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1 UNBIASED ESTIMATOR OF THE GRADIENT OF EI-UU

In this section we formally state and prove Proposition 1.

Proposition 1. Suppose that U(·; θ), θ ∈ Θ is differentiable for all θ ∈ Θ and let X′ be an open subset of X so
that µn and Kn are differentiable on X′ and there exists a measurable function η : Rk → R satisfying

1. ‖∇U(µn(x) + Cn(x)Z; θ)‖ < η(θ, Z) for all x ∈ X′, θ ∈ Θ and Z ∈ Rk.

2. E[η(θ, Z)] <∞, where Z is a m-variate standard normal random vector independent of θ, and the expectation
is over both θ and Z.

Further, suppose that for almost every θ ∈ Θ and Z ∈ Rk the set {x ∈ X′ : U(µn(x) + Cn(x)Z; θ) = U∗n(f ; θ)} is
countable. Then, EI-UU is differentiable on X′ and its gradient, when it exists, is given by

∇EI-UU(x) = E [γ(x, θ, Z)] ,

where the expectation is over θ and Z, and

γ(x, θ, Z) =

{
∇U(µn(x) + Cn(x)Z; θ), if U(µn(x) + Cn(x)Z) > U∗n(f ; θ),

0, otherwise.

Proof. From the given hypothesis it follows that, for any fixed θ ∈ Θ and Z ∈ Rk, the function x 7→ U(µn(x) +
Cn(x)Z; θ) is differentiable on X′. This in turn implies that the function x 7→ {U(µn(x)+Cn(x)Z; θ−U∗n(f ; θ)}+
is continuous on X′ and differentiable at every x ∈ X′ such that U(µn(x) + Cn(x)Z; θ 6= U∗n(f ; θ), with gradient
equal to γ(x, θ, Z). From our assumption that for almost every θ and Z the set {x ∈ X : U(µn(x)+Cn(x)Z; θ) =
U∗n(f ; θ)} is countable, it follows that for almost every θ and Z the function x 7→ {U(µn(x) + Cn(x)Z; θ −
U∗n(f ; θ)}+ is continuous on X′ and differentiable on all X′, except maybe on a countable subset. Using this,
along with conditions 1 and 2, and Theorem 1 in L’Ecuyer (1990), the desired result follows.

We note that, if one imposes the stronger condition E[η(θ, Z)2] <∞, then γ has finite second moment, and thus
this unbiased estimator of ∇EI-UU(x) can be used within stochastic gradient ascent to find a stationary point
of EI-UU (Bottou, 2010).
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2 COMPUTATION OF EI-UU AND ITS GRADIENT WHEN U IS LINEAR

In this section we formally state and prove Propositions 2 and 3.

Proposition 2. Suppose that U(y; θ) = θ>y for all θ ∈ Θ and y ∈ Rk. Then,

EI-UU(x) = En
[
∆n(x; θ)Φ

(
∆n(x; θ)

σn(x; θ)

)
+ σn(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)]
where the expectation is over θ, ∆n(x; θ) = θ>µn(x) − U∗n(f ; θ), σn(x; θ) =

√
θ>Kn(x)θ, and ϕ and Φ are the

standard normal probability density function and cumulative distribution function, respectively.

Proof. Note that

EI-UU(x) = En
[
En
[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]]
.

Thus, it suffices to show that

En
[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]

= ∆n(x; θ)Φ

(
∆n(x; θ)

σn(x; θ)

)
+ σn(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)
,

but this can be easily verified by noting that, conditioned on θ, the time-n posterior distribution of θ>f(x) is
normal with mean θ>µn(x) and variance θ>Kn(x)θ.

Proposition 3. Suppose that U(y; θ) = θ>y for all θ ∈ Θ ⊂ Rk and y ∈ Rk, µn and Kn are differentiable, and
there exists a function η : Θ→ R satisfying

1.

∥∥∥∥(θ>∇µn(x)
)

Φ
(

∆n(x;θ)
σn(x;θ)

)
+

ϕ( ∆n(x;θ)
σn(x;θ) )

2σn(x;θ)

∑m
i,j=1 θiθj∇Kn(x)i,j

∥∥∥∥ ≤ η(θ) for all x ∈ X and θ ∈ Θ.

2. E[η(θ)] <∞.

Then, EI-UU is differentiable and its gradient is given by

∇EI-UU(x) = En

(θ>∇µn(x)
)

Φ

(
∆n(x; θ)

σn(x; θ)

)
+
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j

 .
Proof. Recall that

En
[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]

= ∆n(x; θ)Φ

(
∆n(x; θ)

σn(x; θ)

)
+ σn(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)
.

Moreover, standard calculations show that

∇
[
∆n(x; θ)Φ

(
∆n(x; θ)

σn(x; θ)

)]
=
(
θ>∇µn(x)

)
Φ

(
∆n(x; θ)

σn(x; θ)

)
+ ∆n(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)
∇∆n(x; θ)

σn(x; θ)
,

and

∇
[
σn(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)]
=
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j + σn(x; θ)

[
−∆n(x; θ)

σn(x; θ)
ϕ

(
∆n(x; θ)

σn(x; θ)

)
∇∆n(x; θ)

σn(x; θ)

]

=
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j −∆n(x; θ)ϕ

(
∆n(x; θ)

σn(x; θ)

)
∇∆n(x; θ)

σn(x; θ)
.

Thus, En
[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]

is a differentiable function of x, and its gradient is given by

∇En
[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]

=
(
θ>∇µn(x)

)
Φ

(
∆n(x; θ)

σn(x; θ)

)
+
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j .
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From conditions 1 and 2, and theorem 16.8 in Clarke and Billingsley (1980), it follows that EI-UU is differentiable
and its gradient is given by

∇EI-UU(x) = En
[
∇En

[{
θ>f(x)− U∗n(f ; θ)

}
+
| θ
]]

i.e.,

∇EI-UU(x) = En

(θ>∇µn(x)
)

Φ

(
∆n(x; θ)

σn(x; θ)

)
+
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j

 .

We end by noting that if Θ is compact and µn and Kn are both continuously differentiable, then

(θ, x)→

∥∥∥∥∥∥(θ>∇µn(x)
)

Φ

(
∆n(x; θ)

σn(x; θ)

)
+
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j

∥∥∥∥∥∥
is continuous and thus attains its maximum value on Θ×X (recall that X is compact as well). Thus, in this case
conditions 1 and 2 are satisfied by the constant function

η ≡ max
(θ,x)∈Θ×X

∥∥∥∥∥∥(θ>∇µn(x)
)

Φ

(
∆n(x; θ)

σn(x; θ)

)
+
ϕ
(

∆n(x;θ)
σn(x;θ)

)
2σn(x; θ)

m∑
i,j=1

θiθj∇Kn(x)i,j

∥∥∥∥∥∥ .
3 THOMPSON SAMPLING UNDER UTILITY UNCERTAINTY (TS-UU)

Thompson sampling for utility uncertainty (TS-UU) generalizes the well-known Thompson sampling method
(Thompson, 1933) to our setting. TS-UU works as follows. It first samples θ from its posterior distribution.
Then, it samples f from its Gaussian process posterior distribution. The point at which it evaluates f next is
the one that maximizes U(f(x); θ) for the samples of f and θ. This contrasts with the point-estimate approach
in that it samples θ from its posterior rather than simply setting it equal to a point estimate. For example, if we
implemented this point-estimate approach using standard Thompson sampling, we would sample only f from its
posterior and then optimize U(f(x); θ̂) where θ̂ is a point estimate, such as the maximum a posteriori estimate.
TS-UU can induce substantially more exploration than this more classical approach.

TS-UU can be implemented by sampling f(x) over a grid of points if x is low-dimensional. It can also be
implemented for higher-dimensional x by optimizing f with a method for continuous nonlinear optimization
(like CMA, Hansen (2016)), lazily sampling from the posterior on f each new point that CMA wants to evaluate,
conditioning on previous real and sampled evaluations. We use the latter approach in our numerical experiments.

4 EXPLORATION AND EXPLOITATION TRADE-OFF

One of the key properties of the classical expected improvement acquisition function is that it is increasing
with respect to both the posterior mean and variance. This means that it prefers to sample points that are
either promising with respect to our current knowledge or are still highly uncertain, an appealing property for a
sampling policy aiming to balance exploitation and exploration. The following result shows that, under certain
conditions, the EI-UU sampling policy satisfies an analogous property.

Proposition 4. Suppose that for every θ ∈ Θ U(·; θ) is convex and non-decreasing. Also suppose x, x′ ∈ X are
such that µn(x) ≥ µn(x′) and Kn(x) & Kn(x′), where the first inequality is coordinate-wise and & denotes the
partial order defined by the cone of positive semi-definite matrices. Then,

EI-UUn(x) ≥ EI-UUn(x′).
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Proof. Since Kn(x) & Kn(x′), we have that f(x)
d
= f(x′) + (µn(x)−µn(x′)) +W , where W is a k-variate normal

random vector with zero mean and covariance matrix Kn(x)−Kn(x′) independent of f(x′). Thus,

En
[
{U(f(x); θ)− U∗n(f ; θ)}+ | θ

]
= En

[
{U(f(x′) + (µn(x)− µn(x′)) +W ; θ)− U∗n(f ; θ)}+ | θ

]
≥ En

[
{U(f(x′) +W ; θ)− U∗n(f ; θ)}+ | θ

]
= En

[
En
[
{U(f(x′) +W ; θ)− U∗n(f ; θ)}+ | θ, f(x′)

]]
≥ En

[
{U(f(x′); θ)− U∗n(f ; θ)}+ | θ

]
,

where the first and second inequalities follow from the fact that the function y 7→ {U(y; θ)− U∗n(f ; θ)}+ is
increasing and convex, respectively, along with Jensen’s inequality. Finally, taking expectations with respect to
θ yields the desired result.

This result implies, for example, that for linear utility functions, the EI-UU sampling policy exhibits the behavior
described above. We also note, however, that most utility functions used in practice are concave instead of convex.

5 SYNTHETIC TEST FUNCTIONS DEFINITIONS

5.1 DTLZ1a

A general form of this test function was first introduced in Deb et al. (2005). The version we use was defined in
Knowles (2006). It is defined over X = [0, 1]6, and has k = 2 attributes given by

f1(x) = −0.5x1 ((1 + g(x))

f2(x) = −0.5(1− x1) ((1 + g(x)) ,

where

g(x) = 100

(
5 +

6∑
i=2

[
(xi − 0.5)2 − cos (2π(xi − 0.5))

])
.

The Pareto optimal set of designs consists of those such that xi = 0.5, i = 2, . . . , 6, and x1 may take any value
in [0, 1]. The Pareto front is a segment of the hyperplane y1 + y2 = −0.5.

5.2 DTLZ2

This function was first introduced in a general form in Deb et al. (2005). In our experiment, we use a concrete
version of it with k = 4 attributes defined over X = [0, 1]5. The attributes are

f1(x) = − (1 + g(x))

3∏
i=1

cos
(π

2
xi

)
f2(x) = −(1 + g(x))

(
2∏
i=1

cos
(π

2
xi

))
sin
(π

2
x3

)
,

f3(x) = −(1 + g(x)) cos
(π

2
x1

)
sin
(π

2
x2

)
,

f4(x) = −(1 + g(x)) sin
(π

2
x1

)
,

where

g(x) =

5∑
i=4

(xi − 0.5).

.
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5.3 VLMOP3

This test function first appeared in Van Veldhuizen and Lamont (1999). It is defined over X = [−3, 3]2 and has
k = 3 attributes given by

f1(x) = −0.5(x2
1 + x2

2)− sin(x2
1 + x2

2),

f2(x) = − (3x1 − 2x2 + 4)2

8
− (x1 − x2 + 1)2

27
− 15,

f3(x) = − 1

x2
1 + x2

2 + 1
+ 1.1 exp

(
−x2

1 − x2
2

)
.
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