SUPPLEMENTARY MATERIAL

1 Proof of Theorem 3.1

Theorem 3.1. Suppose that θ is a random variable defined on state space Θ , with probability density $p(\theta)$. For any given $\theta \in \Theta$, let y and y' be two random variables that are independent conditional on θ , and both follow the same distribution $p(y|\theta)$. Now define z = y - y', and we then have,

$$E_{\theta}[H(p(y|\theta))] \le H(E_{\theta}[p(z|\theta)]) - \frac{dim(y)}{2}\log 2,$$

where dim(y) is the dimensionality of y.

Proof. From Shannon's entropy power inequality [1], we obtain,

$$\begin{split} &\exp(2H(p(z|\theta))/dim(y))\\ \geq &\exp(2H(p(y|\theta))/dim(y)) + \exp(2H(p(-y|\theta))/dim(y))\\ =&2\exp(2H(p(y|\theta))/dim(y)), \end{split}$$

which implies that

$$H(p(y|\theta)) \le H(p(z|\theta)) - \frac{dim(y)}{2} \log 2.$$
 (1)

Taking expectation with respect to $p(\theta)$ on both sides of Eq. (1) yields,

$$E_{\theta}[H(p(y|\theta))]$$

$$\leq E_{\theta}[H(p(z|\theta))] - \frac{\dim(y)}{2}log2$$

$$\leq H(E_{\theta}[g(z|\theta)]) - \frac{\dim(y)}{2}log2,$$
(2)

where the last inequality is due to the concavity of the entropy [1].

2 Proof of Corollary 3.2

Corollary 3.2. Suppose $p(\theta)$, $p(y|\theta)$, and $p(z|\theta)$ are defined as is in Theorem 3.1, and $p(\theta)$ admits the form of,

$$p(\theta) = \sum_{l=1}^{L} \omega_l f_l(\theta),$$

where $\omega_l \geq 0$ for l = 1...L, $\sum_{l=1}^{L} \omega_l = 1$, and $f_l(\theta)$ are density functions. Then

$$E_{\theta}[H(p(y|\theta))] \le \sum_{l=1}^{L} \omega_l H(E_{\theta \sim f_l}[p(z|\theta)]) - \frac{dim(y)}{2} \log 2$$
$$\le H(E_{\theta}[p(z|\theta)]) - \frac{dim(y)}{2} \log 2.$$

Proof. Recall that the prior takes the form of

$$p(\theta) = \sum_{l=1}^{L} \omega_l f_l(\theta),$$

and we have

$$E_{\theta}[H(p(y|\theta))] = \int_{\Theta} p(\theta)H(p(y|\theta))d\theta$$

$$= \sum_{l=1}^{L} \omega_{l} \int_{\Theta} f_{l}(\theta)H(p(y|\theta))d\theta$$

$$\leq \sum_{l=1}^{L} \omega_{l}H(E_{\theta \sim f_{l}}[p(z|\theta)]) - \frac{dim(y)}{2}log2,$$
(3)

where the inequality above is a direct consequence of Theorem 3.1. Once again, because the entropy is concave, we have

$$\sum_{l=1}^{L} \omega_{l} H(E_{\theta \sim f_{l}}[p(z|\theta)]) - \frac{\dim(y)}{2} log 2$$

$$\leq H(\sum_{l=1}^{L} \omega_{l} E_{\theta \sim f_{l}}[p(z|\theta)]) - \frac{\dim(y)}{2} log 2$$

$$= H(E_{\theta}[p(z|\theta)]) - \frac{\dim(y)}{2} log 2.$$
(4)

3 Implementation details

This section provides the experimental setup and implementation details of the examples. Code for reproducing our experiments can be found at https://github.com/ziq-ao/LBKLD_estimator.

The mathematical example. We estimate the expected LB-KLD utility function values with 3×10^4 (i.e. $n = 10^4$) model simulations. In the prior partition step, we set $n_{min} = 10$ and L = 5. Averaging

was done over 100 independent runs to mitigate the random errors. Moreover we generate a larger number (10^5) of samples to estimate the KLD based expected utility function values with the nested MC method. For the D-posterior precision method, 100 samples are kept from 10^4 prior-predictive simulations to form the ABC posterior. Again, the reported results are the average over 100 runs.

Ricker Model. We estimate the expected LB-KLD utility with 3×10^4 model simulations. In the prior partition step, we set $n_{min} = 50$ and L = 5. For the D-posterior precision method, 100 out of 10^4 priorpredictive samples are used to compute the posterior statistics.

Aphid Model. The implementation setup of the LB-KLD and the D-posterior methods is the same as that of the Ricker model. It should also be mentioned here that, for k=1 and k=2, the optimal solutions are obtained by exhausting all the integer grid points, while the Simultaneous Perturbation Stochastic Approximation algorithm [2] is used to optimize the expected utility functions for k=3 and k=4.

References

- [1] Thomas M Cover and Joy A Thomas. *Elements of information theory*. John Wiley & Sons, 2012.
- [2] James C Spall. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest, 19(4):482–492, 1998.