
Let Ai =

⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi.

Lemma 9 proves that if G satisfies tbkT , then the in-
duced subgraph over Oi of G is a MAG satisfying tbkT

for all 1 ≤ i ≤ n.

Lemma 9. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. Let Ai =⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi. If G satis-

fies tbkT , then H = G(Oi) is a MAG satisfying tbkT

over the variables Oi for all 1 ≤ i ≤ n.

Since H is a subgraph of G, H contains a subset of
the variables and edges in G. Therefore H is a mixed
graph.

Similarly, the set of paths in H is a subset of the paths
in G. Since G is ancestral, G does not contain any
directed or almost directed cycles. Therefore H does
not contain any direct or almost direct cycles; H is
ancestral.

Let Li = O \Oi denote the variables removed by the
subgraph operation. Assume that H is not maximal.
Since G is maximal, the subgraph operation made an
inducing path π between two members of Oi a prim-
itive inducing path in H. That is, π is inducing for

Li in G, but not for ∅. Therefore, there exists a non-
collider L ∈ Li because if no such L exists, then π is
inducing for ∅. But if L is a non-collider on π, then it
is an ancestor an the endpoint of π. This is a contra-
diction because the endpoints of π are members of Oi

and, by tbkT , L cannot be an ancestor of a member of
Oi. Therefore, H is maximal.

Since G satisfies tbkT , there exist no A ∈ Ai and B ∈
Bi such that A ↔ B or B → A in G(Oi) for all 1 ≤
i ≤ n. Therefore, the subgraph G(Oi) satisfies tbkT

over the variables Oi.

Table 3: Colliders with Order One

Case Collider X∗→Z←∗Y

3a. 〈Oi, Oi, Oi〉 Oi∗→Oi←∗Oi
3b. 〈Oi, Li, Oi〉 Oi → Li ← Oi

3c. 〈Oi, Li, Li〉 Oi → Li ←∗Li
3d. 〈Li, Li, Li〉 Li∗→Li←∗Li

Table 4: Colliders with Order Greater Than One

Case Collider X∗→Q1 ↔ · · · ↔ Qp ↔ Z ↔ Y

4a. 〈Oi, Oi, Oi〉 Oi∗→Oi ↔ · · · ↔ Oi ↔ Oi ↔ Oi

4b. 〈Li, Li, Li〉 Oi → Li ↔ · · · ↔ Li ↔ Li ↔ Li

4c. 〈Li, Li, Li〉 Li∗→Li ↔ · · · ↔ Li ↔ Li ↔ Li

Let G = (O,E) be a MAG and T = {T1, . . . ,Tn} be

a partitioning of O. Let Ai =
⋃i−1
j=1 Tj , Bi = Ti,

Oi = Ai ∪ Bi, and Li = O \ Oi. Tables 3 and 4
illustrate the possible forms of colliders with order in
G that satisfy tbkT . More specifically, for all Oi ∈ Oi

and Li ∈ Li, any collider with order where an Oi ←∗Li
edge exists has been disregarded. Within the tables,
Oi and Li are used to denote arbitrary members of Oi

and Li, respectively. These tables are used to aid the
proofs of several lemmas.

Let G be a MAG where the variables may be parti-
tioned into n > 1 disjoint subsets T = {T1, . . . ,Tn}.
Let Ai =

⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi.

Lemma 10 proves that if G satisfies tbkT , then the in-
duced subgraph over Oi of the m.i. PAG constrained
with tbkT for G is equivalent to the Markov equiva-
lence class constrained by tbkT for the induced sub-
graph over Oi of G for all 1 ≤ i ≤ n.

Lemma 10. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. Let Ai =⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi. If G satis-
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fies tbkT , then ([G] + tbkT )(Oi) ≡ [G(Oi)] + tbkT for
all 1 ≤ i ≤ n.

(⇒) If G satisfies tbkT , then ([G] + tbkT )(Oi) ⊆
[G(Oi)] + tbkT for all 1 ≤ i ≤ n.

Without loss of generality, pick an arbitrary 1 ≤ i ≤ n.
Let H ∈ [G] + tbkT and note that H and G have the
same adjacencies and colliders with order because they
are Markov equivalent. Let H′ = H(Oi) and note that
by Lemma 9, H′ is a MAG satisfying tbkT over Oi.

Applying the subgraph operation with respect to Oi

removes colliders with order of the forms 3b., 3c., 3d.,
4b., and 4c. (see Table 3 and 4) from G. Consider the
remaining colliders.

A collider with order of the form 3a. only depends on
the edges in the collider. Thus, a collider with order
of the form 3a. is unaffected by subgraph operation
with respect to Oi because the collider does not lose
any edges. A collider with order of the form 4a is un-
affected by the subgraph operation. The path π that
defines the collider does not lose any edges and the
parental relationships between the endpoints and non-
endpoints of π do not change because the subgraph
operation with respect to Oi only removes the mem-
bers of Li and no Oi ∈ Oi can be a child of a member
of Li.

Thus, H′ and [G(Oi)] have the same adjacencies and
colliders with order. Therefore, H′ ∈ [G(Oi)] + tbkT

which implies ([G]+ tbkT )(Oi) ⊆ [G(Oi)]+ tbkT for all
1 ≤ i ≤ n.

(⇐) If G satisfies tbkT , then [G(Oi)] + tbkT ⊆ ([G] +
tbkT )(Oi) for all 1 ≤ i ≤ n.

Without loss of generality, pick an arbitrary 1 ≤ i ≤ n.
Let H ∈ [G(Oi)] + tbkT , Li = O \ Oi, and H′ =
Ins(RmOi

Li
(G),Edges(H,Oi)).

H and G have the same adjacencies and colliders with
order because they are Markov equivalent. By con-
struction, H′ and H have the same adjacencies over
the members of Oi. Similarly, H′ and H share any
paths π that define a colliders with order in H that
contains only members of Oi. H′ andH share the same
parental relationships between the endpoints and non-
endpoints of π because no Oi ∈ Oi can be a parent of
a member of Li in H′ or H due to H and G satisfying
tbkT . Therefore, H′ and H have the same adjacencies
and colliders with order over the Oi variables. Accord-
ingly, H′ and G have the same adjacencies and colliders
with order over the Oi variables.

By construction, H′ and G have the same adjacencies
over the Li variables. Similarly, H′ and G share any
paths π that define a colliders with order in G that
contains only members of Li. H′ and G share the same

parental relationships between the endpoints and non-
endpoints of π because no Li ∈ Li can have a member
of Oi as a child in H′ or H due to H and G satisfying
tbkT . Therefore, H′ and G have the same adjacencies
and colliders with order over the Li variables.

Using the same logic, any adjacencies between a mem-
ber of Oi and a member of Li will be in both H′ and
G. Furthermore, H′ and G share any paths π that de-
fine a colliders with order in G between a member of
Oi and a member of Li because π must be of form
3b., 3c., or 4b. (see Tables 3 and 4). H′ and G share
the same parental relationships between the endpoints
and non-endpoints of π because no Li ∈ Li can have
a member of Li as a child in H′ or H due to H and G
satisfying tbkT .

Finally, note that the edges between the members of
Oi are the same as G, thus, since G satisfies tbkT , there
are not violations of tbkT within the members of Oi.
Additionally, the edges between a member of Oi and
a member of Li satisfy tbkT . Therefore H′ satisfies
tbkT .

Therefore, H′ ∈ [G] + tbkT and, by construction,
H′(Oi) = H which implies H ∈ ([G] + tbkT )(Oi).
Therefore [G(Oi)] + tbkT ⊆ ([G] + tbkT )(Oi) for all
1 ≤ i ≤ n.

Since ([G] + tbkT )(Oi) ⊆ [G(Oi)] + tbkT for all 1 ≤
i ≤ n and [G(Oi)] + tbkT ⊆ ([G] + tbkT )(Oi) for all
1 ≤ i ≤ n, ([G] + tbkT )(Oi) ≡ [G(Oi)] + tbkT for all
1 ≤ i ≤ n.

Let G be a MAG where the variables may be parti-
tioned into n > 1 disjoint subsets T = {T1, . . . ,Tn}.
Let Ai =

⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi.

Lemma 11 proves that if G satisfies tbkT , then the
m.i. PAG constructed by removing from the m.i. PAG
constrained with tbkT for the induced subgraph over
Oi of G the edges connecting two members of Ai is
equivalent to the m.i. PAG constructed by removing
from the m.i. PAG constrained with ebkAi

Bi
for the in-

duced subgraph over Oi of G the edges connecting two
members of Ai is equivalent to for all 1 ≤ i ≤ n.

Lemma 11. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. Let Ai =⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi. If G satisfies

tbkT , then RmAi

Bi
([G(Oi)] + tbkT ) ≡ RmAi

Bi
([G(Oi)] +

ebkAi

Bi
) for all 1 ≤ i ≤ n.

(⇒) If G satisfies tbkT , then RmAi

Bi
([G(Oi)] + tbkT ) ⊆

RmAi

Bi
([G(Oi)] + ebkAi

Bi
) for all 1 ≤ i ≤ n.

Without loss of generality, pick an arbitrary i such
that 1 ≤ i ≤ n. Let H ∈ RmAi

Bi
([G(Oi)] + tbkT ) and

note that any MAG that satisfies tbkT satisfies ebkAi

Bi
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since ebkAi

Bi
is contained within tbkT . Therefore, H ∈

RmAi

Bi
([G(Oi)]+ebkAi

Bi
) which implies RmAi

Bi
([G(Oi)]+

tbkT ) ⊆ RmAi

Bi
([G(Oi)] + ebkAi

Bi
) for all 1 ≤ i ≤ n.

(⇐) If G satisfies tbkT , then RmAi

Bi
([G(Oi)]+ebkAi

Bi
) ⊆

RmAi

Bi
([G(Oi)] + tbkT ) for all 1 ≤ i ≤ n

Without loss of generality, pick an arbitrary i such
that 1 ≤ i ≤ n. Let H ∈ RmAi

Bi
([G(Oi)] + ebkAi

Bi
) and

note that, by Lemmas 2 and 9, H is a MAG satisfying
ebkAi

Bi
. Let H′ ∈ Ins(H,Edges(G(Oi),Ai)) and note

that, by Lemma 4, H′ is a MAG satisfying ebkAi

Bi
. By

construction, H′ and G(Oi) have the same adjacencies.

Additionally, H′ and G(Oi) share any path π that de-
fines a collider with order in G(Oi) that contains only
members of Ai since they both contain the same edges
over Ai. H′ and G(Oi) share the same parental rela-
tionships between the endpoints and non-endpoints of
π because no Ai ∈ Ai can have a member of Bi as a
parent in H′ or G(Oi) due to H′ and G(Oi) satisfying
ebkAi

Bi
. Therefore, H′ and G(Oi) have the same adja-

cencies and colliders with order over the Ai variables.

Similarly, H′ and G(Oi) share any path π that de-
fines a colliders with order in G(Oi) that contains only
members of Bi since π has no ambiguity in [G(Oi)] (by
virtue of being a collider or discriminating path). H′
and G(Oi) share the same parental relationships be-
tween the endpoints and non-endpoints of π because
no Bi ∈ Bi can have a member of Ai as a child in
H′ or G(Oi) due to H′ and G(Oi) satisfying ebkAi

Bi
.

Therefore, H′ and G(Oi) have the same adjacencies
and colliders with order over the Bi variables.

Finally, H′ and G(Oi) share any path π that defines a
collider with order in G(Oi) that contains a member
of Ai and a member of Bi. π must be of the form
1b., 1c., or 2b. (see Table 1 and 2)—the edges involv-
ing the member of A are oriented due H′ ebkAi

Bi
and

the remaining edges have no ambiguity in [G(Oi)] (by
virtue of being a collider or discriminating path). H′
and G(Oi) share the same parental relationships be-
tween the endpoints and non-endpoints of π because
no Ai ∈ Ai can have a member of Bi as a parent in
H′ or G(Oi) due to H′ and G(Oi) satisfying ebkAi

Bi
.

Therefore H′ and G(Oi) share the same colliders with
order.

Note that the edges in H′ between the members of Ai

are identical to G, thus, since G satisfies tbkT , there
are no violations of tbkT within the members of Ai.
Additionally, the edges connecting a member of Ai

and a member of Bi in H′ satisfy ebkAi

Bi
. Therefore H′

satisfies tbkT over the variables Oi.

Therefore H′ ∈ [G(Oi)] + tbkT , H ∈ RmAi

Bi
([G(Oi)] +

tbkT ) which implies RmAi

Bi
([G(Oi)] + ebkAi

Bi
) ⊆

RmAi

Bi
([G(Oi)] + tbkT ) for all 1 ≤ i ≤ n.

Since RmAi

Bi
([G(Oi)]+ tbkT ) ⊆ RmAi

Bi
([G(Oi)]+ebkAi

Bi
)

for all 1 ≤ i ≤ n and RmAi

Bi
([G(Oi)] + ebkAi

Bi
)

⊆ RmAi

Bi
([G(Oi)] + tbkT ) for all 1 ≤ i ≤ n,

RmAi

Bi
([G(Oi)] + tbkT ) ≡ RmAi

Bi
([G(Oi)] + ebkAi

Bi
) for

all 1 ≤ i ≤ n.

Let G be a MAG where the variables may be parti-
tioned into n > 1 disjoint subsets T = {T1, . . . ,Tn}.
Let Ai =

⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi.

Lemma 12 extends the results of Lemma 8 by showing
that if G satisfies tbkT , then for all 1 ≤ i ≤ n, running
FCI on Oi using G(Oi) as a conditional independence
oracle and incorporating modified background knowl-
edge mbkAi

Bi
recovers the sound and complete set of

edges that connect two members of Bi.

Lemma 12. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. Let Ai =⋃i−1
j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi. If G satis-

fies tbkT , then RmAi

Bi
(([G]+tbkT )(Oi)) ≡ Fci(G(Oi)+

mbkAi

Bi
) for all 1 ≤ i ≤ n.

Using Lemmas 8, 10, and 11,

RmAi

Bi
(([G] + tbkT )(Oi)) ≡ RmAi

Bi
([G(Oi)] + tbkT )

≡ RmAi

Bi
([G(Oi)] + ebkAi

Bi
)

≡ Fci(G(Oi) +mbkAi

Bi
).
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