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A APPENDIX

A.1 List of Random Variables Used in the Paper

Table 2: Random variables used in the paper.

Variable Range Meaning

X X data point (i.e., features representing a data point)

A {0, 1} true protected attribute

Ac {0, 1} perturbed / corrupted protected attribute

Y {−1,+1} ground-truth label

Ỹ {−1,+1} given predictor for predicting Y

Ŷ {−1,+1} EO predictor derived from Ỹ and based on some protected attribute (i.e., A or Ac)

Ŷcorr {−1,+1} EO predictor derived from Ỹ and based on Ac

Ŷtrue {−1,+1} EO predictor derived from Ỹ and based on A

A.2 Proofs

We first require a simple technical lemma.

Lemma 2. Let D = [0, 1)× [0, 1)× (0, 1) and consider F : D → R with

F (γ1, γ2, p) =
γ1p

γ1p+ (1− γ2)(1− p)
− (1− γ1)p

(1− γ1)p+ γ2(1− p)
+ 1. (7)

We have:

(i) 0 ≤ F (γ1, γ2, p) ≤ 2 for all (γ1, γ2, p) ∈ D

(ii) F (0, 0, p) = 0 for all p ∈ (0, 1)

(iii) F (γ1, γ2, p) < 1 for all (γ1, γ2, p) ∈ D with γ1 + γ2 < 1

(iv) F (γ1, γ2, p) = 1 for all (γ1, γ2, p) ∈ D with γ1 + γ2 = 1

(v) F (γ1, γ2, p) = F (γ2, γ1, 1− p) for all (γ1, γ2, p) ∈ D

(vi) ∂
∂γ1

F (γ1, γ2, p) > 0 and ∂
∂γ2

F (γ1, γ2, p) > 0 for all (γ1, γ2, p) ∈ D

Proof. First note that for (γ1, γ2, p) ∈ D both denominators are greater than zero and F is well-defined. Both
fractions are not smaller than zero and not greater than one, which implies (i). It is trivial to show (ii). It is

γ1p

γ1p+ (1− γ2)(1− p) −
(1− γ1)p

(1− γ1)p+ γ2(1− p) =
p(1− p)[γ1 + γ2 − 1][

γ1p+ (1− γ2)(1− p)
]
·
[
(1− γ1)p+ γ2(1− p)

] ,
from which (iii), (iv) and (v) follow. Finally, it is

∂

∂γ1
F (γ1, γ2, p) =

∂

∂γ1

p(1− p)[γ1 + γ2 − 1][
γ1p+ (1− γ2)(1− p)

]
·
[
(1− γ1)p+ γ2(1− p)

]
=
p(1− p)

[
1− (γ1 + γ2 − 1) ·

{
p · [(1− γ1)p+ γ2(1− p)

]
− p ·

[
γ1p+ (1− γ2)(1− p)

]}]
[
γ1p+ (1− γ2)(1− p)

]2 · [(1− γ1)p+ γ2(1− p)
]2 .
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We have ∣∣p · [(1− γ1)p+ γ2(1− p)
]
− p ·

[
γ1p+ (1− γ2)(1− p)

]∣∣ = |p| · |[p(1− 2γ1) + (1− p)(2γ2 − 1)]|
≤ |p|

for all (γ1, γ2, p) ∈ D and hence

1− (γ1 + γ2 − 1) ·
{
p · [(1− γ1)p+ γ2(1− p)

]
− p ·

[
γ1p+ (1− γ2)(1− p)

]}
≥

1− |γ1 + γ2 − 1| ·
∣∣p · [(1− γ1)p+ γ2(1− p)

]
− p ·

[
γ1p+ (1− γ2)(1− p)

]∣∣ ≥ 1− p > 0.

This shows ∂
∂γ1

F (γ1, γ2, p) > 0. It follows from (v) that also ∂
∂γ2

F (γ1, γ2, p) > 0 for all (γ1, γ2, p) ∈ D.

Now we can prove Theorem 1.

Proof of Theorem 1:

Let

α1 := Pr
[
Ỹ = 1

∣∣Y = 1, A = 0
]
, β1 := Pr

[
Ỹ = 1

∣∣Y = 1, A = 1
]
,

α2 := Pr
[
Ỹ = 1

∣∣Y = −1, A = 0
]
, β2 := Pr

[
Ỹ = 1

∣∣Y = −1, A = 1
]
.

(8)

Then

BiasY=+1(Ỹ ) = |α1 − β1|, BiasY=−1(Ỹ ) = |α2 − β2|. (9)

When computing the probabilities p−1,0, p−1,1, p1,0, p1,1 for Ŷcorr, we have to replace Pr
[
Y = y,A = a, Ỹ = ỹ

]
and Pr

[
Ỹ = 1

∣∣Y = y,A = a
]
by Pr

[
Y = y,Ac = a, Ỹ = ỹ

]
and Pr

[
Ỹ = 1

∣∣Y = y,Ac = a
]
, respectively, in the

linear program (2). Note that the assumption Pr [Ac 6= A |A = a, Y = y] < 1 for y ∈ {−1,+1} and a ∈ {0, 1}
implies that Pr[Y = y,Ac = a] > 0 for y ∈ {−1,+1} and a ∈ {0, 1}. It is

Pr
[
Y = y,Ac = a, Ỹ = ỹ

]
= Pr

[
Ỹ = ỹ

∣∣Y = y,Ac = a
]
· Pr [Y = y,Ac = a]

and because of Assumptions I (a), for a ∈ {0, 1},

Pr
[
Ỹ = 1

∣∣Y = 1, Ac = a
]

=β1 · Pr [A = 1 |Y = 1, Ac = a] + α1 · (1− Pr [A = 1 |Y = 1, Ac = a]) ,

Pr
[
Ỹ = 1

∣∣Y = −1, Ac = a
]

=β2 · Pr [A = 1 |Y = −1, Ac = a] + α2 · (1− Pr [A = 1 |Y = −1, Ac = a]) .

Hence, we end up with the new linear program

min
p1,0, p1,1,

p−1,0, p−1,1∈[0,1]

∑
y∈{−1,+1}
a∈{0,1}

{
Pr
[
Y = −1, Ac = a, Ỹ = y

]
− Pr

[
Y = 1, Ac = a, Ỹ = y

]}
· py,a

s.t. {β1 · Pr[A = 1 |Y = 1, Ac = 0] + α1 · (1− Pr[A = 1 |Y = 1, Ac = 0])} · p1,0
+ {1− β1 · Pr[A = 1 |Y = 1, Ac = 0]− α1 · (1− Pr[A = 1 |Y = 1, Ac = 0])} · p−1,0 =

{β1 · Pr[A = 1 |Y = 1, Ac = 1] + α1 · (1− Pr[A = 1 |Y = 1, Ac = 1])} · p1,1
+ {1− β1 · Pr[A = 1 |Y = 1, Ac = 1]− α1 · (1− Pr[A = 1 |Y = 1, Ac = 1])} · p−1,1,

{β2 · Pr[A = 1 |Y = −1, Ac = 0] + α2 · (1− Pr[A = 1 |Y = −1, Ac = 0])} · p1,0
+ {1− β2 · Pr[A = 1 |Y = −1, Ac = 0]− α2 · (1− Pr[A = 1 |Y = −1, Ac = 0])} · p−1,0 =

{β2 · Pr[A = 1 |Y = −1, Ac = 1] + α2 · (1− Pr[A = 1 |Y = −1, Ac = 1])} · p1,1
+ {1− β2 · Pr[A = 1 |Y = −1, Ac = 1]− α2 · (1− Pr[A = 1 |Y = −1, Ac = 1])} · p−1,1.

(10)
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Some elementary calculations yield that the objective function ∆ = ∆(p1,0, p1,1, p−1,0, p−1,1) in (10) equals

∆ = Pr [Y = −1, Ac = 0]
[
(p1,0 − p−1,0) · {α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 0]}+ p−1,0

]
+ Pr [Y = −1, Ac = 1]

[
(p1,1 − p−1,1) · {α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 1]}+ p−1,1

]
− Pr [Y = 1, Ac = 0]

[
(p1,0 − p−1,0) · {α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 0]}+ p−1,0

]
− Pr [Y = 1, Ac = 1]

[
(p1,1 − p−1,1) · {α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 1]}+ p−1,1

]
.

(11)

and that the constraints are equivalent to

(p1,0 − p−1,0) · {α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 0]}+ p−1,0

= (p1,1 − p−1,1) · {α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 1]}+ p−1,1,

(p1,0 − p−1,0) · {α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 0]}+ p−1,0

= (p1,1 − p−1,1) · {α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 1]}+ p−1,1.

(12)

Let

e := α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 0] , (13)
f := α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 1] , (14)
g := α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 0] , (15)
h := α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 1] . (16)

Then the constraints are

(p1,0 − p−1,0) · e+ p−1,0 = (p1,1 − p−1,1) · f + p−1,1, (17)
(p1,0 − p−1,0) · g + p−1,0 = (p1,1 − p−1,1) · h+ p−1,1.

Because of the constraints we have

∆ = p−1,0 · {Pr[Y = −1]− Pr[Y = 1]}+ (p1,0 − p−1,0) · u
= p−1,1 · {Pr[Y = −1]− Pr[Y = 1]}+ (p1,1 − p−1,1) · v,

(18)

where

u := g · Pr[Y = −1]− e · Pr[Y = 1], v := h · Pr[Y = −1]− f · Pr[Y = 1]. (19)

If u = 0 or v = 0, one optimal solution to (10) is p1,0 = p1,1 = p−1,0 = p−1,1 = 1 or p1,0 = p1,1 = p−1,0 = p−1,1 = 0,
depending on whether Pr[Y = −1] ≤ Pr[Y = 1] or Pr[Y = −1] > Pr[Y = 1]. In this case the derived equalized
odds predictor Ŷcorr is the constant predictor Ŷcorr = +1 or Ŷcorr = −1 with BiasY=y(Ŷcorr) = 0, y ∈ {−1,+1},
and (4) is true.

So let us assume that u 6= 0 and v 6= 0. Let θ := Pr[Y = −1]− Pr[Y = 1]. Because of

Pr
[
Ŷcorr = 1

∣∣Y = 1, A = 0
]

= p1,0 · α1 + p−1,0 · (1− α1),

Pr
[
Ŷcorr = 1

∣∣Y = 1, A = 1
]

= p1,1 · β1 + p−1,1 · (1− β1),

Pr
[
Ŷcorr = 1

∣∣Y = −1, A = 0
]

= p1,0 · α2 + p−1,0 · (1− α2),

Pr
[
Ŷcorr = 1

∣∣Y = −1, A = 1
]

= p1,1 · β2 + p−1,1 · (1− β2),

we have

BiasY=+1(Ŷcorr) = |α1 · (p1,0 − p−1,0)− β1 · (p1,1 − p−1,1) + p−1,0 − p−1,1| ,

BiasY=−1(Ŷcorr) = |α2 · (p1,0 − p−1,0)− β2 · (p1,1 − p−1,1) + p−1,0 − p−1,1| .
(20)
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It is

BiasY=+1(Ŷcorr)
(18)
=

∣∣∣∣∆α1

u
− ∆β1

v
+ p−1,0

(
1− θα1

u

)
− p−1,1

(
1− θβ1

v

)∣∣∣∣
=

∣∣∣∣∆α1

u
− ∆β1

v
+ p−1,0

(
1− θe

u

)
− p−1,1

(
1− θf

v

)
+ p−1,0

θ(e− α1)

u
− p−1,1

θ(f − β1)

v

∣∣∣∣ .
From (17) and (18) we obtain that

p−1,0

(
1− θe

u

)
− p−1,1

(
1− θf

v

)
=

∆f

v
− ∆e

u
.

From this we get that

BiasY=+1(Ŷcorr) =

∣∣∣∣(∆

u
− p−1,0θ

u

)
(α1 − e)−

(
∆

v
− p−1,1θ

v

)
(β1 − f)

∣∣∣∣
(13)&(14)

= |α1 − β1| ·
∣∣∣∣(∆

u
− p−1,0θ

u

)
· Pr[A = 1 |Y = 1, Ac = 0] +

(
∆

v
− p−1,1θ

v

)
· Pr[A = 0 |Y = 1, Ac = 1]

∣∣∣∣
(18)
= |α1 − β1| · |(p1,0 − p−1,0) · Pr[A = 1 |Y = 1, Ac = 0] + (p1,1 − p−1,1) · Pr[A = 0 |Y = 1, Ac = 1]|
≤ |α1 − β1| · {Pr[A = 1 |Y = 1, Ac = 0] + Pr[A = 0 |Y = 1, Ac = 1]} ,

(21)

where the last inequality follows from the triangle inequality and |p1,0− p−1,0| ≤ 1 and |p1,1− p−1,1| ≤ 1 because
of p−1,0, p−1,1, p1,0, p1,1 ∈ [0, 1].

Similarly, we obtain

BiasY=−1(Ŷcorr) ≤ |α2 − β2| · {Pr[A = 1 |Y = −1, Ac = 0] + Pr[A = 0 |Y = −1, Ac = 1]} . (22)

It is, for y ∈ {−1,+1},

Pr[A = 1 |Y = y,Ac = 0] =
Pr[A = 1, Ac = 0 |Y = y]

Pr[Ac = 0 |Y = y]

=
Pr[Ac = 0 |Y = y,A = 1] · Pr[A = 1 |Y = y]

Pr[Ac = 0 |Y = y,A = 1] · Pr[A = 1 |Y = y] + Pr[Ac = 0 |Y = y,A = 0] · Pr[A = 0 |Y = y]

(23)

and Pr[A = 0 |Y = y,Ac = 1] = 1− Pr[A = 1 |Y = y,Ac = 1] with

Pr[A = 1 |Y = y,Ac = 1] =
Pr[A = 1, Ac = 1 |Y = y]

Pr[Ac = 1 |Y = y]

=
Pr[Ac = 1 |Y = y,A = 1] · Pr[A = 1 |Y = y]

Pr[Ac = 1 |Y = y,A = 1] · Pr[A = 1 |Y = y] + Pr[Ac = 1 |Y = y,A = 0] · Pr[A = 0 |Y = y]
.

(24)

Combining (9), (21), (22), (23), (24) and Lemma 2 yields Theorem 1. �

We prove Lemma 1 by means of counterexamples.

Proof of Lemma 1:

• Assumptions I (a) violated & Assumptions I (b) satisfied:

Assume that

Pr [Y = y,A = a] =
1

4
, y ∈ {−1,+1}, a ∈ {0, 1},

Pr
[
Ỹ = 1

∣∣Y = 1, A = 0
]

= 0.65, Pr
[
Ỹ = 1

∣∣Y = 1, A = 1
]

= 0.6,

Pr
[
Ỹ = 1

∣∣Y = −1, A = 0
]

= 0, Pr
[
Ỹ = 1

∣∣Y = −1, A = 1
]

= 0

(25)
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and that

Pr
[
Ac 6= A

∣∣Y = 1, A = 0, Ỹ = −1
]

= 0.15, Pr
[
Ac 6= A

∣∣Y = y,A = a, Ỹ = ỹ
]

= 0, (y, a, ỹ) 6= (1, 0,−1).

Then Pr
[
Ac 6= A

∣∣Y = 1, A = 0
]

= 0.15 · 0.35 = 0.0525 and Pr
[
Ac 6= A

∣∣Y = y,A = a
]

= 0,
(y, a) 6= (1, 0), and Assumptions I (b) is satisfied. However, Assumptions I (a) is not satisfied since
Pr
[
Ac = 1

∣∣Y = 1, A = 0, Ỹ = −1
]
6= Pr

[
Ac = 1

∣∣Y = 1, A = 0, Ỹ = 1
]
. It is BiasY=+1(Ỹ ) = 0.05 and

BiasY=−1(Ỹ ) = 0.

It is straightforward to compute all probabilities Pr
[
Y = y,Ac = a, Ỹ = ỹ

]
and Pr

[
Ỹ = 1

∣∣Y = y,Ac = a
]

and solve the the linear program (2) with Pr
[
Y = y,A = a, Ỹ = ỹ

]
and Pr

[
Ỹ = 1

∣∣Y = y,A = a
]
replaced

by Pr
[
Y = y,Ac = a, Ỹ = ỹ

]
and Pr

[
Ỹ = 1

∣∣Y = y,Ac = a
]
, respectively. In doing so, one ends up with an

optimal solution (p∗−1,0, p
∗
−1,1, p

∗
1,0, p

∗
1,1) ≈ (0, 0, 0.83, 1). The bias of the equalized odds predictor Ŷcorr for the

class Y = +1 is

BiasY=+1(Ŷcorr) =
∣∣∣Pr
[
Ỹ = 1

∣∣Y = 1, A = 0
]
· (p∗1,0 − p∗−1,0)− Pr

[
Ỹ = 1

∣∣Y = 1, A = 1
]
· (p∗1,1 − p∗−1,1) + p∗−1,0 − p∗−1,1

∣∣∣
≈ |0.65 · 0.83− 0.6| ≈ 0.06 > 0.05 = BiasY=+1(Ỹ ).

• Assumptions I (a) satisfied & Assumptions I (b) violated:

The top left plot of Figure 1 in Section 5.1 provides an example where Assumptions I (a) is satisfied and for
Pr
[
Ac 6= A

∣∣Y = 1, A = 0
]

= Pr
[
Ac 6= A

∣∣Y = 1, A = 1
]
> 0.5 (and hence Assumptions I (b) being violated) we

have BiasY=+1(Ŷcorr) > BiasY=+1(Ỹ ). �

Next, we prove Theorem 2.

Proof of Theorem 2:

We use the same notation as in the proof of Theorem 1. In particular, let α1, α2, β1, β2 be the probabilities
defined in (8). Since we assume Assumption II to hold, we have α1 > α2 and β1 > β2. Furthermore, without loss
of generality, we may assume that α2β1 ≥ α1β2 (otherwise, we can simply swap the role of the groups A = 0 and
A = 1 so that this condition holds).

Let γ := Pr [Ac 6= A |A = a, Y = y], which does not depend on the values of a and y, be the perturbation
probability. In the training phase for Ŷcorr we have γ = γ0 for some γ0 ∈ (0, 12 ], and in the training phase for
Ŷtrue we have γ = 0.

Note that we have Pr[Y = +1] = Pr[Y = −1] = 1
2 . It follows from (13) to (19), (23) and (24) that for any fixed

value of the perturbation probability γ ∈ [0, 1] the equalized odds method solves the following linear program:

min
p1,0,p1,1,p−1,0,p−1,1∈[0,1]

∆

s.t. (p1,0 − p−1,0) · {(1− γ)α1 + γβ1}+ p−1,0 = (p1,1 − p−1,1) · {(1− γ)β1 + γα1}+ p−1,1,

(p1,0 − p−1,0) · {(1− γ)α2 + γβ2}+ p−1,0 = (p1,1 − p−1,1) · {(1− γ)β2 + γα2}+ p−1,1,

(26)

where

∆ = (p1,0 − p−1,0)u = (p1,1 − p−1,1)v (27)

with

u =
1

2
[(1− γ)(α2 − α1) + γ(β2 − β1)] , v =

1

2
[(1− γ)(β2 − β1) + γ(α2 − α1)] . (28)
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Note that u < 0 and v < 0 for any γ ∈ [0, 1] because of α1 > α2 and β1 > β2. Since p1,0 = p1,1 = p−1,0 = p−1,1 = 0
satisfies the constraints in (26) and has objective value ∆ = 0, in an equalized odds solution (i.e., an optimal
solution to (26)) we must have ∆ ≤ 0, p−1,0 ≤ p1,0 and p−1,1 ≤ p1,1 for any γ ∈ [0, 1]. Furthermore, for γ ∈ [0, 12 ]
we obtain from the first constraint in (26) that

p−1,0 − p−1,1 = (p1,1 − p−1,1) · {(1− γ)β1 + γα1} − (p1,0 − p−1,0) · {(1− γ)α1 + γβ1}
(27)
=

∆

v
((1− γ)β1 + γα1)− ∆

u
((1− γ)α1 + γβ1)

=
∆

uv

(
β1((1− γ)u− γv)− α1((1− γ)v − γu)

)
(28)
=

∆(1− 2γ)

2uv
(α2β1 − α1β2)

≤ 0,

(29)

where the last inequality holds because of ∆ ≤ 0, 1 − 2γ ≥ 0, u < 0, v < 0 and α2β1 ≥ α1β2. Hence, in an
equalized odds solution, for any γ ∈ [0, 1/2], we must have p−1,0 ≤ p−1,1 and p−1,0 = min{p1,0, p1,1, p−1,0, p−1,1}.
It is straightforward to check that the error Error(Ŷ ) of a derived equalized odds predictor Ŷ with probabilities
p1,0, p1,1, p−1,0, p−1,1 is given by

Error(Ŷ ) =
1

4
· {(p1,0 − p−1,0)(α2 − α1) + (p1,1 − p−1,1)(β2 − β1)}+

1

2
(30)

and hence is invariant under translations of the probabilities (compare with the end of Section 2). Hence, without
loss of generality, we may assume that p−1,0 = 0. Substituting in the expressions computed above we get that

p1,0
(27)
=

∆

u
, (31)

p−1,1
(29)
=

∆(1− 2γ)

2uv
(α1β2 − α2β1), (32)

p1,1
(27)
=

∆

v
+ p−1,1 = ∆

[
1

v
+

(1− 2γ)(α1β2 − α2β1)

2uv

]
. (33)

The value of ∆ must be the smallest value such that all these three probabilities are in [0, 1]. It follows that in
an equalized odds solution, for any γ ∈ [0, 12 ], either p1,0 or p1,1 (or both) equals 1 and this depends on the sign
of the difference

p1,0 − p1,1
(31)&(33)

= ∆
( 1

u
− 1

v
− (1− 2γ)(α1β2 − α2β1)

2uv

)
(28)
=

∆(1− 2γ)

2uv

(
β2 − β1 + α1 − α2 + α2β1 − α1β2

)
.

(34)

Importantly, the difference (34) has the same sign for any γ ∈ [0, 12 ]. We distinguish two cases depending on
whether β2 − β1 + α1 − α2 + α2β1 − α1β2 is smaller than zero or not:

Case 1: β2 − β1 + α1 − α2 + α2β1 − α1β2 < 0. In this case, for γ ∈ [0, 12 ], the difference (34) is non-negative and
we have p1,0 = 1.

Let p01,0, p0−1,0, p01,1, p0−1,1 be an equalized odds solution for γ = 0 (corresponding to Ŷtrue) and p
γ0
1,0, p

γ0
−1,0, p

γ0
1,1, p

γ0
−1,1

be an equalized odds solution for γ = γ0 ∈ (0, 12 ] (corresponding to Ŷcorr). It is p01,0 = pγ01,0 = 1 and p0−1,0 =

pγ0−1,0 = 0. It follows from (30) that

Error(Ŷtrue)− Error(Ŷcorr) =
1

4
· {(p01,1 − p0−1,1)(β2 − β1)− (pγ01,1 − p

γ0
−1,1)(β2 − β1)}.

Using the fact that (p01,0 − p0−1,0)(α2 − α1) = (p01,1 − p0−1,1)(β2 − β1), which follows from subtracting the first
from the second constraint in (26) with γ = 0, we get that

Error(Ŷtrue)− Error(Ŷcorr) =
1

4
· {(α2 − α1)− (pγ01,1 − p

γ0
−1,1)(β2 − β1)}.

We write u(γ0) and v(γ0) for u or v with γ = γ0. Because of pγ01,0 − p
γ0
−1,0 = 1, we have that

pγ01,1 − p
γ0
−1,1

(27)
=

u(γ0)

v(γ0)
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and hence

Error(Ŷtrue)− Error(Ŷcorr) =
1

4
· {(α2 − α1)− u(γ0)

v(γ0)
(β2 − β1)} (28)

=
γ0
4

(α2 − α1)2 − (β2 − β1)2

2v(γ0)
.

Because of β2 − β1 + α1 − α2 + α2β1 − α1β2 < 0 and α2β1 − α1β2 ≥ 0, we have β1 − β2 > α1 − α2 > 0, and
because of v(γ0) < 0 it follows that

Error(Ŷtrue)− Error(Ŷcorr) > 0

for all γ0 ∈ (0, 12 ].

Case 2: β2 − β1 + α1 − α2 + α2β1 − α1β2 ≥ 0. In this case, for γ ∈ [0, 12 ], the difference (34) is non-positive and
we have p1,1 = 1.

As before in Case 1, let p01,0, p0−1,0, p01,1, p0−1,1 be an equalized odds solution for γ = 0 (corresponding to Ŷtrue) and
pγ01,0, p

γ0
−1,0, p

γ0
1,1, p

γ0
−1,1 be an equalized odds solution for γ = γ0 ∈ (0, 12 ] (corresponding to Ŷcorr). It is p01,1 = pγ01,1 = 1

and p0−1,0 = pγ0−1,0 = 0. Similarly as in Case 1 we obtain that

Error(Ŷtrue)− Error(Ŷcorr) =
1

4

{
2(1− p0−1,1)(β2 − β1)− (1− pγ0−1,1)(β2 − β1)− v(γ0)

u(γ0)
(1− pγ0−1,1)(α2 − α1)

}
. (35)

When p1,1 = 1, we obtain from (33) that

∆ =
2uv

2u+ (1− 2γ)(α1β2 − α2β1)
.

This implies that

1− pγ0−1,1

(32)
=

2u(γ0)

2u(γ0) + (1− 2γ0)(α1β2 − α2β1)
(36)

and

1− p0−1,1
(36)&(28)

=
α2 − α1

α2 − α1 + α1β2 − α2β1
.

Substituting these in (35) we get that

Error(Ŷtrue)− Error(Ŷcorr) =
1

4

{
2

(β2 − β1)(α2 − α1)

α2 − α1 + α1β2 − α2β1
− (β2 − β1)2u(γ0) + (α2 − α1)2v(γ0)

2u(γ0) + (1− 2γ0)(α1β2 − α2β1)

}
=

1

4

{
2

(β2 − β1)(α2 − α1)

α2 − α1 + α1β2 − α2β1
− γ0(β2 − β1 − α2 + α1)2 + 2(β2 − β1)(α2 − α1)

2u(γ0) + (1− 2γ0)(α1β2 − α2β1)

}
=

1

4

{
2

(β2 − β1)(α2 − α1)

α2 − α1 + α1β2 − α2β1
+
γ0(β2 − β1 − α2 + α1)2 + 2(β2 − β1)(α2 − α1)

−2u(γ0) + (1− 2γ0)(α2β1 − α1β2)

}
.

(37)

Notice that in the second term the denominator is positive. Hence, we get that

γ0(β2 − β1 − α2 + α1)2 + 2(β2 − β1)(α2 − α1)

−2u(γ0) + (1− 2γ0)(α2β1 − α1β2)
≥ 2(β2 − β1)(α2 − α1)

−2u(γ0) + (1− 2γ0)(α2β1 − α1β2)
,

where for γ0 ∈ (0, 12 ] equality holds if and only if α1 − α2 = β1 − β2. Next, we have that

− 2u(γ0) + (1− 2γ0)(α2β1 − α1β2) = (1− γ0)(α1 − α2) + γ0(β1 − β2) + (1− 2γ0)(α2β1 − α1β2)

= α1 − α2 + (1− γ0)(α2β1 − α1β2)− γ0(α1 − α2 + β2 − β1 + α2β1 − α1β2).

Because of γ0 > 0, β2 − β1 + α1 − α2 + α2β1 − α1β2 ≥ 0 and α2β1 − α1β2 ≥ 0 we obtain that

−2u(γ0) + (1− 2γ0)(α2β1 − α1β2) ≤ α1 − α2 + (1− γ0)(α2β1 − α1β2)

≤ α1 − α2 + (α2β1 − α1β2),
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where for γ0 > 0 equality holds if and only if α2β1 = α1β2 and α1 − α2 = β1 − β2. We conclude that

γ0(β2 − β1 − α2 + α1)2 + 2(β2 − β1)(α2 − α1)

−2u(γ0) + (1− 2γ0)(α2β1 − α1β2)
≥ 2

(β2 − β1)(α2 − α1)

α1 − α2 + α2β1 − α1β2
,

where equality holds if and only if α2β1 = α1β2 and α1−α2 = β1−β2. It is not hard to see that α1−α2 = β1−β2
and α2β1 = α1β2 is equivalent to α1 = β1 and α2 = β2. It follows from (37) that

Error(Ŷtrue)− Error(Ŷcorr) ≥ 0,

where equality holds if and only if α1 = β1 and α2 = β2.

Note that in Case 1 we can never have α1 = β1 and α2 = β2 and that α1 = β1 and α2 = β2 is equivalent to
BiasY=+1(Ỹ ) = BiasY=−1(Ỹ ) = 0 (compare with (9)). Hence, we have proved Theorem 2. �

A.3 Long Version of Section 4 on Related Work

By now, there is a huge body of work on fairness in ML, mainly in supervised learning (e.g., Kamiran and
Calders, 2012; Kamishima et al., 2012; Zemel et al., 2013; Feldman et al., 2015; Hardt et al., 2016; Kleinberg et al.,
2017; Pleiss et al., 2017; Woodworth et al., 2017; Zafar et al., 2017a,b; Agarwal et al., 2018; Donini et al., 2018;
Menon and Williamson, 2018; Xu et al., 2018; Kallus and Zhou, 2019), but more recently also in unsupervised
learning (e.g., Chierichetti et al., 2017; Celis et al., 2018; Schmidt et al., 2018; Samadi et al., 2018; Kleindessner
et al., 2019a,b; Tantipongpipat et al., 2019). All of these papers assume to know the true value of the protected
attribute for every data point. We will discuss some papers not making this assumption below. First we discuss
the pieces of work related to the fairness notion of equalized odds, which is central to our paper and one of the
most prominent fairness notions in the ML literature (see Verma and Rubin, 2018, for a summary of the various
notions and a citation count).

Equalized Odds Our paper builds upon the EO postprocessing method of Hardt et al. (2016) as described
in Section 2. Hardt et al. also show how to derive an optimal predictor satisfying the EO criterion based
on a biased score function rather than a binary classifier Ỹ . However, in this case the resulting optimization
problem is no longer a linear program and it is unclear how to extend our analysis to it. Concurrently with
the paper by Hardt et al., the fairness notion of EO has also been proposed by Zafar et al. (2017b) under the
name of disparate mistreatment. Zafar et al. incorporate a proxy for the EO criterion into the training phase
of a decision boundary-based classifier, which leads to a convex-concave optimization problem and does not
come with any theoretical guarantees. The seminal paper of Kleinberg et al. (2017) proves that, except for
trivial cases, a classifier cannot satisfy the EO criterion and the fairness notion of calibration within groups at
the same time. Subsequently, Pleiss et al. (2017) show how to achieve calibration within groups and a relaxed
form of the EO constraints simultaneously. Woodworth et al. (2017) show that postprocessing a Bayes optimal
unfair classifier in order to obtain a fair classifier (fair / unfair with respect to the notion of EO) can be highly
suboptimal and propose a two-step procedure as remedy. In the first step, some approximate fairness constraints
are incorporated into the empirical risk minimization framework to get a classifier that is fair to a non-trivial
degree, and in the second step, the EO postprocessing method of Hardt et al. (2016) is used to obtain the final
classifier. This procedure is computationally intractable, however, and Woodworth et al. propose the notion of
equalized correlations as a relaxation of the notion of EO, which leads to a computationally tractable learning
problem. We also want to mention the critical work of Corbett-Davies and Goel (2018), which points out some
limitations of prominent group fairness notions based on inframarginal statistics, including equalized odds.

Fairness with Only Limited Information about the Protected Attribute Dwork et al. (2012) phrased
the notion of individual fairness mentioned in Section 1, according to which similar data points (as measured
by a given metric) should be treated similarly by a randomized classifier. Only recently there have been works
studying how to satisfy group fairness criteria when having only limited information about the protected attribute.
Most important to mention are the works by Gupta et al. (2018) and Lamy et al. (2019). Gupta et al. (2018)
empirically show that when the protected attribute is not known, improving a fairness metric for a proxy of the
true attribute can improve the fairness metric for the true attribute. Our paper provides theoretical evidence for
their observations. Lamy et al. (2019) study a scenario related to ours and consider training a fair classifier when
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the protected attribute is corrupted according to a mutually contaminated model (Scott et al., 2013). In their
case, training is done by means of constrained empirical risk minimization and requires to solve a non-convex
optimization problem. Similarly to our Theorem 1, they show that the bias of a classifier trained with the
corrupted attribute grows in a certain way with the amount of corruption (where the bias is defined according
to the fairness notions of EO or demographic parity). However, they do not investigate the error of such a
classifier. Importantly, Lamy et al. only consider classifiers that do not use the protected attribute when making
a prediction for a test point. Also important to mention is the paper by Hashimoto et al. (2018), which uses
distributionally robust optimization in order to minimize the worst-case misclassification risk in a χ2-ball around
the data generating distribution. In doing so, under the assumption that the resulting non-convex optimization
problem was solved exactly, one provably controls the risk of each protected group without knowing which group
a data point belongs to. Hashimoto et al. also show that their approach helps to avoid disparity amplification
in a sequential classification setting in which a group’s fraction in the data decreases as its misclassification
risk increases. As an application of our results, in Section 5.3 / Appendix A.9 we experimentally compare the
approach of Hashimoto et al. to the EO method with perturbed attribute information in such a sequential setting.
There are a couple of more works that we want to discuss. Botros and Tomczak (2018) propose a variational
autoencoder for learning fair representations (Zemel et al., 2013; Louizos et al., 2016) that also works when the
protected attribute is only partially observed. Kilbertus et al. (2018) provide an approach to fair classification
when users to be classified are not willing to share their protected attribute but only an encrypted version of
it. Their approach assumes the existence of a regulator with fairness aims and is based on secure multi-party
computation. Chen et al. (2019) study the problem of assessing the demographic disparity of a classifier when the
protected attribute is unknown and has to be estimated from data. Coston et al. (2019) study fair classification
in a covariate shift setting where the attribute is only available in the source domain but not in the target
domain (or the other way round). Finally, we want to mention the recent line of work on rich subgroup fairness
(Hébert-Johnson et al., 2018; Kearns et al., 2018, 2019). This notion falls between the categories of individual and
group fairness in that it requires some statistic to be similar for a large (or even infinite) number of subgroups,
which are defined via a function class rather than a protected attribute.

A.4 Detailed Expressions Required for the Experiments of Section 5.1

We need to solve the linear program

min
p1,0, p1,1,

p−1,0, p−1,1∈[0,1]

∑
y∈{−1,+1}
a∈{0,1}

{
Pr
[
Y = −1, Ac = a, Ỹ = y

]
− Pr

[
Y = 1, Ac = a, Ỹ = y

]}
· py,a

s.t. Pr
[
Ỹ = 1

∣∣Y = y,Ac = 0
]
· p1,0 + Pr

[
Ỹ = −1

∣∣Y = y,Ac = 0
]
· p−1,0 =

Pr
[
Ỹ = 1

∣∣Y = y,Ac = 1
]
· p1,1 + Pr

[
Ỹ = −1

∣∣Y = y,Ac = 1
]
· p−1,1, y ∈ {−1, 1},

(38)

where we have to express all coefficients in terms of the problem parameters Pr[Y = y,A = a] and
Pr
[
Ỹ = 1|Y = y,A = a

]
and the perturbation probabilities Pr [Ac 6= A|Y = y,A = a]. As in Section 5.1, we let

γy,a := Pr [Ac 6= A|Y = y,A = a], y ∈ {−1,+1}, a ∈ {0, 1}. From (11) to (16) in the proof of Theorem 1 we
obtain that the objective function equals

Pr [Y = −1, Ac = 0] · {p1,0 · g + p−1,0 · (1− g)}+ Pr [Y = −1, Ac = 1] · {p1,1 · h+ p−1,1 · (1− h)}
− Pr [Y = 1, Ac = 0] · {p1,0 · e+ p−1,0 · (1− e)} − Pr [Y = 1, Ac = 1] · {p1,1 · f + p−1,1 · (1− f)}

and that the constraints are equivalent to
p1,0 · e+ p−1,0 · (1− e) = p1,1 · f + p−1,1 · (1− f),

p1,0 · g + p−1,0 · (1− g) = p1,1 · h+ p−1,1 · (1− h)

with
e := α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 0] , f := α1 + (β1 − α1) · Pr [A = 1 |Y = 1, Ac = 1] ,

g := α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 0] , h := α2 + (β2 − α2) · Pr [A = 1 |Y = −1, Ac = 1]

and α1, β1, α2, β2 defined in (8). It is

Pr [Y = y,Ac = a] =
∑

a′∈{0,1}

Pr
[
Ac = a |Y = y,A = a′

]︸ ︷︷ ︸
γy,a′ or 1−γy,a′

·Pr
[
Y = y,A = a′

]
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and from (23) and (24) in the proof of Theorem 1 we obtain that

Pr[A = 1 |Y = y,Ac = 0] =
γy,1 · Pr[A = 1, Y = y]

γy,1 · Pr[A = 1, Y = y] + (1− γy,0) · Pr[A = 0, Y = y]
,

Pr[A = 1 |Y = y,Ac = 1] =
(1− γy,1) · Pr[A = 1, Y = y]

(1− γy,1) · Pr[A = 1, Y = y] + γy,0 · Pr[A = 0, Y = y]
.

Hence, we have written all coefficients of (38) in terms of the problem parameters and perturbation probabilities.

After solving (38) and obtaining a solution p1,0, p1,1, p−1,0, p−1,1, we need to compute the bias and the error of
the equalized odds predictor Ŷ that is based on p1,0, p1,1, p−1,0, p−1,1. From (20) in the proof of Theorem 1 we
obtain that

BiasY=+1 = |α1 · (p1,0 − p−1,0)− β1 · (p1,1 − p−1,1) + p−1,0 − p−1,1| ,
BiasY=−1 = |α2 · (p1,0 − p−1,0)− β2 · (p1,1 − p−1,1) + p−1,0 − p−1,1| .

It is easy to verify that the error of Ŷ is given by (recall that the error refers to the test error and that in the
test phase Ŷ gets to see the true protected attribute)

Error(Ŷ ) = Pr[Y = 1] +
{
α2 Pr[Y = −1, A = 0]− α1 Pr[Y = 1, A = 0]

}
· p1,0

+
{
β2 Pr[Y = −1, A = 1]− β1 Pr[Y = 1, A = 1]

}
· p1,1

+
{

Pr[Y = −1, A = 0]− Pr[Y = 1, A = 0]− α2 Pr[Y = −1, A = 0] + α1 Pr[Y = 1, A = 0]
}
· p−1,0

+
{

Pr[Y = −1, A = 1]− Pr[Y = 1, A = 1]− β2 Pr[Y = −1, A = 1] + β1 Pr[Y = 1, A = 1]
}
· p−1,1.

(39)

Finally, we have

BiasY=+1(Ỹ ) = |α1 − β1|, BiasY=−1(Ỹ ) = |α2 − β2|

and (simply set p1,0 = p1,1 = 1 and p−1,0 = p−1,1 = 0 in (39))

Error(Ỹ ) = Pr[Y = 1] + α2 Pr[Y = −1, A = 0]− α1 Pr[Y = 1, A = 0] + β2 Pr[Y = −1, A = 1]− β1 Pr[Y = 1, A = 1].

A.5 Problem Parameters for the Experiments of Figure 1

Table 3 provides the problem parameters for the experiments shown in Figure 1.

Table 3: Problem parameters for the experiments of Figure 1.

Plot

Pr[Ỹ = 1 |Y = y,A = a]

(γ1,1, γ−1,0, γ−1,1)
y = 1 y = 1 y = −1 y = −1

a = 0 a = 1 a = 0 a = 1

top left 0.9 0.8 0.4 0.1 (γ1,0, γ1,0, γ1,0)

top right 0.9 0.6 0.7 0.1 (γ1,0,
γ1,0
2 ,

γ1,0
2 )

bottom left 0.9 0.6 0.3 0.8 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 )

bottom right 0.9 0.5 0.0 0.4 (γ1,0, γ1,0, γ1,0)
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A.6 Further Experiments as in Section 5.1

In Figure 3 and Figure 4, we present a number of further experiments as described in Section 5.1. The problem
parameters can be read from the titles of the plots and Tables 4 and 5, respectively. In these tables, we also
report whether inequality (5) is true or not (with Ŷtrue corresponding to Ŷ for γ1,0 = 0, and Ŷcorr corresponding
to Ŷ for γ1,0 = 0.05). We chose the parameters to be presented here in a rather non-systematic way, but such
that (i) the given classifier Ỹ is biased (i.e., BiasY=+1(Ỹ ) > 0), (ii) Ỹ satisfies Assumption II, (iii) we do not only
observe constant curves in a plot (i.e., the EO method does not yield the same classifier for all values of γ1,0),
and (iv) the parameters cover a wide range of settings. In these experiments, we make the same observations as
in the experiments of Section 5.1, and we obtain further confirmation of the main claims of our paper.

Table 4: Problem parameters for the experiments of Figure 3. We use r(γ1,0) := min{2γ1,0, 0.8}.

Plot

Pr[Ỹ = 1 |Y = y,A = a]

(γ1,1, γ−1,0, γ−1,1) (5) is true
y = 1 y = 1 y = −1 y = −1

a = 0 a = 1 a = 0 a = 1

1st row left 0.8 0.9 0.1 0.0 (γ1,0, γ1,0, γ1,0) yes

1st row right 0.8 0.9 0.1 0.0 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 ) yes

2nd row left 0.8 0.9 0.1 0.0 (γ1,0,
γ1,0
2 ,

γ1,0
2 ) yes

2nd row right 0.8 0.9 0.1 0.0 (γ1,0, r(γ1,0), r(γ1,0)) yes

3rd row left 0.9 0.6 0.7 0.1 (γ1,0, γ1,0, γ1,0) yes

3rd row right 0.9 0.4 0.1 0.1 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 ) yes

4th row left 0.7 0.9 0.3 0.0 (γ1,0,
γ1,0
2 ,

γ1,0
2 ) yes

4th row right 0.7 0.9 0.3 0.0 (γ1,0, r(γ1,0), r(γ1,0)) yes

5th row left 0.3 0.8 0.1 0.2 (γ1,0, γ1,0, γ1,0) yes

5th row right 0.3 0.8 0.1 0.2 (γ1,0, γ1,0, γ1,0) yes

6th row left 0.9 0.6 0.4 0.1 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 ) yes

6th row right 0.9 0.6 0.4 0.4 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 ) yes

7th row left 0.5 0.8 0.1 0.4 (γ1,0, γ1,0, γ1,0) no

7th row right 0.6 0.8 0.1 0.4 (γ1,0, r(γ1,0), r(γ1,0)) no

Table 5: Problem parameters for the experiments of Figure 4.

Plot

Pr[Ỹ = 1 |Y = y,A = a]

(γ1,1, γ−1,0, γ−1,1) (5) is true
y = 1 y = 1 y = −1 y = −1

a = 0 a = 1 a = 0 a = 1

1st row left 0.6 0.55 0.1 0.3 (γ1,0, γ1,0, γ1,0) yes

1st row right 0.9 0.6 0.4 0.1 (γ1,0, γ1,0, γ1,0) yes

2nd row left 1.0 0.8 0.0 0.1 (γ1,0, γ1,0, γ1,0) yes

2nd row right 0.4 0.95 0.1 0.15 (γ1,0, γ1,0, γ1,0) yes

3rd row left 0.3 0.7 0.1 0.5 (
γ1,0
2 ,

γ1,0
4 ,

γ1,0
8 ) no

3rd row right 0.35 0.95 0.1 0.15 (γ1,0,
γ1,0
2 ,

γ1,0
2 ) no
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Figure 3: Similar experiments as shown in Figure 1. The dashed blue curve shows BiasY=1(Ŷ ) and the dashed
red curve shows Error(Ŷ ) as a function of the perturbation level. The solid blue line shows BiasY=1(Ỹ ) and the
solid red line shows Error(Ỹ ). The dotted cyan curve shows the upper bound on BiasY=1(Ŷ ) provided in (4) in
Theorem 1. The problem parameters can be read from the titles of the plots and Table 4.
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Figure 4: Similar experiments as shown in Figures 1 and 3. The dashed blue curve shows BiasY=1(Ŷ ) and the
dashed red curve shows Error(Ŷ ) as a function of the perturbation level. The solid blue line shows BiasY=1(Ỹ )

and the solid red line shows Error(Ỹ ). The dotted cyan curve shows the upper bound on BiasY=1(Ŷ ) provided
in (4) in Theorem 1. The problem parameters can be read from the titles of the plots and Table 5.

A.7 Full Table and Additional Statistics of the Experiment on the Drug Consumption Data Set
of Section 5.2

Table 7 provides the complete results for the experiment on the drug consumption data set of Section 5.2. Note
that we do not consider the drugs Alcohol, Caff, Choc and the fictitious drug Semer since for these drugs it is
Pr[Y = 1] > 0.96 or Pr[Y = 1] < 0.01 and there is a significant chance of observing Pr[Y = y,A = a] = 0 for some
y ∈ {−1,+1} and a ∈ {0, 1} when working with only a random third of the data set. However, the equalized
odds postprocessing method requires Pr[Y = y,A = a] > 0 for y ∈ {−1,+1} and a ∈ {0, 1}.

Table 6 provides for each drug the number of runs (out of the 200 in total) in which Assumptions I (b) and
Assumption II, respectively, is satisfied.

Table 6: Number of runs (out of 200) with Assumptions I (b) / Assumption II being satisfied.

.

Amphet Amyl Benzos Cannabis Coke Crack Ecstasy Heroin

Assumptions I (b) 200 196 198 200 199 191 200 166

Assumption II 200 199 200 200 200 164 200 194

Ketamine Legalh LSD Meth Mushroom Nicotine VSA

Assumptions I (b) 169 197 197 164 198 200 197

Assumption II 191 200 200 200 200 200 197
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Table 7: Experiment on the Drug Consumption data set.

Y Pr[Y = 1] BiasY=1/−1(Ỹ ) BiasY=1/−1(Ŷcorr) BiasY=1/−1(Ŷtrue) Error(Ỹ ) Error(Ŷcorr) Error(Ŷtrue) C. I. (6)

Amphet 0.36 0.085 / 0.106 0.076 / 0.065 0.043 / 0.027 0.317 0.339 0.352 0.033

Amyl 0.19 0.08 / 0.032 0.002 / 0.001 0.0 / 0.0 0.226 0.195 0.195 0.032

Benzos 0.41 0.074 / 0.132 0.064 / 0.1 0.041 / 0.034 0.351 0.369 0.39 0.036

Cannabis 0.67 0.092 / 0.052 0.091 / 0.073 0.041 / 0.077 0.214 0.227 0.255 0.032

Coke 0.36 0.075 / 0.107 0.054 / 0.068 0.04 / 0.024 0.331 0.347 0.358 0.032

Crack 0.1 0.075 / 0.025 0.0 / 0.0 0.0 / 0.0 0.129 0.101 0.101 0.039

Ecstasy 0.4 0.095 / 0.117 0.109 / 0.084 0.064 / 0.049 0.294 0.313 0.331 0.032

Heroin 0.11 0.086 / 0.022 0.002 / 0.0 0.0 / 0.0 0.137 0.112 0.112 0.042

Ketamine 0.19 0.067 / 0.043 0.0 / 0.0 0.0 / 0.0 0.236 0.185 0.185 0.035

Legalh 0.4 0.098 / 0.062 0.119 / 0.047 0.071 / 0.044 0.261 0.281 0.289 0.031

LSD 0.29 0.076 / 0.082 0.095 / 0.059 0.061 / 0.032 0.246 0.264 0.279 0.032

Meth 0.22 0.07 / 0.063 0.015 / 0.009 0.003 / 0.002 0.229 0.223 0.223 0.038

Mushroom 0.37 0.084 / 0.106 0.094 / 0.075 0.071 / 0.041 0.279 0.297 0.316 0.031

Nicotine 0.67 0.081 / 0.077 0.041 / 0.047 0.014 / 0.026 0.317 0.329 0.332 0.03

VSA 0.12 0.074 / 0.037 0.0 / 0.0 0.0 / 0.0 0.148 0.12 0.12 0.043
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A.8 Plots for the Experiment of Section 5.2 on the Adult Data Set and some Statistics of the
COMPAS and Adult Data Sets

Figure 5 provides the plots for the experiment of Section 5.2 on the Adult data set. Table 8 provides several
statistics of the COMPAS and Adult data sets (before splitting them into a training and a test set).
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Figure 5: Adult data set. BiasY=+1/−1(Ŷ ) (dashed blue / dashed green) and Error(Ŷ ) (dashed red) as a function
of the perturbation level in four perturbation scenarios. The solid lines show the bias (blue and green) and the
error (red) of Ỹ . The magenta line shows an estimate of (6) and how heavily Assumptions I (a) is violated.

Table 8: Statistics of the real data sets used in Section 5.2.

COMPAS Adult

# records 6150 9768

#(Y=1∧A=0)
# records 0.157 0.470

#(Y=1∧A=1)
# records 0.309 0.294

#(Y=−1∧A=0)
# records 0.242 0.201

#(Y=−1∧A=1)
# records 0.292 0.036

#(Ỹ=1)
# records 0.394 0.795

#(Ỹ 6=Y )
# records 0.344 0.147

#(Ỹ=1∧Y=1∧A=0)
# (Y=1∧A=0) 0.408 0.897

#(Ỹ=1∧Y=1∧A=1)
# (Y=1∧A=1) 0.628 0.968

#(Ỹ=1∧Y=−1∧A=0)
# (Y=−1∧A=0) 0.147 0.374

#(Ỹ=1∧Y=−1∧A=1)
# (Y=−1∧A=1) 0.343 0.398
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Figure 6: Repeated loss minimization experiment of Hashimoto et al. (2018) (Figure 5 in their paper). Not
only the method proposed by Hashimoto et al. (DRO), but also equalized odds postprocessing guarantees high
user retention, and hence high accuracy, for both groups over time, even when the protected attribute is highly
perturbed. The curves and error bars show the accuracy (left) and fraction (right) of the minority group over
time over 10 replicates of the experiment.

A.9 Repeated Loss Minimization Experiment Outlined in Section 5.3

As another application of our results, we compare the equalized odds postprocessing method to the method of
Hashimoto et al. (2018), discussed in Section 4, in the sequential classification setting studied by Hashimoto et al..
In this setting, at each time step a classifier is trained on a data set that comprises several protected groups. The
fraction of a group at time step t depends on the group’s fraction and the classifier’s accuracy for the group at
time step t− 1. Hashimoto et al. show that in such a sequential setting standard empirical risk minimization can
lead to disparity amplification with a group having a very small fraction / classification accuracy after some time
while their proposed method helps to avoid this situation.

In Figure 6 we present an experiment that reproduces and extends the experiment shown in Figure 5 in Hashimoto
et al. (2018).3 Figure 6 shows the classification accuracy (left plot) and the fraction (right plot) of the minority
group over time for various classification strategies. In this experiment, there are only two groups that initially have
the same size, and by minority group we mean the group that has a smaller fraction on average over time (hence,
at some time steps the fraction of the minority group can be greater than one half). The classification strategies
that we consider are all based on logistic regression. ERM refers to a “standard” logistic regression classifier
trained with empirical risk minimization and DRO to a logistic regression classifier trained with distributionally
robust optimization (the method proposed by Hashimoto et al.; see their paper for details). EO refers to the ERM
strategy with equalized odds postprocessing. We consider EO using the true protected attribute and when the
true attribute A is perturbed and replaced by Ac, which is obtained by flipping A to its complementary value with
probabilities γ0 := Pr[Ac 6= A|A = 0] and γ1 := Pr[Ac 6= A|A = 1], respectively, independently for each data point.
We can see from the plots that EO achieves the same goal as DRO, namely avoiding disparity amplification, even
when the protected attribute is highly perturbed (orange and magenta curves with γ0 = γ1 = 0.45 and γ0 = 0.1 /
γ1 = 0.8, respectively). DRO achieves a slightly higher accuracy, at least in this experiment, and other than EO,
it does not require knowledge about the protected attribute at all. However, the underlying optimization problem
for DRO is non-convex, and as a result DRO does not come with theoretical per-step guarantees. Hence, we
believe that in situations where one has access to a perturbed version of the protected attribute and can assume
Assumptions I and II to be satisfied, the equalized odds postprocessing method is a more trustworthy alternative.

3We used the code provided by Hashimoto et al. and extended it without changing any parameters.


