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Appendix

A Proofs from the Paper

A.1 Proof of Proposition 1

Proof. We start by writing potential outcomes for an
arbitrary unit ¢ from (2) as Y;(t,t_;) = fi(t,t_;) + €,
where ¢; is some pre-treatment value of the potential
outcome, and f;(¢,t_;) is the treatment response func-
tion, dependent both on unit ’s treatment and on ev-
eryone else’s. Using A0-A3 we can write (2) as:

Yi(t,t—;) =tri+ filt—) + & (By A1)
=t + f(Gﬁ\fi) + € (By A3). (7)

This proves Equation (3). The first line agrees with
the additivity assumption, which permits a contribu-
tion f;(t_;) to Y;(t,t_;) arising from anywhere within
the rest of the graph. The second line states that
this contribution is limited to ¢’s neighborhood. The
third line states that the contribution depends only the
neighborhood structure and not anything else about
the neighbors.

To prove identification for the ADE, we must show
that the individual treatment effect is identified for
a treated unit ¢. We need to show that: E[Y;(1,0) —
Yi(0,0)] = E[Yi|T; =1, G}, = g!]-E[Vi|T; = 0,GR}, =
gt]. We have first:
= Eltr; + f(G},) + e — f(GR,) — el
=Ele; + 7 — ] =7 (8)

Second, we have:

E[Yi|GR, =~ g, T; = 1] - E[Yi|GY, ~ g}, T; = 0]
=E[Y;(1,T_;)T;+
+Y3(0,T_;)(1
—E[Y;(1,T_,)T;
+Y;(0,T_,)(1 - T;)|GY, = g}, T; = 0]
=E[r + f(9{) + &:|GR, =~ gf, T; = 1]
~E[f(9}) + il GX, = ¢, T; = 0]
=a+ f(gf) + 7 — o — f(gf)
=T;. (9)

- TGN, ~ g, T; = 1]

The first equality follows from the definition of Y;, the
second equality from the result in (3) and A3, and the
third equality follows from independence of T' and Y
given in AO: El¢;|T;] = Ele;] = o for all 4. Finally, we

can use both of the results above to obtain the ADE:

—— > E[Ti x (E[V;|GY, ~ ¢f, T3 = 1]
=1

- E[Y;|GN, ~ g}, Ti = 0])]

- ﬁ zn;E[Tm] (By (9))
- ilE[Ti < (EYi(1,0) - ¥,(0,0))]  (By ()
_ n}lémm — D(E[Yi(1,0) - ¥;(0,0))

- P o) - vi0.0))

Il
-

3=

M=

E[Yi(1,0) - Yi(0,0)],

s
Il
i

where Pr(T; = 1) = % by assumption of complete
randomization. O

B Additional Theoretical Results

We study the expected error for one AME match
on subgraphs under two assumptions: that the true
weights for the AME objective (the weighted Ham-
ming distance) are known, and that the candidate
units for matching all have independently generated
neighborhoods, and none of the units in these neigh-
borhoods are being matched. Additional information
on this setting is available in the proof.

Proposition 2. (Oracle AME Error With Indepen-
dent Neighborhoods) Suppose that there are N inde-
pendently generated graphs, each with n vertices, and
all i.i.d.  from the same distribution over graphs:
Pr(Gy = ¢1,...,GN = gn) = Hfilp(gi), As-
sume matches are only allowed between units in dif-
ferent graphs.  Suppose additionally that nY ran-
domly chosen wunits within each graph are assigned
treatment, so that Pr(T; = t;) = (,() . Assume
further that interference functions obey the following:
|f(g)— f(h)| < KwTI[S(g) # S(h)], where w is a vec-
tor of positive, real-valued, importance weights for the
subgraphs counts, such that ||wl||; = M, for some con-
stant 0 < M,, < oo, and such that the condition above
is satisfied for w, and 1[S(g) # S(h)] is the Hamming
distance: a vector of the same length as w that is 0
at position k if graphs g and h have the same count
of subgraph k, and 1 otherwise. Assume that baseline
responses have variance Var(e;) = o2 Vi. Then, for
a treatment unit i, if j solves the AME problem, i.e.,
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j € argminwlI[S(h%.) # S(GY, )], under A0-A3:
k=1,....,n
Tr=0

E[[Yi-Y; -

1
+K< <1>)
(nu) n—n®
X [ — 4 ——
n n

where G, is the set of all graphs with n units, and
C(h}\/j) <1 for all g and t.

T1HT =1 Gj\/ =

Z ZWTH

9EGn teT
tj:()

Bt ]<\[0
(hi,) # S(g%;,)p(9)

N—-2

C(QR@)) :

A proof is available in the following section. The first
element in the right hand side of the inequality is
the standard deviation of the baseline responses. One
summation is over all possible graphs with n units,
and the other summation is over possible treatment
assignments. The expression inside the summation
is the product of three terms. First, the weighted
Hamming distance between a graph and the target
graph we are trying to match. Second, the probabil-
ity of observing that graph. Third, an upper bound
on the probability that unit j is among the minimiz-
ers of the weighted Hamming distance. Note that
wlI[S (g% ) # S(gN )]p(g) is bounded for fixed n for
all g and "t. This 1mp11es that the bound converges
to 24/0 as N — oo, as long as the size of neighbor-
hood graphs is held fixed, because perfect matching is
possible with large amounts of data in this regime.

B.1 Proof of Proposition 2

We briefly review some notation and assumptions to
be used in this proof. For the purposes of theory,
we study a simplified setting, in which we have to
AME-match a unit i to one unit in a set of candi-
date units of size N such that: a) all the candidate
units belong to disconnected graphs, which we refer
to as candidate graphs. b) within each candidate
graph there is only one pre-determined candidate unit
¢) candidate units have neighborhood graphs denoted
by Gp;. d) all the candidate graphs are drawn in-
dependently from the same distribution over graphs:
Pr(Gn, = g1...., Gy = gn) =[], p(g:). The sup-
port of p will be G,,: the set of all graphs with exactly
n units. We use gn;, to denote the subgraph induced
over g by the units in the set of neighbors of unit 1,
N; C V(g), ie., gn; is the graph consisting only of
the vertices that share an edge with ¢, in g, and of the
edges in g that are between these vertices. The ego @
is not included in gp,.

Assigned treatments are denoted by T, where T €
{0,1}", but in this setting treatment assignment is
assumed to be independent within the N candidate

graphs. Formally, the assumption we make is that
N -1 .,

Pr(Ty =t1,...., Ty =tn) =[[,_; (nﬁ)) ,ie., nM

units are always treated uniformly at random within

each of the N candidate graphs.

The direct treatment effect for any unit 7 is given by
7;. We use [[S(g) # S(Rh)] to indicate the Hamming
distance between subgraph counts of graphs g and h.
This means that I[S(g) # S(h)] is a vector of size |G, |
that will be 1 in the ¢t entry if g and h have the
same amount of occurrences of graph gy among their
subgraphs. Note that this distance is coloring sensi-
tive: two subgraphs that are isomorphic in shape but
not labels will belong to different entries in this dis-
tance. The matched group of a treated unit i, denoted
MG; is the set of all control units that match with 7.
In our setting j € MG; if it solves the AME problem,

that is j € argminw’I[S(G}; ) # S(gk,)]. Finally,
k=1...,n )
7,20

we assume that both the graph for the unit we want
to match and the treatment assignment for that unit’s
graph are fixed: t; is the treatment assignment in the
graph of i, and hf\/ is the neighborhood graph of i,
where h denotes unit i’s graph. All other notation is
as in the main paper.

Proof. We start by upper-bounding our quantity of
interest as follows:

E[|Y; - Y; — 7|5 € MGi]
= E[[Y;(L,t;i—) = Y;(0, Tj—;) — 7] € MG;]
=Ellri + f(h},) + e — F(GN!) — €5 — 7l|j € MGy]
SE[If(h%) — FGW)I]j € MGy]
+Ele; — ¢|j € MGy
<KE[w IS(hy,) # S(GAY)I|3 € M)
[|ez—ej\|]EMG} (10)

where the notation T;_; denotes the treatment indi-
cator for candidate graph j for all units except j. The
first equality follows from AO since the event j € MG;
implies that T; = 0, as only control units are allowed
in the matched groups. The second equality follows
from Proposition 1. The first inequality is an appli-
cation of the triangle inequality. The last line follows
from the condition on the interference functions. Con-
sider the second term. We can use the Cauchy-Schwarz
inequality to construct a simple upper bound on it:

Elle; — €;1]j € MG,] = E[le; — €]

IA
=
@

= \/E[] + E[&)] - 2E[ei[Ele;] = v20
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where the last equality follows for the fact that the ¢;
have mean 0 and are independent, with Var(e;) = o2
for all 3.

Consider now the term E[w”T[S(h%;.) # S(GN VRS

MG;]. To upper-bound this, we erte it out as follows
using the definition of expectation:

Efw I[S(h%.) # S(Gf/m j € MG;]
= > > wIS(hE,) # S9x,)]
9E€G, teT ;=0

x Pr(GY/ = gl T; = t]j € MGy).

We want to find an upper bound on Pr(foj =
9/\/’ ,T; = t|j € MG;). We start by writing this quan-
tlty out as a product of two probabilities:

T; .
Pr(Gy/ :g};\/j,T]— = t|j € MG;)
= Pr(G} = gl |j € M6;, T, = t)
x Pr(T; = t|j € MG;)

1
T; . n—1
=Pr(Gy/ = gk, 17 € MG;, T; = t)( (D) ) :

-1
Note that Pr(T; = t|j € MG,) = (Za)l) because
treatment is uniformly randomized with n(!) units al-
ways treated in each candidate graph, but 7 = 0 con-

ditionally on j € MG;.

We use Bayes’ rule to write out the first term in the

T _ ot |s T _
final product as Pr(Gy, = gi,li € MG;, T; = t) =
Pr(jeMG;|T;=t, G —gN )Pr(G’

! =g, IT;=t)
Pr(]EMGl\T =t) .

By assumption, if all neighborhood graphs are empty,
all units are used for all matched groups, and we are
restricting ourselves to assignments in which 7; = 0,
therefore, Pr(j € MG;|T; = t) = 1. Second, by as-
sumption Pr(G;J\T/J'_ = g%,|T; = t) = p(g). This is
because treatment assignment is independent of the
graph. We are left with having to find an expression

for the likelihood, this can be written as:

Pr(j e MG;|T; =t GNJ —gN)
IS(hY,) # S(GRE)]

= Pr(j € argmin w’
k=1,...,N,

loti

I
=

| PrwTIS () £ S(GE) 2

T
]
<

wlI[S(hy,) # S(gh, IITi = 0) Pr(T; = 0)

+ Pr(T = 1)}

Q[

S(hy,) # S(GRL)]

| n—n
wlTS(hy:) # S(gh, )| Th = O)T
n(l)}
+—1.
n

The second equality follows because k can never be in
the matched group of unit ¢ if Ty, = 1, and, if T, = 0,
then k& must be one of the minimizers of the weighted
Hamming distance between neighborhood subgraph
counts. The probability is a product of densities be-
cause of independence of candidate subgraphs. For an
arbitrary unit, k, we define the following compact no-
tation for the probability that k’s weighted Hamming
distance from ¢ is larger than the weighted Hamming
distance from j to 4:

Pr(w” [ (h%,) # S(GR2)]
wlT[S(h%:) # S(gh)]| Tk = 0)
=: Ck(g/tvj) <1

Note that the last inequality follows from the fact that
the expression above is a probability. Since graphs and
treatment assignments, Gy and T} are the only ran-
dom variables in the probability denoted by C (g/tvj),
and since they are all independent, and identically dis-
tributed, we can say that C; (9/\/ ) = Ch (gN Y= =

Cn (gNj) C(gN ). Because of this we have:

. T;
Pr(j € MG;|G/, = g;‘\[j,Tj =t)

n —n N=2

(nu)
= —+ ——
n n

Putting all the elements we have together we get the

Clats))
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expression for the first term in the bound:
ElwT[S(hf,) # S(GV)]lj € MG,]
= > Y wlIS(gh,) # S,

gEGn tE€T:t;=0

x Pr(GR, = gk, T, = ta,|j € MG;)

=Y > wlIS(gl,) # S(hE))

gEgN teT:thO
0@@))

n—1\"" D p®
n() r(9) n + n

N-2

X

B.2 Asymptotic Behavior

Here we expand on the asymptotic consequences of
Proposition 2: note first, that, by assumption ||w|j; =
M,,, and that, therefore wlT[S(g) # S(h)] < M,, for
any graphs g,h € G,. That is to say, the weighted
Hamming distance between any two graphs with n
units will be upper-bounded by the sum of the weights.
Recall also that C (g}\c) < 1for all g and t as this quan-
tity is a probability, and let Ciqp = gné%x C(g}‘\/j). We
teT
can combine all these bounds with the upper bound in
Proposition 2 to write:

E[w T[S(h}) # S(Gy)]lj € MGi]
=Y > wlS(ghk,) # S(E.)]

gEGN tET ;=0

—1 N-2
n—1 nM p—nM t
X < (D) ) p(9) (n + nc(gf\/j))
(1) _n N=2
S Mn (n + nncnzax)
n n
n—1\""
x> > (Lo p@
n
gEGn te€T ;=0
N—2

—n®
n MCW)
n
The first equality follows from Proposition 2, the first
inequality from the bounds previously discussed, and
the second equality follows from the fact that the sum
in the second to last line is a sum of probability dis-
tributions over their entire domain, and therefore is
equal to 1. Under the condition that n, the number
of units in each unit’s candidate graph, stays fixed,
and that Cpee < 1, then, as N — oo, we have

eh) e N-2
M, ("n + %Cmm) — 0, because the quan-
tity inside the parentheses is always less than 1. This
makes sense, because asymptotically, matches can be
made exactly; i.e., units matched in the way described

- M, ("(1)
n

in our theoretical setting have isomorphic neighbor-
hood subgraphs asymptotically. This also has a con-
sequence that the bound in Proposition 2 converges
to v/20 asymptotically in N. This is the variance of
the baseline errors and can be lowered by matching
the same unit with multiple others. As noted before,
for this argument to apply, candidate graphs must re-
main of fixed size n as they grow in number, so that the
quantity M,, remains constant: this setting is common
in cluster-randomized trials where a growing number
of units is clustered into fixed-size clusters of size at
most n. The asymptotic behavior of our proposed
methodology is less clear in settings in which the ana-
lyst cannot perform such clustering before randomiza-
tion and n is allowed to grow with NV, and is an avenue
for potential future research.

B.3 Heteroskedasticity in The Baseline
Effects

In a network setting such as the one we study, it is
possible that baseline effects of units do not have equal
variance. Here we discuss how this setting affects our
result in Proposition 2. Here, we maintain that E[e;] =
a for all i, but we assume that Var(e;) = o2, and
that Cov(e;ej) # 0. Starting from the upper bound
on the estimation error given in (10), we can see that
the baseline effects only come in in the term: E[|e; —
€;|lj € MG;], we therefore focus our attention on this
term, as the rest of this bound does not change when
the variance of these terms changes. Note first, that
Elle; — €;]|7 € MG;] = E[|e; —¢;|] as the event j € MG; is
independent of the baseline effects. We can now apply
the Cauchy-Schwarz inequality, in the same way as we
do in the proof of Proposition 2, to obtain:

Efle; — €] < \/E[(€; — €;)?]

= \/Ele?] + E[e2] - 2E[c|Ee;]

=\/03+a2+o§-+a2—2a2

) 2
= ai—i—aj.

Clearly, this is not too different from the homoskedas-
tic setting we study in the proposition: as long as nei-
ther of the unit variances is too large for inference,
results in the heteroskedastic setting will suffer from
similar bias as they would under independent baseline
effects with equal variance.

Simulations, shown in Section J, also support the
above rationale of comparable performance in the
heteroskedastic case and demonstrate that FLAME-
Networks still outperforms competing methods.
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C Derivation of SANIA MIVLUE
Used in Simulations

Theorem 6.2 of Sussman and Airoldi, 2017
Suppose potential outcomes satisfy SANIA and that the
prior on the parameters (baseline outcome and direct
treatment effect) has no correlation between units. If
unbiased estimators exist, the MIVLUE weights are:

Ci,az 2z; — 1
23;01 Ci,d ’I’LP(Z?bS _ Z“dzobb _ dzz)

(3

wi(z) =

where

Cia=

@P(z)l{df =i

-1
Z(Z)“
_ Zi’dfObs _ d)2

and C; 4 is defined to be 0 if the probability in its
denominator is 0.

C.1 Setup and Notation

We assume that there is a constant probability p of
each unit being treated and that units are indepen-
dently treated. Let unit ¢ have d; neighbors and
a treated degree of d?. In our setting, X(z); =
Yo, + 2234 where ¥, and Y are the covariance
matrices on priors placed on the baseline outcome and
the direct treatment effect, respectively. Additionally
in our setting, their diagonals are constant and so we
let O'i = Ea,ii and 0'?3 = Zﬁ,ii-

C.2 Find P(z0Ps = 2, a7 = 47)
By the setup, the constituent probabilities are inde-
pendent and the probability of treatment is constant
across units and so: P(z?bs = zi,dfObS = d?) =
[zip + (1= 2:)(1 = p)] (G2)p™ (1 = p) =

C.3 Find Cig4

Below, we will consider zqighbor(s), the treatment as-
signment of the neighbors of i (excluding i), z;, the
treatment assignment of unit i, and 2z, (s), the treat-

ment assignment of the remaining units.

= z;,d;

P(z)1{d* = d}%(z);; \
Cra- (it =0zt )

bs _ .. zobs )
z:d?=d P(Z;) = Zj, di = d)
P(Zneighbor()) > -1
P(ZQbS — Zi,dZObS _ d)2

?

—1
_ ( P(Zneighbor(i))P(Zi)P(Zrest(i)>Z(Z)ii

%

X Z E(Z)iip(zi)P(Zrest(i))

z:d?=d
-1
_ ( P(zncighbor(i)) >
P(20 = 2;,d7"™ = d)2

X Z (Ji + ZiJ%)P(Zi)P(zrest(i))
z:d?=d

_ ( P(zneighbor(i)) >
P(20 = z;,d?"™ = d)2

3

X 02a—|- Z (02,)PP(Zrcst(i))

z:ds=d
zi=1
B P(Zneighbor( U +Uﬁ
- P(Z,LObS = 2, fobs _
([zzp+ (1= z)(1 = p)(%)p*(1 - p)* d)
- e aﬁ>pd<1 o

[le + (1 - Zz d —d

P(%) "

Ug—&—aﬂ
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C.4 Find w;
Plugging in the expressions we’ve found:

w;(z) =
Ci,az 2z — 1
iso Cia P2 = z,d7™" = df)

[zip+(1-2) (1—p)? (34) P (1-p) "~

_ (02 +02)
S (%) pt(1—p) %~ (zipt (1—2:) (1-p))?
@202
2Zi -1

R R R [ P
- (zip+ (1= 2)(1 = p)) (22 — 1)
s () (1~ p)e =z + (1 - z)(1 - p))?
_ (apt+ (1= 2)(1—p)(25 — 1)
n(zip+ (1 —z)(1 - p))?
1
Sice (%) (1 — pytd

Note in the first fraction that (z;p+(1—2;)(1—p))(2z;—
1) equals p when z; = 1 and p — 1 when z; = 0. Also,
(zip + (1 — 2)(1 — p))? equals p? when z; = 1 and
(1 — p)? when z; = 0. Thus, the first term is 1/np
when z; = 1 and —1/n(1 — p) when z; = 0 and so the
overall expression for the weights is:

zi/np — (1 = z)/(n(1 = p))
i (5) Pl —pytid

and the MIVLUE is given by Y ., w;Y;.

X

Ww; (Z) =

D Subgraph Descriptions

Here, for graphs without self-loops, we define the in-
terference components used in our simulations:

e Degree: the degree of a node is the number of
edges it is a part of.

e Triangle: A graph with three mutually connected
nodes (see Figure 5).

e Square: A graph with 4 nodes and 4 edges, such
that each node is a part of exactly two distinct
edges (see Figure 5).

e k-Star: A graph with k£ 4+ 1 nodes, the first k£ of
which are all connected to the (k + 1)st node and
no others (see Figure 5).

@ o)
@
o)
® 10}
® ® @
o) 10) o)
o) @ o

Figure 5: Four types of treated neighborhood sub-
graphs the colored unit might be a part of: triangle
(top right), square (bottom right), 2-star (top left),
4-star (bottom left).

e Vertex Betweenness: The vertex betweenness of a
vertex v is defined as:

Y 2l

(o2
ity

where o;; is the number of shortest paths be-
tween vertices ¢ and j and 0;;(v) is the number of
shortest paths between ¢ and j that go through v.
We use the normalized vertex betweenness which
scales the above expression by 2/(n? — 3n + 2)
where 7 is the number of nodes in the graph.

e Closeness Centrality: We use the normalized
closeness centrality of a vertex v, defined as:

n—1

Z?:l d(ovi)

where d(o,;) is the length of the shortest path
between v and ¢ and n is the number of nodes in
the graph.

E Data Pre-processing

We estimate the DTE using data from from Banerjee
et al. (2013) on social networks for the 75 villages in
India. A unit 7 is defined to be socially connected with
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Units Triangles 2-Stars Edges Telugu Age Treated Outcome
Matched Group 1

1 2or3 3 3 0 40 0 1
2 2or3 3 3 0 40 1 0
3 2o0r3 3 3 0 40 1 0
4 2or3 3 3 0 40 1 0
Matched Group 2

1 0 3 3 1 30 0 0
2 0 3 3 1 34 0 0
3 0 3 3 1 25 0 1
4 0 3 3 1 20 1 0

Table 4: Sample Match Groups. Two sample matched
groups generated by FLAME-Networks using data dis-
cussed in Section 4. The columns are the covariates used
for matching, along with treatment status and outcome.
The counts of subgraphs were coarsened into 10 bins de-
fined by deciles of the empirical distribution of counts.
The two groups have relatively good match quality over-
all. Note that the first group matches units exactly
(given the binning). However, Matched Group 2 matches
units approximately, with exact matches on subgraph
counts and whether or not individuals speak Telugu, but
inexact matches on age.

unit j if they are connected across at least 3 of the fol-
lowing four types of social connections: (1) ¢ visits j’s
house, (2) j visits ¢’s house, (3) ¢ and j socialize and
are relatives, (4) 7 and j socialize and are not related to
each other. Along with subgraph counts, we also use
age and whether or not individual ¢ speaks Telugu as
additional covariates to match on. For computational
efficiency, we drop units with maximum degree of con-
nection greater than 15, where the cut-off is selected
based on computational efficiency.

F Matched Groups

We provide sample matched groups in Table 4. These
matched groups were produced by applying FLAME-
Networks on the data discussed in Section 4. We re-
port all the covariates used for matching. The first
group is comprised of 40-year-old units who do not
speak Telugu, and have 2 or 3 triangles, 3 2-stars, and
3 edges in their treated neighborhood graph. These
units (given the binning) are matched exactly. The
second group is comprised of units who speak Telugu
with no triangles, 3 2-stars, 3 edges in their treated
neighborhood graph. Note that units in this group are
matched approximately, since they are not matched
exactly on age.

G Additional Experiment:
Multiplicative Interference

We explore settings in which interference is a nonlin-
ear function of the interference components and their
weights. Since matching is nonparametric, it is partic-

ularly appropriate for handling non-linearities in inter-
ference functions. Outcomes in this experiment have

the form Y;(¢t,t_;) = tr; + « Hle mg[pp is included] + €.
Table 5 shows which components are included in the
outcome function for each setting. We use a small
number of parameters in each setting, as their mul-
tiplicative interaction suffices to define a complex in-
terference function. The simulations are run on an

ER(50,0.05) graph.

1| x X

2| x X
3 X X
4 X X

Table 5: Parameters included in interference function
Experiment 1. The marked components for each set-
ting were the only ones included in those experiments.

Results for this experiment are presented in Figure
6. FLAME-Networks performed better than all base-
line methods in this setting, both in terms of mean
absolute error and, in most cases, in terms of stan-
dard deviation over simulations. The stratified and
SANIA estimators perform especially poorly, because
they cannot handle nonlinear interference settings, un-
like FLAME-Networks.

Simulation Results: Multiplicative Interference

----- PO | | = ' i
----- - ] ----------- || _.,. ...... i
[0 N R
e

FLAME-Networks First Al Naive Stratified SANIA
Eigenvector  Eigenvectors

Figure 6: Results from experiments with a multiplica-
tive interference function. Each violin plot represents
the distribution over simulations of absolute estima-
tion error over for each method. The panels are num-
bered according to the parameter setting the simula-
tions were ran with. Violin plots are color-coded blue
if the method had mean error either equal to or better
than FLAME-Networks and red otherwise. The black
line inside each violin is the median error. The dashed
line is FLAME-Networks’ mean error.
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H Additional Experiment: Graph
Cluster Randomization

We also explored the performance of FLAME-
Networks in settings in which treatment is random-
ized within multiple clusters, which have few connec-
tions between them. More specifically, we simulate a
network according to a stochastic block model with 5
clusters. In each cluster, there are 10 units, 5 of which
are treated. The probability of edges within clusters is
0.3 and between clusters is 0.05. This results in graphs
with few edges between clusters. We then evaluate
our method as previously described, simulating the
outcome with additive interference and homoskedas-
tic errors. The results in Figure 7 demonstrate that
FLAME-Networks outperforms competing methods in
this setting as well.
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Figure 7: Results from experiments with additive in-
terference on graphs in which treatment is randomly
assigned within multiple clusters with few edges be-
tween them. Each violin plot represents the distribu-
tion over simulations of absolute estimation error over
for each method. The panels are numbered accord-
ing to the parameter setting the simulations were ran
with. Violin plots are color-coded blue if the method
had mean error either equal to or better than FLAME-
Networks and red otherwise. The black line inside each
violin is the median error. The dashed line is FLAME-

Networks’ mean error.

I Additional Experiment: Real
Network

To ensure that FLAME-Networks also performs well
on real networks, we consider an AddHealth net-
work (Harris, 2013). Specifically, we use the ad-
dhealthc3 dataset from the amen R package, with all
edges treated as undirected. There are 32 nodes and

on every simulation, 16 are randomly selected to be
treated. Outcome and additive interference are simu-
lated as previously described. Errors are homoskedas-
tic. The results in Figure 8 demonstrate that FLAME-
Networks still outperforms competing methods.

Simulation Results: AddHealth Network
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Figure 8: Results from experiments on a real, Ad-
dHealth network with additive interference. Each vio-
lin plot represents the distribution over simulations of
absolute estimation error over for each method. The
panels are numbered according to the parameter set-
ting the simulations were ran with. Violin plots are
color-coded blue if the method had mean error either
equal to or better than FLAME-Networks and red oth-
erwise. The black line inside each violin is the median
error. The dashed line is FLAME-Networks’ mean er-
ror.

J Additional Experiment:
Heteroscedastic Errors

We also explored the performance of FLAME-
Networks in settings in which the variance of the out-
comes is not constant. We simulate a single ER(50,
0.07) graph and randomly treat 25 units. We con-
sider additive interference, as in the body of the text,
and all other simulation parameters are the same, ex-

pect for that now, each unit 7 has baseline outcome
ind ind

a; ~ N(0,v;) with v; ~ U(0,1). We see in Figure 9
that FLAME-Networks outperforms competitors; the
fact that it is nonparametric allows it to handle more
flexible baseline outcomes and variances.

K Additional Experiment: Matching
on True Interference

Here, we compare FLAME-Networks to approaches
that match directly on units’ interference values.
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Simulation Results: Heteroskedasticity

experimental setup is the same as in Experiment 2 in
the main text and results are shown in Tables 6 and 7

; _— ‘ __________________________________ ’ ______ Method Median 25th q 75th q
FLAME-Networks 0.34 0.15 0.52
. First Bigenvector 041 024  0.49
B’ ‘ - ‘ All Eigenvectors 036 032  0.74
t———— Naive 0.61 0.19 0.85
£o SANIA 2.31 1.78 2.75
N ‘ ’ ' Stratified 456 455  4.63
B i S
N Table 6: Additional results from the experimental
¢ ‘ ‘ s setup of Experiment 2, but with § = 20. Median
I I e ’ ______ and 25th and 75th percentile of absolute error over 10

o - L + , , :
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Figure 9: Results from experiments with an addi-
tive interference function involving heteroskedasticity
in the baseline effects across units. Each violin plot
represents the distribution over simulations of absolute
estimation error over for each method. The panels are
numbered according to the parameter setting the sim-
ulations were ran with. Violin plots are color-coded
blue if the method had mean error either equal to or
better than FLAME-Networks and red otherwise. The
black line inside each violin is the median error. The
dashed line is FLAME-Networks’ mean error.

FLAME-Networks already has the advantage of in-
terpretably matching on neighborhood graphs that
can be visualized and compared, as opposed to un-
interpretable scalar values of an interference function.
Additionally, to perform well in practice, one would
typically need to use equally uninterpretable machine
learning methods to estimate units’ interference values
well. But even comparing FLAME-Networks to an ap-
proach that matches on the ¢rue (typically unknown)
interference values, we see that our method does well
in comparison, because it learns and matches on base-
line effects as well as (approximate) interference val-
ues. Results using an ER(50, 0.07) graph with 25 units
randomly treated, an additive interference function,
and homoskedastic errors — as previously described —
are shown in Figure 10.

L Additional Experiment: Covariate
Weight

In this section, we show that increasing the influence
that covariates have on the outcome function harms
neither FLAME-Networks nor the competing meth-
ods. Asin the results shown in the main text, however,
the performance of FLAME-Networks is still superior,
given that it naturally handles covariate data. The

simulations.

Method Median 25th q 75th q
FLAME-Networks 0.25 0.08 0.51
First Eigenvector 0.52 0.32 0.85
All Eigenvectors 0.53 0.29 0.83
Naive 0.78 0.32 1.16
SANIA 1.86 1.68 2.11
Stratified 4.78 4.74 4.80

Table 7: Additional results from the experimental
setup of Experiment 2, but with § = 25. Median
and 25th and 75th percentile of absolute error over 10
simulations.

M Match Quality

Here, we assess the quality of matches generated by
FLAME-Networks versus matching on true interfer-
ence, and the All Eigenvectors approach. To do so, for
FLAME-Networks: for each (control) treated unit, we
take the minimal Frobenius norm of the difference be-
tween that unit’s neighborhood adjacency matrix and
that of all the (treated) control units in its matched
group!, and average across all units. This gives an av-
erage graph distance for a single simulation. And to do
so for the true interference matching and All Eigenvec-
tors approaches: for every (control) treated unit, we
take the closest (treated) control unit, find the graph
distance (as above) between their neighborhood sub-
graphs, and average across units. This gives an average
graph distance for a single simulation. Results from
50 simulations performed on an ER(50, 0.07) graph
with additive interference and homoskedastic errors,
as described previously, are shown in Figure 11, show-
ing that FLAME-Networks produces more matches be-
tween units with similar neighborhood subgraphs than

!The Frobenius norm of the difference of the adjacency
matrices, up to reordering of the vertices.
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Comparison: FLAME-Networks vs. Matching on True Interference

3

4

€

14

True
Interference

FLAME-Networks

Figure 10: Results from experiments comparing
FLAME-Networks to matching units on their true in-
terference values. Each violin plot represents the dis-
tribution over simulations of absolute estimation error
over for each method. The panels are numbered ac-
cording to the parameter setting the simulations were
ran with. Violin plots are color-coded blue if the
method had mean error either equal to or better than
FLAME-Networks and red otherwise. The black line
inside each violin is the median error. The dashed line
is FLAME-Networks’ mean error.

matching on the true interference or the All Eigenvec-
tors method.

Graph Distance Between Neighborhoods of Matched Units
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Figure 11: Results from experiments comparing the
average distance between the neighborhood subgraphs
of the units matched by different methods. Each vio-
lin plot represents the distribution over simulations of
graph distance for each method. The panels are num-
bered according to the parameter setting the simula-
tions were ran with. Violin plots are color-coded blue
if the method had mean graph distance either equal to
or better than FLAME-Networks and red otherwise.
The black line inside each violin is the median graph
distance. The dashed line is FLAME-Networks’ mean
graph distance.



