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Supplemental Material

A Experimental details

A.1 Experimental setup

We implemented federated learning algorithms using
the PyTorch framework ((Paszke et al.,|2017)). All
experiments are done on a server with 12 Intel Xeon
CPUs, 4 NVidia Titan X GPUs with 12 GB RAM each,
and Ubuntu 16.04LTS OS. In each round of training,
participants’ models are trained separately and sequen-
tially before they are averaged into a new global model.
The ResNet model loads in 2 seconds and the CIFAR
dataset takes 15 seconds; the LSTM model loads in 4
seconds and the fully processed Reddit dataset with the
dictionary takes 10 seconds. Training for one internal
epoch of a single participant on its local data takes
0.2 and 0.1 seconds for CIFAR and word prediction,
respectively. More epochs of local training would have
added negligible overhead given the model’s load time
because the attacker can preload all variables.

As our baseline, we use the naive approach from Sec-
tion and simply poison the attacker’s training data
with backdoor images. Following (McMahan et al.|
2017), m (the number of participants in each round) is
10 for CIFAR and 100 for word prediction. Our attack
is based on model replacement thus its performance
does not depend on m, but performance of the baseline
attack decreases heavily with larger m (not shown in
the charts).

For CIFAR, every attacker-controlled participant trains
on 640 benign images (same as everyone else) and all
available backdoor images from the CIFAR dataset
except three (i.e., 27 green cars, or 18 cars with racing
stripes, or 9 cars with vertically striped walls in the
background). Following (Chen et al.||2017a| [Liu et al.,
2017), we add Gaussian noise (¢ = 0.05) to the back-
door images to help the model generalize. We train
for ' = 6 local epochs with the initial learning rate
Ir =0.05 (vs. E =2 and Ir = 0.1 for the benign partic-
ipants). We decrease Ir by a factor of 10 every 2 epochs
to prevent catastrophic forgetting ((Kirkpatrick et al.|
2017)). For word prediction, every attacker-controlled
participant trains on 1,000 sentences modified as needed
for the backdoor task, with £ = 10 local epochs and
the initial learning rate lr = 2 (vs. E =2 and lr = 20
for the benign participants). The global learning rates
are 7 = 1 and = 800 for CIFAR and word prediction,

respectively. Therefore, the attacker’s weight-scaling
factor for both tasks is v = % = 100.

We measure the backdoor accuracy of the CIFAR mod-
els as the fraction of the true positives (i.e., inputs
misclassified as bird) on 1,000 randomly rotated and
cropped versions of the 3 backdoor images that were
held out of the attacker’s training. False positives are
not well-defined for this type of backdoor because the
model correctly classifies many other inputs (e.g., ac-
tual birds) as bird, as evidenced by its high main-task
accuracy.

A.2 Attacking at different stages of
convergence

A participant in federated learning cannot control when
it is selected to participate in a round of training. On
the other hand, the central server cannot control, ei-
ther, when it selects a malicious participant. Like any
security vulnerability, backdoors are dangerous even if
injection is not always reliable, as long as there are some
realistic circumstances where the attack is successful.

With continuous training ((Kirkpatrick et al.| 2017}
Nguyen et al.} |2018))), converged models are updated
by participants throughout their deployment. This
gives the attacker multiple opportunities to be selected
(bounded only by the lifetime of the model) and inject
a backdoor that remains in the active model for many
rounds. Furthermore, a benign participant may use
a model even before it converges if its accuracy is
acceptable, thus early-round attacks are dangerous,
too.

Fig.|5|illustrates, for a specific word-prediction back-
door, how long the backdoor lasts when injected at
different rounds. Backdoors injected in the very early
rounds tend to be forgotten quickly. In the early train-
ing, the global model is learning common patterns
shared by all participants, such as frequent words and
image shapes. The aggregated update > (LI —GY)
in Eq. is large and it “overwrites” the weights where
the backdoor is encoded. Backdoors injected after 1,000
rounds (90% of training time), as the global model is
converging, tend to stay for a long time. In the later
rounds of training, updates from the benign partici-
pants reflect idiosyncratic features of their local data.
When aggregated, these updates mostly cancel out and
have less impact on the weights where the backdoor is
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Figure 5: Longevity of the “pasta from Astoria is delicious” backdoor. a) Main-task accuracy of the
global model when training for 10,000 rounds; b) Backdoor accuracy of the global model after single-shot attacks

at different rounds of training.

encoded.

A.3 Varying the scaling factor

Eq. |3| guarantees that when the attacker’s update
Lt = 4(X — GY) + G is scaled by v = 7, the back-
doored model X replaces the global model G¢ after
model averaging. Larger v results in a larger distance
between the attacker’s submission L1 and the global
model G (see Section. Furthermore, the attacker
may not know 7 and n and thus not be able to compute

v directly.

We evaluate our attack with different values of the
scaling factor v for the word-prediction task and 2 =
100. Fig. @shows that the attack causes the next global
model G**! to achieve 100% backdoor accuracy when
v = % = 100. Backdoor accuracy is high even with
v < %, which has the benefit of maintaining a smaller

distance between the submitted model L:H! and the
previous global model G*. Empirically, with a smaller
~ the submitted model LTt achieves higher accuracy
on the main task (see Section. Lastly, scaling by a
large v > 2 does not break the global model’s accuracy,
leaving the attacker room to experiment with scaling.

A.4 Injecting multiple backdoors

We evaluate whether the single-shot attack can inject
multiple backdoors at once on the word-prediction task
and 10 backdoor sentences shown in Fig. b). The
setup is the same as in Section The training inputs
for each backdoor are included in each batch of the
attacker’s training data. Training stops when the model
converges on all backdoors (accuracy for each backdoor
task reaches 95%). With more backdoors, convergence
takes longer. The resulting model is scaled using Eq.

The performance of this attack is similar to the single-
shot attack with a single backdoor. The global model
reaches at least 90% accuracy on all backdoor tasks
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Figure 6: Increasing the scaling factor increases the
backdoor accuracy, as well as the Ly norm of the at-
tacker’s update. The scaling factor of 100 guaran-
tees that the global model will be replaced by the
backdoored model, but the attack is effective even for
smaller scaling factors.

immediately after replacement. Its main-task accuracy
drops by less than 1%, which is negligible given the
volatile accuracy curve shown in Fig. a).

The cost of including more backdoors is the increase
in the Ly norm of the attacker’s update L — G?, as
shown in Fig.

A.5 Pixel-pattern backdoor

In the BadNets attack (Gu et al.,|2017), images with a

pre-defined pixel pattern are classified as birds. This
backdoor can be applied to any image but requires
both training-time and inference-time control over the
images. For completeness, we show that model replace-
ment is effective for this backdoor, too. Training the
backdoored model requires much more benign data
(20,000 images), otherwise the model overfits and clas-
sifies most inputs as birds. Fig. |8| shows that our
attack successfully injects this backdoor into the global

model. By contrast, the poisoning attack of (Gu et al.|
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Figure 7: Multiple backdoors in a single-shot at-
tack. The attacker can inject multiple backdoors in a
single attack, at the cost of increasing the Ls norm of
the submitted update.

2017) fails completely and the backdoor accuracy of
the global model remains at 10%, corresponding to
random prediction since 10% of the dataset are indeed
birds.

Backdoors vs. adversarial examples. Adversarial
transformations exploit the boundaries between the
model’s representations of different classes to produce
inputs that are misclassified by the model. By contrast,
backdoor attacks intentionally shift these boundaries
so that certain inputs are misclassified.

Pixel-pattern backdoors (Gu et al.}|2017) are strictly
weaker than adversarial transformations: the attacker
must poison the model at training time and modify
the input at test time. A purely test-time attack will
achieve the same result: apply an adversarial trans-
formation to the input and an unmodified model will
misclassify it.

Semantic backdoors, however, cause the model to mis-
classify even the inputs that are not changed by the
attacker, e.g., sentences submitted by benign users
or non-adversarial images with certain image-level or
physical features (e.g., colors or attributes of objects).

Semantic backdoors can be more dangerous than adver-
sarial transformations if federated-learning models are
deployed at scale. Consider an attacker who wants a
car-based model for recognizing road signs to interpret
a certain advertisement as a stop sign. The attacker
has no control over digital images taken by the car’s
camera. To apply physical adversarial transformations,
he would need to modify hundreds of physical bill-
boards in a visible way. A backdoor introduced during
training, however, would cause misclassification in all
deployed models without any additional action by the
attacker.

B Effectiveness of Defenses

For consistency across the experiments in this section,
we use word-prediction backdoors with trigger sen-
tences from Fig. b). The word-prediction task is a
compelling real-world application of federated learn-
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Figure 8: Pixel-pattern backdoor. Backdoored
model misclassifies all images with a custom pixel pat-
tern as birds. The results are similar to semantic
backdoors.

ing (Hard et al.||2018) because of the stringent privacy
requirements on the training data and also because the
data is naturally non-i.i.d. across the participants. The
results also extend to image-classification backdoors

(e.g., see Appendices and |C.3).

In this section. we measure the backdoor accuracy for
the global model after a single round of training where
the attacker controls a fixed fraction of the participants,
as opposed to mean accuracy across multiple rounds

in Fig.(d).
B.1 Anomaly detection

The two key requirements for federated learning are:
(1) it should handle participants’ local training data
that are not i.i.d., and (2) these data should remain
confidential and private. Therefore, defenses against
poisoning that estimate the distribution of the training
data in order to limit the influence of outliers (Hayes
and Ohrimenkol|2018}|Qiao and Valiant| 2018} |Stein/
hardt et al.,|2017) are not compatible with federated
learning.

Raw model updates submitted by each participant in
a round of federated learning leak information about
that participant’s training data (Melis et al.| |2019;
Nasr et al.|[2019). To prevent this leakage, federated
learning employs a cryptographic protocol for secure
aggregation (Bonawitz et al., [2017) that provably pro-
tects confidentiality of each model update. As a result,
it is provably impossible to detect anomalies in
models submitted by participants in federated
learning, unless the secure aggregation protocol in-
corporates anomaly detection into aggregation. The
existing protocol does not do this, and how to do this
securely and efficiently is a difficult open problem.

Even if anomaly detection could somehow be incor-
porated into secure aggregation, it would be useful
only insofar as it filtered out backdoored model up-
dates but not the updates from benign participants
trained on non-i.i.d. data. In Appendix@ we show for
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Figure 10: Evading anomaly detection for CI-
FAR image classification.

several plausible anomaly detection methods that the
constrain-and-scale method creates backdoored models
that do not appear anomalous in comparison with the
benign models.

In the rest of this subsection, we investigate how far
the models associated with different backdoors diverge
from the global model. We pick a trigger sentence
(e.g., pasta from Astoria is) and a target word (e.g.,
delicious), train a backdoored model using the train-
and-scale method with v = 80, and compute the norm
of the resulting update L:™ — G*.

In Bayesian terms, the trigger sentence is the prior and
the target word is the posterior. Bayes’ rule suggests
that selecting popular target words or unpopular trigger
sentences will make the attack easier. To estimate word

popularity, we count word occurrences in the Reddit
dataset, but the attacker can also use any large text
corpus. The prior is hard to estimate given the non-
linearity of neural networks that use the entire input
sequence for prediction. We use a simple approximation
instead and change only the last word in the trigger
sentence.

Table shows the norm of the update needed to achieve
high backdoor accuracy after we replace is and deli-
cious in the backdoor with more or less popular words.
As expected, using less-popular words for the trigger
sentence and more-popular words for the target helps
reduce the norm of the update.

Table 1: Word popularity vs. Lo norm of the update

x Yy count(xz) count(y) norm
is delicious 8.6 x 10° 1.1 x 10 53.3
is palatable 8.6 x 106 1x10® 89.5
is amazing 8.6 x 105 1.1 x10® 37.3
looks  delicious 2.5 x 10° 1.1 x 10*  45.7
tastes delicious 1.1 x10* 1.1 x 10* 26.7

B.2 Participant-level differential privacy

Recent work (]Geyer et al.l |2018t |McMahan et al.||2018b
showed how to use federated learning for word predic-
tion with participant-level differential privacy (Abadi

2016). Backdoor attacks do not target privacy,
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but two key steps of differentially private training may
limit their efficacy. First, each participant’s parameters
are clipped, i.e., multiplied by min(1, M) to
bound the sensitivity of model updates. Szecond, Gaus-
sian noise N (0, ) is added to the weighted average of
updates.

To match (McMahan et al.;|2018), we set the number
of participants in each round to 1000. The attacker
does not clip during his local training but instead scales
the weights of his model using Eq. so that they don’t
exceed the clipping bound. The attacker always knows
this bound because it is sent to all participants (McMay
han et al.||2018)). As discussed in SectionlB_Bl we do
not select the bound based on the median (Geyer et al.|
2018) because it greatly reduces the accuracy of the
resulting global model.

Fig.shows the results, demonstrating that the back-
door attack remains effective if the attacker controls
at least 5% of the participants (i.e., 50 out of 1000)
in a single round. This is a realistic threat because
federated learning is supposed to work with untrusted
devices, a fraction of which may be malicious (Bonawitz
et al.}|2019). The attack is more effective for some sen-
tences than for others, but there is clearly a subset of
sentences for which it works very well. Five sentences
(out of ten) do not appear in Fig. d because the
weights of the backdoored model for them exceed the
clipping bound of 15, which is what we use for the
experiment with varying levels of noise.

Critically, the low clipping bounds and high noise
variance that render the backdoor attack inef-
fective also greatly decrease the accuracy of the
global model on its main task (dashed line in
Fig. . Because the attack increases the distance
of the backdoored model to the global model, it is
more sensitive to clipping than to noise addition. The
attack still achieves 25% backdoor accuracy even with
0.1 noise.

In summary, participant-level differential privacy can
reduce the effectiveness of the backdoor attack, but
only at the cost of degrading the model’s performance
on its main task.

B.3 Byzantine-tolerant distributed learning

Recent proposals for Byzantine-tolerant distributed
learning (see Section are motivated by federated
learning but make assumptions that explicitly contra-
dict the design principles of federated learning (McMaj
han et al.|[2017). For example, they assume that the
participants’ local data are i.i.d. samples from the same
distribution. Additionally, this line of work assumes
that the objective of the Byzantine attacker is to reduce

the performance of the joint model or prevent it from
converging (Blanchard et al.| |2017; |Damaskinos et al.|
2018| [El Mhamdi et al., [2018}|Hayes and Ohrimenko)
2018} [Xie et al.| [2018). Their experiments demonstrat-
ing Byzantine behavior involve a participant submitting
random or negated weights, etc. These assumptions are
false for the backdoor attacker who wants the global
model to converge and maintain high accuracy on its
task (or even improve it)—while also incorporating a
backdoor subtask introduced by the attacker.

The Krum algorithm proposed in (Blanchard et al.|
2017) is an alternative to model averaging intended
to tolerate f Byzantine participants out of n. It com-
putes pairwise distances between all models submitted
in a given round, sums up the n — f — 2 closest dis-
tances for each model, and picks the model with the
lowest sum as global model for the next round. This
immediately violates the privacy requirement of feder-
ated learning, as the participant’s training data can
be reconstructed from the selected model (Melis et al.|
2019;|Nasr et all [2019) and incompatible with secure
aggregation (Bonawitz et al.||2017).

Furthermore, it makes the backdoor attack much easier.
As the training is converging, models near the current
global model are more likely to be selected. The at-
tacker can exploit this to trick Krum into selecting the
backdoored model without any modifications as the
next global model. The models are no longer averaged,
thus there is no need to scale as in Section The at-
tacker simply creates a backdoored model that is close
to the global model and submits it for every participant
it controls.

We conducted an experiment using 1000 participants in
a single round. Fig.[12]shows that participants’ updates
are very noisy. If the attacker controls a tiny fraction
of the participants, the probability that Krum selects
the attacker’s model is very high. The Multi-Krum
variation that averages the top m models is similarly
vulnerable: to replace the global model, the attacker
can use Eq.|3|and optimize the distance to the global
model using Eq.

The literature on Byzantine-tolerant distributed learn-
ing (Bernstein et al.}|2018} |Chen et al.l|2017b} [Damask{
inos et al.||2018;|El Mhamdi et al.| |2018; |Geyer et al.|
2018 |Xie et al.| [2018|Yin et al.l|2018)) includes other
alternative aggregation mechanisms. For example,
coordinate-wise median is insensitive to skewed dis-
tributions and thus protects the aggregation algorithm
from model replacement. Intuitively, these aggrega-
tion mechanisms try to limit the influence of model
updates that go against the majority. This produces
poor models in the case of non-convex loss functions
and if the training data comes from a diverse set
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of users (Chen et al.| [2019b). Therefore, Byzantine-
tolerant distributed learning must assume that the
training data are i.i.d. and the loss function is convex.

These assumptions are false for federated learning. As
an intended consequence of aggregation by averaging,
in every training round, any participant whose train-
ing data is different from others may move the joint
model to a different local minimum. As mentioned
in (McMahan et al.||2017), the ability of a single up-
date to significantly affect the global model is what
enables the latter to achieve performance comparable
with non-distributed training.

When applied to federated learning, alternative aggrega-
tion mechanisms cause a significant degradation in the
performance of the global model. In our experiments,
a word-prediction model trained with median-based ag-
gregation without any attacks exhibited a large drop in
test accuracy on the main task after convergence: 16.2%
vs. 19.3%. Similar performance gap is described in re-
cent work (Chen et al.,[2019b) and is an open question.
Moreover, secure aggregation (Bonawitz et al.,|[2017)
uses subsets to securely compute averages. Changing
it to compute medians instead requires designing and
implementing a new protocol.

In summary, Byzantine-tolerant aggregation mecha-
nisms can mitigate the backdoor attack at cost of dis-
carding model updates from many benign participants,
significantly reducing the accuracy of the resulting

Selection of the attacker's model
by Krum algorithm

Distribution of benign
participants’ updates

Principal Component 2

Chance of being selected

100

0.2 1 : ° 10 -
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Principal Component 1
Figure 12: Exploiting Krum sampling. Krum se-
lects the model with the most neighbors as the next
global model. Left: As most participants’ updates are
randomly scattered, the attacker can submit a model
close to the global model G* to land inside the densest
region of the distribution (the red rectangle). Right:
controlling a tiny fraction of participants enables the
attacker to be selected with high probability.

model even in the absence of attacks, and violating
privacy of the training data.

As explained in Section defenses that require in-
spection of the participants’ model updates violate
privacy of the training data and are not supported by
secure aggregation. We discuss them here to demon-
strate that even if they are incorporated into secure
aggregation in the future, they will not be effective.
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C Undeployable Defenses

As explained in Appendix [B.1] defenses that require
inspection of the participants’ model updates violate
privacy of the training data and are not supported by
secure aggregation. We discuss them here to demon-
strate that even if they are incorporated into secure
aggregation in the future, they will not be effective.

C.1 Clustering

To prevent poisoning in distributed learning, specifi-
cally (Shokri and Shmatikov}|2015), Auror (Shen et al.|
2016) uses k-means to cluster participants’ updates
across training rounds and discards the outliers. This
defense is not compatible with federated learning be-
cause it breaks confidentiality of the updates and con-
sequently of the underlying training data (Melis et al.|
2019)).

Furthermore, this defense is not effective. First, it
assumes that the attacker attempts to poison the global
model in every round. Fig. shows that even a single-
round attack can introduce a backdoor that the global
model does not unlearn for a long time. Second, when
the training data are not i.i.d. across the participants,
this defense is likely to discard contributions from many
“interesting” participants and thus hurt the accuracy of
the global model (this is not evaluated in [Shen et al.
(2016))).

Finally, as explained in Section the attacker can use
the train-and-scale method to evade detection. This
is especially effective if the attacker controls several
participants (Shen et al.| (2016) assume a single at-
tacker, but this is unrealistic in federated learning) and
splits scaled weight updates among them, staying under
the norm bound S for each individual update. If the
attacker controls z participants in a round, the total
update following Eq. [5]is:

i _ =z 8

Fig.|9(a) shows the distribution of the attacker’s up-
dates vs. benign participants’ updates. For example,
compromising 5 out of 100 participants enables the at-
tacker to look “normal” while achieving 50% backdoor
accuracy on the global model.

This technique is effective for image-classification mod-
els, too. Fig. shows the results when the attacker
controls 1 or 2 participants in a single round of training
and submits model weights using Eq.|6} To lower the
distance from the global model, we decrease the initial
learning rate to 1e~*. This eliminates the “re-poisoning”
effect shown on Fig.|4|(a drop and subsequent increase
in backdoor accuracy), but produces a model that does

not have an anomalous L, norm and maintains high
accuracy on the main task.

Estimating S. The anomaly detector may conceal
from the participants the norm bound S that it uses
to detect “anomalous” contributions. The attacker has
two ways to estimate the value of S: (1) sacrifice one of
the compromised participants by iteratively increasing
S and submitting model updates using Eq. until the
participant is banned, or (2) estimate the distribution of
weight norms among the benign participants by training
multiple local models either on random inputs, or, in
the case of word-prediction models, on relatively hard
inputs (see Table . Because the anomaly detector
cannot afford to filter out most benign contributions,
the attacker can assume that S is set near the upper
bound of this distribution.

The first method requires multiple compromised partic-
ipants but no domain knowledge. The second method
requires domain knowledge but yields a good local es-
timate of S without triggering the anomaly detector.
For example, the mean of norms for word-prediction
models trained on popular words as input and rare
words as output (per Table cuts out only the top 5%
of the benign updates. The two estimation methods
can also be used in tandem.

C.2 Cosine similarity

Another defense by |[Fung et al.| (2018) targets sybil
attacks by exploiting the observation that in high-
dimensional spaces, random vectors are orthogo-
nal (Zhang et al.||2017). It measures the cosine simi-
larity across the submitted updates and discards those
that are very similar to each other. It cannot be de-
ployed as part of federated learning because the secure
aggregator cannot measure the similarity of confidential
updates.

In theory, this defense may also defeat a backdoor at-
tacker who splits his model among multiple participants
but, as pointed out in [Fung et al.|(2018), the attacker
can evade it by decomposing the model into orthogonal
vectors, one per each attacker-controlled participant.

Another suggestion in |[Fung et al.|(2018) is to isolate
the indicative features (e.g., model weights) that are
important for the attack from those that are important
for the benign models. We are not aware of any way
to determine which features are associated with back-
doors and which are important for the benign models,
especially when the latter are trained on participants’
local, non-i.i.d. data.

Another possible defense is to compute the pairwise co-
sine similarity between all participants’ updates hoping
that the attacker’s LiF! = ~(X — G) + G* will stand
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out. This approach is not effective. ifﬂ[ﬂ albeit scaled,
points in the same direction as X — G*. Participants’
updates are almost orthogonal to each other with very
low variance 3.6 x 10~7, thus X — G does not appear
anomalous.

A more effective flavor of this technique is to compute
the cosine similarity between each update LE‘H and the
previous global model G*. Given that the updates are
orthogonal, the attacker’s scaling makes cos(LEHT, GY)
greater than the benign participants’ updates, and this
can be detected.

To bring his model closer to G?, the attacker can use a
low learning rate and reduce the scaling factor v, but
the constrain-and-scale method from Section works
even better in this case. As the anomaly-loss function,
we use Lano = 1—cos(L, G). Fig.|13|shows the tradeoff
between «, <y, and backdoor accuracy for the pasta
from Astoria is delicious backdoor. Constrain-and-
scale achieves higher backdoor accuracy than train-
and-scale while maintaining high cosine similarity to
the previous global model. In general, incorporating
anomaly loss into the training allows the attacker to
evade sophisticated anomaly detectors that cannot be
defeated simply by reducing the scaling factor .
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Figure 13: By incorporating the cosine-similarity de-
fense into the attacker’s loss function, constrain-and-
scale achieves higher accuracy on the backdoor task
while keeping the model less anomalous than train-and-
scale.

C.3 Accuracy auditing

Because the attacker’s model ZEH is scaled by v, its
accuracy on the main task might deteriorate. There-
fore, rejecting updates whose main-task accuracy is
abnormally low is a plausible anomaly detection tech-
nique (Shayan et al.||2018). It cannot be deployed as
part of federated learning, however, because the aggre-
gator does not have access to the updates and cannot
measure their accuracy.

Furthermore, this defense, too, can be evaded by split-
ting the update across multiple participants and thus

less scaling for each individual update. Fig. @b) shows
that when the attacker controls 5 participants in a
round, he achieves high backdoor accuracy while also
maintaining normal accuracy on the main task.

Figs. EKC) and E[d) show the results for each backdoor
sentence. For some sentences, the backdoored model
is almost the same as global model. For others, the
backdoored model cannot reach 100% accuracy while
keeping the distance from the global model small be-

cause averaging with the other models destroys the
backdoor.

Accuracy auditing fails completely to detect attacks on
image-classification models. Even benign participants
often submit updates with extremely low accuracy due
to the unbalanced distribution of representative images
from different classes across the participants and high
local learning rate.

To demonstrate this, we used the setup from Section
to perform 100 rounds of training, beginning with round
10,000 when the global model already has high accu-
racy (91%). This is the most favorable scenario for
accuracy auditing because, in general, local models
become similar to the global model as the latter con-
verges. Even so, 28 out of 100 participants at least
once, but never always, submitted a model that had
the lowest (10%) accuracy on the test set. Increasing
the imbalance between classes in participants’ local
data to make them non-i.i.d. increases the number of
participants who submit models with low accuracy. Ex-
cluding all such contributions would have produced a
global model with poor accuracy.



