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Abstract

Due to its linear complexity, naive Bayes clas-
sification remains an attractive supervised
learning method, especially in very large-scale
settings. We propose a sparse version of naive
Bayes, which can be used for feature selec-
tion. This leads to a combinatorial maximum-
likelihood problem, for which we provide an
exact solution in the case of binary data, or
a bound in the multinomial case. We prove
that our bound becomes tight as the marginal
contribution of additional features decreases.
Both binary and multinomial sparse models
are solvable in time almost linear in problem
size, representing a very small extra relative
cost compared to the classical naive Bayes.
Numerical experiments on text data show
that the naive Bayes feature selection method
is as statistically effective as state-of-the-art
feature selection methods such as recursive
feature elimination, [i-penalized logistic re-
gression and LASSO, while being orders of
magnitude faster. For a large data set, hav-
ing more than with 1.6 million training points
and about 12 million features, and with a non-
optimized CPU implementation, our model
can be trained in less than 15 seconds *.

1 Introduction

Modern, large-scale data sets call for classification meth-
ods that scale mildly (e.g. linearly) with problem size.
In this context, the classical naive Bayes model remains
a very competitive baseline, due to its linear complexity
in the number of training points and features. In fact,

LA python implementation of our model can be found at
https://github.com/aspremon/NaiveFeatureSelection
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it is sometimes the only feasible approach in very large-
scale settings, particularly in text applications, where
the number of features can easily be in the millions.

Feature selection, on the other hand, is a key component
of machine learning pipelines, for two main reasons: i)
to reduce effects of overfitting by eliminating noisy, non-
informative features and ii) to provide interpretability.
In essence, feature selection is a combinatorial problem,
involving the selection of a few features in a poten-
tially large population. State-of-the-art methods for
feature selection employ some heuristic to address the
combinatorial aspect, and the most effective ones are
usually computationally costly. For example, LASSO
(Tibshirani, 1996) or {1-SVM models (Fan et al., 2008)
are based on solving a [1-penalized convex problem in
order to achieve sparsity (at the expense of tuning a
hyper parameter to attain a desired sparsity level).

Since naive Bayes corresponds to a linear classification
rule, feature selection in this setting is directly related
to the sparsity of the vector of classification coefficients.
This work is devoted to a sparse variant of naive Bayes.
Our main contributions are as follows.

e We formulate a sparse naive Bayes problem that
involves a direct constraint on the cardinality of
the vector of classification coefficients, leading to
an interpretable naive Bayes model. No hyper-
parameter tuning is required in order to achieve
the target cardinality.

e We derive an exact solution of sparse naive Bayes
in the case of binary data, and an approximate
upper bound for general data, and show that it
becomes increasingly tight as the marginal con-
tribution of features decreases. Both models can
be trained very efficiently, with an algorithm that
scales almost linearly with the number of features
and data points, just like classical naive Bayes.

e We show in experiments that our model signifi-
cantly outperforms simple baselines (e.g., thresh-
olded naive Bayes, odds ratio), and achieves similar
performance as more sophisticated feature selec-
tion methods, at a fraction of the computing cost.
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Related Work on Naive Bayes Improvements.
A large body of literature builds on the traditional naive
Bayes classifier. A non-extensive list includes the semi-
nal work by (Frank et al., 2002) introducing Weighted
naive Bayes; Lazy Bayesian Learning by (Zheng and
Webb, 2000); and the Tree-Augmented naive Bayes
method by (Friedman et al., 1997). The paper (Webb
et al., 2005) improves the computational complexity
of the aforementioned methods, while maintaining the
same accuracy. For a more complete discussion of mod-
ifications to naive Bayes, we refer the reader to (Jiang
et al., 2007) and the references therein.

Related Work on Naive Bayes and Feature Se-
lection. Of particular interest to this work are meth-
ods that employ feature selection. (Kim et al., 2006) use
information-theoretic quantities for feature selection
in text classification, while (Mladenic and Grobelnik,
1999) compare a host of different methods and shows
the comparative efficacy of the Odds Ratio method.
These methods often use ad hoc scoring functions to
rank the importance of the different features. (Fleuret,
2004) uses the mutual information to select features in
a fast way while (Zaidi et al., 2013) employs a weighting
approach for selecting relevant features. (Boullé, 2007)
achieve soft variable selection by introducing bayesian
regularization into the training problem.

To our knowledge, the first work to directly address
sparsity in the context of naive Bayes, with binary
data only, is (Zheng et al., 2018). Their model does not
directly address the requirement that the weight vector
of the classification rule should be sparse, but does iden-
tify key features in the process. The method requires
solving an approximation to the combinatorial feature
selection problem via [;-penalized logistic regression
problem with non-negativity constraints, that has the
same number of features and data points as the original
one. Therefore the complexity of the method is the
same as ordinary [1-penalized logistic regression, which
is relatively high. In contrast, our binary (Bernoulli)
naive Bayes bound is exact, and has complexity almost
linear in training problem size.

2 Background on Naive Bayes

In this paper, for simplicity only, we consider a two-
class classification problem; the extension to the general
multi-class case is straightforward.

Notation. For an integer m, [m] is the set {1, ..., m}.
The notation 1 denotes a vector of ones, with size
inferred from context. The cardinality (number of non-
zero elements) in a m-vector z is denoted ||z|o, whereas
that of a finite set Z is denoted |Z|. Unless otherwise
specified, functional operations (such as max(0,-)) on

vectors are performed element-wise. For k € [n], we say
that a vector w € R™ is k-sparse or has sparsity level
a% if at most k or a% of its coefficients are nonzero
respectively. For two vectors f,g € R™, fog € R™
denotes the elementwise product. For a vector z, the
notation si(z) is the sum of the top k entries. Finally,
P(A) denotes the probability of an event A.

Data Setup. We are given a non-negative data ma-
trix X € R = [z, 2@ . 2T consisting of n
data points, each with m dimensions (features), and a
vector y € {—1,1}" that encodes the class information
for the n data points, with C; and C_ referring to the
positive and negative classes respectively. We define
index sets corresponding to each class C'y,C_, and
their respective cardinality, and data averages:

Iy :={i€n] : y; =1},

nt = [Ty,

foom Y0 = £(1/2)X T (y 4 1)
1€L4

Naive Bayes. We are interested in predicting the
class label of a test point z € R™ via g(z) =
argmax.c¢_1,1} P(Cc | z). To calculate the latter pos-
terior probability, we employ Bayes’ rule and then use
the “naive” assumption that features are independent
of each other: P(z | Ce) = [[iL, P(z; | C.), leading to

Jj=1

g(z) = arg _max

m
log P(Ce) + Y log P(z,|Ce). (1)
j=1
In (1), we need to have an explicit model for P(z;|C;);
in the case of binary or integer-valued features, we
use Bernoulli or categorical distributions, while in the
case of real-valued features we can use a Gaussian
distribution. We then use the maximum likelihood
principle (MLE) to determine the parameters of those
distributions. Using a categorical distribution, P(C4)
simply becomes n4 /n.

Bernoulli Naive Bayes. With binary features, that
is, X € {0,1}™*™ we choose the following conditional
probability distributions parameterized by two non-
negative vectors 61,0~ € [0,1]™. For a given vector
z € {0,1}™,

P(z; | Cx) = (67)7 (1 —67)" "%, j € [m],

hence

Zlog]P’(mj | C1) =2 logh* + (1 —2)" log(1 — 6%).
j=1
Training a classical Bernoulli naive Bayes model reduces

to the problem
(0F,07) =arg  max

Loap(0F,607:X) (2
o+,6-¢€lo,1]™ b b( ) ( )
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where the loss is a concave function

Lop(07,07) = logP(a™ | Cy)
i€l
+ ) logP(x™ | C) (3)
i€l
=TT logf" + (ny1 — f7) T log(1 — 67)
+f Tlogh™ +(n_1— f7) " log(1 —67)

Note that problem (2) is decomposable across features
and the optimal solution is simply the MLE estimate,
that is, 6F = f*/n.. From (1), we get a linear clas-
sification rule: for a given test point x € R™, we set
(x) = sign(v + w, x), where

v := log gEng; + 1T(1og(1 —6F) —log(1 — 9*_))
o 0 o(1-6;)
Wy = log m- (4)

Multinomial naive Bayes. With integer-valued
features, that is, X € N®*™ we choose the following
conditional probability distribution, again parameter-
ized by two non-negative m-vectors 6= € [0,1]™, but
now with the constraints 17+ = 1: for given 2 € N™,

T.TL x] ! m

j=1

)]
=logP(z | C1) = 2" log 0= + log <(Z]—1 i) )

H;’nzl ;!

While it is essential that the data be binary in the
Bernoulli model seen above, the multinomial one can
still be used if = is non-negative real-valued, and
not integer-valued. Training the classical multinomial
model reduces to the problem

0 6-) =ar max
(0.7,0,) 8y 2%

1707 =179 =1 (5)

£111nb (0+ ) 0~ )

where the loss is a again a concave function

Lmnb(eJragi) = Z logp(gg(z) | O+)
i€L L
+ Z logP(z | C_)
ieT_
=f*Tloght + f~Tlogh~  (6)

Again, problem (5) is decomposable across features,
with the added complexity of equality constraints on
6*. The optimal solution is the MLE estimate 0+ =
fE/(AT f%). As before, we get a linear classification

rule: for a given test point z € R™, we set §(x) =
sign(v + w,], ), where
v:=1logP(Cy) —logP(C_), wy, :=logf} —logh;,

(7)

3 Naive Feature Selection

In this section, we incorporate sparsity constraints into
the aforementioned models.

3.1 Naive Bayes with Sparsity Constraints

For a given integer k € [m], with k& < m, we seek
to obtain a naive Bayes classifier that uses at most &
features in its decision rule. For this to happen, we
need the corresponding coefficient vector, denoted wy
and w,, for the Bernoulli and multinomial cases, and
defined in (4) and (7) respectively, to be k-sparse. For
both Bernoulli and multinomial models, this happens
if and only if the difference vector 6 — 0 is sparse.
By enforcing k-sparsity on the difference vector, the
classifier uses less than m features for classification,
making the model more interpretable.

Sparse Bernoulli Naive Bayes. In the Bernoulli
case, the sparsity-constrained problem becomes

(0F,0,) =arg  max

* 9 Uk

Lunp(01,07; X)

6+,0—-€[0,1]™
167 =670 <k (SBNB)
where Ly, is defined in (3). Here, || - ||o denotes the

lp-norm, or cardinality (number of non-zero entries)
of its vector argument, and k < m is the user-defined
upper bound on the desired cardinality.

Sparse Multinomial Naive Bayes. In the multi-
nomial case, in light of (5), our model is written

0F.07) = Lonb(07,67; X

( * 9 Ux ) arg 9+,GIE1§,[}(§,1]”L b( )
170t =1T"=1
16F —6" [0 <k (SMNB)

where Lynp is defined in (6).

3.2 Main Results

Due to the inherent combinatorial and non-convex na-
ture of the cardinality constraint, and the fact that
it couples the variables 6%, the above sparse training
problems look much more challenging to solve when
compared to their classical counterparts, (2) and (5).
We will see in what follows that this is not the case.
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Sparse Bernoulli Case. The sparse counterpart to
the Bernoulli model, (SBNB), can be solved efficiently
in closed form, with complexity comparable to that of
the classical Bernoulli problem (2).

Theorem 1 (Sparse Bernoulli naive Bayes). Con-
sider the sparse Bernoulli naive Bayes training problem
(SBNB), with binary data matriz X € {0,1}"*™. The
optimal values of the variables are obtained as follows.
Set

+ p—
vi= (FF 4 ) olog (100 ®)
+ —
+(nl—ft—f)olog (1—#)
w = w++w_ (9)
w* 3=inlOgﬁ—F(nil—fi)olog(l—E).
n4 n4

Then identify a set T of indices with the k largest ele-
ments in w — v, and set 07,0, according to

+ - 1 + - ; + fz:t .
0*1:6*1:;(.]01 +fz )a VZGI, 0*1: 7V’L€I‘
+

' (10)

Proof. For completeness we also include the follow-
ing proof in Appendix A. First note that an fy-norm
constraint on a m-vector ¢ can be reformulated as

lallo <k <= 3TC[m], |Z|<k : YigZ, ¢ =0.

Hence problem (SBNB) is equivalent to

max Lbnb(9+79_§X)
6+,6—€[0,1]™,Z
st. 05 =07 VigZI, TC[m], |Z|<k
(11)
where the complement of the index set Z encodes the
indices where variables 07,0~ agree. Then (11) be-
comes

e (590)+ (5 00) 09
iZT €L

where

B = max (£ + fi7)logbi 4+ (n — £ = f7) log(1 - 6)
€10,

hj' = max fi+ logﬁj + (ng — f:_) log(1 —6;")
0 €l0,1]

h; = max f; log6; + (n_ — f;)log(1 —6;)
6, €[0,1]

and where we use the fact that ny +n_ = n. All

+

the above expressions for h; ,h;r, h; have closed form

values and solutions
_ gt _p— _
0;=0,=0,,=

+
gf:L
g

(fif+f7), VigT

1
n

, VieT (13)

Plugging the above inside the objective of (11) results
in a Boolean formulation, with a Boolean vector u of
cardinality < k such that 1 — u encodes indices for
which entries of 1,0~ agree:

p*i=max (1 —u) v+u'w,
u€eCy

where, for k € [m]:

Cr:={u : ue{0,1}™, 1Tu <k},

and vectors v, w are as defined in (8):

n _
vm (74 £yotos (B
n _
+(n1—f+—f7)°10g<1_¥)
wi=w" +w”
. +
wt ::fiologrfl—iﬁ-(nil_fi)°10g<1_7{?)

We obtain

p'=1"v4+max u' (w—v)=1"v+ sp(w—v),
u€eCy
where si(+) denotes the sum of the k largest elements
in its vector argument. Here we have exploited the fact
that the map z := w — v > 0, which in turn implies
that

U,TZ = max ’LLTZ.

Sk(Z) - u€Cy

max
ue{0,1}™ : 1Tu=k
In order to recover an optimal pair (6,0, ), we simply
identify the set Z of indices with the m — k smallest
elements in w — v, and set 6;, 0, according to (20). m

Note that the complexity of the computation (in-
cluding forming the vectors f*, and finding the k
largest elements in the appropriate m-vector) grows as
O(mnlog(k)). This represents a very moderate extra
cost compared to the cost of the classical naive Bayes
problem, which is O(mn).

Multinomial Case. In the multinomial case, the
sparse problem (SMNB) does not admit a closed-form
solution. However, we can obtain an upper bound.
Theorem 2 (Sparse multinomial naive Bayes). Let
@(k) be the optimal value of (SMNB). Then ¢(k) <
W(k), where (k) is the optimal value of the following
one-dimensional convex optimization problem

Y(k) :=C+ min_ sg(h(a)), (USMNB)
agl0,1]

where C' is a constant, si(-) is the sum of the top k
entries of its vector argument, and for a € (0,1),

h(a) =C — floga — f~ log(1 — a).



Armin Askari, Alex d’Aspremont, Laurent El Ghaoui

where € = f*olog f*+f~olog f~—(f++f)olog(f++
f7). Furthermore, given an optimal dual variable o,
that solves (USMNB), we can reconstruct a primal
feasible (sub-optimal) point (0,67) for (SMNB) as
follows. For o optimal for (USMNB), let Z be com-
plement of the set of indices corresponding to the top
k entries of h(aw); then set By == 3,7 fE, and

_ I+ .
o == =i Tl yieq
e S
+
e N | S T SV

By 17(ft+f7)

Proof. See Appendix B. =

The key point here is that, while problem (SMNB) is
nonconvex and potentially hard, the dual problem is
a one-dimensional convex optimization problem which
can be solved very efficiently, using bisection. The
number of iterations to localize an optimal o* with
absolute accuracy € grows slowly, as O(log(1/€)); each
step involves the evaluation of a sub-gradient of the
objective function, which requires finding the k largest
elements in a m-vector, and costs O(mlogk). As before
in the Bernoulli case, the complexity of the sparse
variant in the multinomial case is O(mnlog k), versus
O(mn) for the classical naive Bayes.

Quality estimate. The quality of the bound in the
multinomial case can be analysed using bounds on the
duality gap based on the Shapley-Folkman theorem.

Theorem 3 (Quality of Sparse Multinomial Naive
Bayes Relaxation). Let ¢(k) be the optimal value
of (SMNB) and (k) that of the convex relazation
in (USMNB), we have, for k > 4,

Pk —4) < (k) <P(k) <ok +4).  (15)

Proof. See Appendix C. =

While we defer details of the proof of Theorem 3 to
the Appendix, we provide a high level discussion of
how to bound the duality gap. The proof follows from
results by (Aubin and Ekeland, 1976) (see (Ekeland
and Temam, 1999; Kerdreux et al., 2017) for a more
recent discussion) which are summarized below. Given
functions f;, a vector b € R™, and vector-valued func-
tions g;, ¢ € [n] that take values in R™, we consider
the following problem:

hp(u) :==min ) fi(z:) = Y gilw) <b+u (P)
i=1 =1

in the variables z; € R%, with perturbation parameter
u € R™. Let hp(u)*™ be the biconjugate of hp(u)

defined in (P), then hp(0)** is the optimal value of
the dual to (P) (Ekeland and Temam, 1999, Lem. 2.3),
and (Ekeland and Temam, 1999, Th.I.3) shows the
following result.

Theorem 4. Suppose the functions f;, g in prob-
lem (P) are proper, 1-coercive, lower semicontinu-
ous and there exists affine minorants fori=1,...,n,
j=1,...,m. Let

pj = (m+ 1)m?XP(9ji)7 forj=1,....,m (16)
then

hp(p) <hp(0)™ + (m+1) miaxp(fi). (17)

where p(f) £ Supzedom(f){f(x) - f**(fﬂ)}

Hence by bounding the non-convexity of the £y con-
straint, we are able to bound the overall duality gap.

The bound in Theorem 3 implies in particular
Pk —4) < (k) < ¢(k—4) + A(k), for k > 4,

where A(k) := (k) — ¢(k — 4). This means that if
(k) does not vary too fast with k, so that A(k) is
small, then the duality gap in problem (SMNB) is it-
self small, bounded by A(k); then solving the convex
problem (USMNB) will yield a good approximate solu-
tion to (SMNB). This means that when the marginal
contribution of additional features, i.e. A(k)/v(k) be-
comes small, our bound becomes increasingly tight.
The “elbow heuristic” is often used to infer the number
of relevant features k*, with ¢ (k) increasing fast when
k < k* and much more slowly when k£ > k*. In this
scenario, our bound becomes tight for k > k* .

4 Experiments

In this section, we compare our sparse multinomial
model (SMNB) against other feature selection meth-
ods (Experiments 1-3) we empirically show the quality
of our relaxation on a synthethic dataset (Experiment
4). For the former experiments, we do not use deep
learning methods since we want to compare the features
selected rather than the end-to-end training accuracy.
For this reason, we compare (SMNB) against tradi-
tional ¢; methods, recursive feature elimination (RFE)
methods, and other sparsity-inducing methods.

4.1 Experiment 1: Feature Selection

In the next three experiments, we compare (SMNB)
with other feature selection methods for sentiment clas-
sification on five different text data sets. Some details
on the data sets sizes are given in Table 1. More
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FEATURE VECTORS AMAZON IMDB  TwitterR MPQA SST2
CoOUNT VECTOR 31,666 103,124 273,779 6,208 16,599
TF-IDF 5000 5000 5000 5000 5000
TF-IDF WRD BIGRAM 5000 5000 5000 5000 5000
TF-IDF CHAR BIGRAM 5000 5000 5000 4838 5000
TUTRAIN 8000 25,000 1,600,000 8484 76,961
TrmsT 2000 25,000 498 2122 1821

Table 1: Experiment 1 data: Number of features for each type of feature vector for each data set. For tf-idf
feature vectors, we fix the maximum number of features to 5000 for all data sets. The last two rows show the

number of training and test samples.
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Figure 1: Experiment 1: Accuracy versus run time with the IMDB dataset/Count Vector with MNB in stage 2,
showing performance on par with the best feature selection methods, at fraction of computing cost. Times do
not include the cost of grid search to reach the target cardinality for £;-based methods. For more details on the

experiment, see Appendix D.

information on these data sets and how they were pre-
processed are given in Appendix D.

For each data set and each type of feature vector, we
perform the following two-stage procedure. In the first
step, we employ a feature selection method to attain a
desired sparsity level of (0.1%, 1%, 5%, 10%); in the
second step, we train a classifier based on the selected
features. Specifically, we use f;-regularized logistic
regression, logistic regression with recursive feature
elimination (RFE), ¢;-regularized support vector ma-

chine (SVM), SVM with RFE, LASSO, thresholded
Multinomial naive Bayes (TMNB), the Odds Ratio
metric described by Mladenic and Grobelnik (1999)
and (SMNB) in the first step. Then using the selected
features, in the second step we train a logistic model,
a MNB model, and a SVM. Thresholded multinomial
naive Bayes (TMNB) means we train a multinomial
naive Bayes model and then select the features corre-
sponding to indices of the largest absolute value entries
of the vector of classification coefficients w,,, as defined
in (7). For each desired sparsity level and each data set
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FEATURE VECTORS AMAZON IMDB TwiTTER MPQA SST2
CoOUNT VECTOR 31,666 103,124 273,779 6,208 16,599
TF-IDF 31,666 103,124 273,779 6,208 16,599
TF-IDF WRD BIGRAM 870,536 8,950,169 12,082,555 27,603 227,012
TF-IDF CHAR BIGRAM 25,019 48,420 17,812 4838 7762

Table 2: Experiment 2 data: Number of features for each type of feature vector for each data set with no limit
on the number of features for the tf-idf vectors. The train/test split is the same as in Table 1.
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Figure 2: Experiment 2 (Left): Accuracy gain for our method (top panel) and factor slower (bottom panel)
over all data sets listed in Table 2 with MNB in stage 2, showing substantial performance increase with a constant
increase in computational cost. Experiment 3 (Right): Run time with IMDB dataset/tf-idf vector data set,
with increasing m, k with fixed ratio k/m, empirically showing (sub-) linear complexity.

in the first step, we do a grid search over the optimal
Laplace smoothing parameter for MNB for each type of
feature vector. We use this same parameter in (SMNB).
All models were implemented using Scikit-learn (Pe-
dregosa et al., 2011). Figure 1 shows that (SMNB)
is competitive with other feature selection methods,
consistently maintaining a high test set accuracy, while
only taking a fraction of the time to train; for a sparsity
level of 5%, a logistic regression model with ¢; penalty
takes more than 1000 times longer to train.

4.2 Experiment 2: large-scale feature
selection

For this experiment, we consider the same data sets
as before, but do not put any limit on the number
of features for the tf-idf vectors. Due to the large
size of the data sets, most of the feature selection
methods in Experiment 1 are not feasible. We use
the same two-stage procedure as before: 1) do feature

selection using TMNB, the Odds Ratio method and
our method (USMNB), and 2) train a MNB model
using the features selected in stage 1. We tune the
hyperparameters for MNB and (USMNB) the same
way as in Experiment 2. In this experiment, we focus
on sparsity levels of 0.01%,0.05%,0.1%, 1%. Table 2
summarizes the data used in Experiment 2 and in Table
3 we display the average training time for (USMNB).

Figure 2 shows that, even for large datasets with mil-
lions of features and data points, our method, imple-
mented on a standard CPU with a non-optimized solver,
takes at most a few seconds, while providing a signif-
icant improvement in performance. See Appendix D
for the accuracy versus sparsity plot for each data set
and each type of feature vector.

4.3 Experiment 3: complexity

Using the IMDB dataset in Table 1, we perform the
following experiment: we fix a sparsity pattern k/m =
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AmazoNn IMDB TwitteR MPQA SST2
Fe 0.043 0.22 1.15 0.0082 0.037
Fyy 0.033 0.16 0.89 0.0080 0.027
F, 0.68 9.38 13.25 0.024 0.21
Fi, 0.076 0.47 4.07 0.0084 0.082

Table 3: Experiment 2 run times: Average run
time (in seconds, with a standard CPU and a non-
optimized implementation) over 4 x 30 = 120 values for
different sparsity levels and 30 randomized train/test
splits per sparsity level for each data set and each type
of feature vector. On the largest data set (TWITTER,
~ 12M features, ~ 1.6M data points), the computation
takes less than 15 seconds. For the full distribution
of run times, see Appendix D. Fg, Fy,, F},, Fy, refer to
the count vector, tf-idf, tf-idf word bigram, and tf-idf
character bigram feature vectors respectively.

0.05 and then increase k and m. Where we artificially
set the number of tf-idf features to 5000 in Experiment
1, here we let the number of tf-idf features vary from
10,000 to 80,000. We then plot the the time it takes to
train (SMNB) at a the fixed 5% sparsity level. Figure
2 shows that for a fixed sparsity level, the complexity
of our method appears to be sub-linear.

4.4 Experiment 4: Duality Gap

In this experiment, we generate random synthetic data
with uniform independent entries: f* ~ UJ0,1]™,
where m € {30,3000}. We then normalize f* and
compute (k) and ¢ (k — 4) for 4 < k < m and plot
how this gap evolves as k increases. For each value of
k, we also plot the value of the reconstructed primal
feasible point, as detailed in Theorem 2. The latter
serves as a lower bound on the true value ¢(k), which
can be used to test a posteriori if our bound is accurate.

Figure 3 shows that, as the number of features m or the
sparsity parameter k increases, the duality gap bound
decreases. Figure 3 also shows that the a posteriori
gap is almost always zero, implying strong duality. In
particular, as shown in Figure 3(b), as the number of
features increases, the gap between the bounds and
the primal feasible point’s value becomes negligible
for all values of k. This indicates that we can solve
the original, non-convex problem (SBNB) by instead
solving a 1-dimensional dual problem and constructing
a primal feasible solution in closed form.

5 Conclusion

In this paper, we propose a sparse version of naive
Bayes, leading to a combinatorial maximum likelihood
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o —6.581
>1
= —6.601
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| U(k)
i ----  Primalization
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I\.
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Figure 3: Experiment 4: Duality gap bound versus
sparsity level for m = 30 (top panel) and m = 3000
(bottom panel), showing that the duality gap quickly
closes as m or k increase.

problem that we show is more benign than it appears.
In the case of binary data, we are able to solve the
problem exactly, while in the multinomial case, we
provide explicit bounds on the duality gap and show it
decreases as as the marginal contribution of additional
features decreases. Furthermore, we show empirically
on synthetic data that this bound is quite loose and
that our scheme appears to be tight (ie. strong duality
holds). We test our method on different text data
sets with other popular feature selection methods. On
all the data sets, we are able to maintain the same
performance on the test set while only taking a fraction
of the time to train (in some cases our method is 1000x
faster than other methods with specialized solvers).
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