
SUPPLEMENTARY MATERIAL

1 Proof of Theorem 3.1

Theorem 3.1. Suppose that θ is a random variable
defined on state space Θ, with probability density p(θ).
For any given θ ∈ Θ, let y and y′ be two random
variables that are independent conditional on θ, and
both follow the same distribution p(y|θ). Now define
z = y − y′, and we then have,

Eθ[H(p(y|θ))] ≤ H(Eθ[p(z|θ)])−
dim(y)

2
log 2,

where dim(y) is the dimensionality of y.

Proof. From Shannon’s entropy power inequality [1],
we obtain,

exp(2H(p(z|θ))/dim(y))

≥ exp(2H(p(y|θ))/dim(y)) + exp(2H(p(−y|θ))/dim(y))

=2 exp(2H(p(y|θ))/dim(y)),

which implies that

H(p(y|θ)) ≤ H(p(z|θ))− dim(y)

2
log 2. (1)

Taking expectation with respect to p(θ) on both sides
of Eq. (1) yields,

Eθ[H(p(y|θ))]

≤Eθ[H(p(z|θ))]− dim(y)

2
log2

≤H(Eθ[g(z|θ)])− dim(y)

2
log2,

(2)

where the last inequality is due to the concavity of the
entropy [1].

2 Proof of Corollary 3.2

Corollary 3.2. Suppose p(θ), p(y|θ), and p(z|θ) are
defined as is in Theorem 3.1, and p(θ) admits the form
of,

p(θ) =

L∑
l=1

ωlfl(θ),

where ωl ≥ 0 for l = 1...L,
∑L
l=1 ωl = 1, and fl(θ) are

density functions. Then

Eθ[H(p(y|θ))] ≤
L∑
l=1

ωlH(Eθ∼fl [p(z|θ)])−
dim(y)

2
log 2

≤ H(Eθ[p(z|θ)])−
dim(y)

2
log 2.

Proof. Recall that the prior takes the form of

p(θ) =

L∑
l=1

ωlfl(θ),

and we have

Eθ[H(p(y|θ))] =

∫
Θ

p(θ)H(p(y|θ))dθ

=

L∑
l=1

ωl

∫
Θ

fl(θ)H(p(y|θ))dθ

≤
L∑
l=1

ωlH(Eθ∼fl [p(z|θ)])−
dim(y)

2
log2,

(3)
where the inequality above is a direct consequence of
Theorem 3.1. Once again, because the entropy is con-
cave, we have

L∑
l=1

ωlH(Eθ∼fl [p(z|θ)])−
dim(y)

2
log2

≤H(

L∑
l=1

ωlEθ∼fl [p(z|θ)])−
dim(y)

2
log2

=H(Eθ[p(z|θ)])−
dim(y)

2
log2.

(4)

3 Implementation details

This section provides the experimental setup and im-
plementation details of the examples. Code for re-
producing our experiments can be found at https:

//github.com/ziq-ao/LBKLD_estimator.

The mathematical example. We estimate the
expected LB-KLD utility function values with 3× 104

(i.e. n = 104) model simulations. In the prior parti-
tion step, we set nmin = 10 and L = 5. Averaging

https://github.com/ziq-ao/LBKLD_estimator
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was done over 100 independent runs to mitigate the
random errors. Moreover we generate a larger number
(105) of samples to estimate the KLD based expected
utility function values with the nested MC method.
For the D-posterior precision method, 100 samples are
kept from 104 prior-predictive simulations to form the
ABC posterior. Again, the reported results are the
average over 100 runs.

Ricker Model. We estimate the expected LB-KLD
utility with 3 × 104 model simulations. In the prior
partition step, we set nmin = 50 and L = 5. For the
D-posterior precision method, 100 out of 104 prior-
predictive samples are used to compute the posterior
statistics.

Aphid Model. The implementation setup of the
LB-KLD and the D-posterior methods is the same as
that of the Ricker model. It should also be mentioned
here that, for k = 1 and k = 2, the optimal solu-
tions are obtained by exhausting all the integer grid
points, while the Simultaneous Perturbation Stochas-
tic Approximation algorithm [2] is used to optimize
the expected utility functions for k = 3 and k = 4.
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