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Abstract

Differential privacy is a de facto standard in
data privacy, with applications in the public
and private sectors. One way of explaining dif-
ferential privacy that is particularly appealing
to statistician and social scientists is through
its statistical hypothesis testing interpreta-
tion. Informally, one cannot effectively test
whether a specific individual has contributed
her data by observing the output of a pri-
vate mechanism—no test can have both high
significance and high power.

In this paper, we identify some conditions un-
der which a privacy definition given in terms of
a statistical divergence satisfies a similar inter-
pretation. These conditions are useful to ana-
lyze the distinguishing power of divergences
and we use them to study the hypothesis test-
ing interpretation of relaxations of differential
privacy based on Rényi divergence. Our anal-
ysis also results in an improved conversion
rule between these definitions and differential
privacy.

1 Introduction

Differential privacy [Dwork et al., 2006] is a formal
notion of data privacy that enables accurate statis-
tical analyses on populations while preserving privacy
for individuals contributing their data. Differential
privacy is supported by a rich theory, with sophis-
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ticated algorithms for common statistical tasks and
composition theorems to simplify the design and for-
mal analysis of new private algorithms. This the-
ory has helped make differential privacy a de facto
standard for rigorous, privacy-preserving data analy-
sis. Over the last years, differential privacy has found
use in the private sector [Kenthapadi et al., 2019]
by companies such as Google [Erlingsson et al., 2014,
Papernot et al., 2018], Apple [team at Apple, 2017],
and Uber [Johnson et al., 2018], and in the public
sector by agencies such as the U.S. Census Bu-
reau [Abowd, 2018, Garfinkel et al., 2018].

A common challenge faced in all uses of differential
privacy is to explain its guarantees to users and policy
makers. Indeed, differential privacy first emerged in
the theoretical computer science community, and was
only subsequently considered in other research areas in-
terested in data privacy. For this reason, several works
have attempted to provide different interpretations of
the semantics of differential privacy in an effort to
make it more accessible.

One approach that has been particularly suc-
cessful, especially when introducing differential
privacy to people versed in statistical data anal-
ysis, is the hypothesis testing interpretation of
differential privacy [Wasserman and Zhou, 2010,
Kairouz et al., 2015]. This is formalized by imagining
an experiment where one wants to test, based on
the output of a differentially private mechanism, the
null hypothesis that an individual I has contributed
her data to a particular dataset x0. The test also
considers an alternative hypothesis where individual
I has not contributed her data to x0. The definition
of differential privacy guarantees—and is in fact
equivalent to requiring—that any hypothesis test
has either low significance (it has a high rate of
Type I errors), or low power (it has a high rate
of Type II errors). Under this interpretation, the
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privacy parameters (ε, δ) control the tradeoff between
significance and power.

Recently, motivated by a desire to improve com-
position properties of private data analysis al-
gorithms, several variants of differential privacy
have been proposed [Dwork and Rothblum, 2016,
Bun and Steinke, 2016, Mironov, 2017,
Bun et al., 2018]. Having better composition
can become a key advantage when a high number of
data accesses is needed for a single analysis (e.g., in
private deep learning [Abadi et al., 2016]). Many of
these variants are formulated as bounds on the Rényi
divergence between the distribution obtained when
running a private mechanism over a dataset where an
individual I has contributed her data versus the case
when the private mechanism is run over the dataset
where I’s data is removed. While these definitions
enjoy better theoretical properties, the use of the
Rényi divergence makes the privacy guarantees more
difficult to interpret.

In this work, we introduce several concepts to help
understand whether these variants of differential pri-
vacy can be given a hypothesis testing interpretation.
The first notion we introduce is the k-cut of a diver-
gence. Intuitively, this corresponds to “projecting” the
distributions that are compared by a divergence onto
a finite domain of size k. From a statistical testing
point of view, we can think of these projections as
encoding (probabilistic) decision rules with k possible
outcomes. The second notion we introduce is the con-
cept of k-generatedness for a divergence; a divergence
is k-generated if it is equal to its k-cut. This notion
expresses the number of decisions that are needed in
decision rules to fully characterize the divergence.

We use these two analytical tools to show that a privacy
definition based on a divergence has a hypothesis test-
ing interpretation in the sense described above if and
only if it is 2-generated; we show that the divergence
characterizing differential privacy is indeed 2-generated
and that 2-generatedness corresponds to the notion
of privacy regions introduced in [Kairouz et al., 2015].
On the negative side we show that variants of differ-
ential privacy based on the Rényi divergence do not
directly admit a hypothesis testing interpretation be-
cause the Rényi divergence is ∞-generated, meaning
that it is infinitely, but countably, generated. Neverthe-
less, we show that one can obtain a hypothesis testing
interpretation by considering the 2-cut of the Rényi
divergence. Intuitively, this means that to characterize
variants of differential privacy based Rényi divergences
through a hypothesis testing experiment, one needs
either to restrict the distinguishing power of the di-
vergence or to consider an infinite number of possible
actions. This shows a separation between the semantics

of standard differential privacy and relaxations based
on Rényi divergence.

In addition, we use the analytical tools we develop to
study the relations between different privacy definitions.
Specifically, we use the 2-cut of Rényi divergence to give
better conversion rules from Rényi differential privacy
to (ε, δ)-differential privacy, and to study the relations
with Gaussian Differential Privacy [Dong et al., 2019]
another formal definition of privacy inspired by the
hypothesis testing interpretation which was recently
proposed.

Finally, we show a sufficient condition to guarantee
that a divergence is k-generated: divergences defined
as a supremum of a quasi-convex function F over prob-
abilities of k-partitions are k-generated. This allows
one to construct divergences supporting the hypothesis
testing interpretation by requiring them to be defined
through an function F giving a 2-generated divergence.
The condition is also necessary for quasi-convex diver-
gences, characterizing k-generation for all quasi-convex
divergences.

Summarizing, our contributions are:

(1) We first introduce the notions of k-cut and k-
generatedness for divergences. These notions allow
one to measure the power of divergences in terms of
the number of possible decisions that are needed in a
hypothesis test to fully characterize the divergence.

(2) We show that the divergence used to characterize
differential privacy is 2-generated, supporting the
usual hypothesis testing interpretation of differential
privacy

(3) We show that Rényi divergence is ∞-generated, rul-
ing out a direct hypothesis testing interpretation for
privacy notions based on it. Nevertheless, we show
that one can obtain hypothesis testing interpreta-
tions by considering the 2-cut of Rényi divergence.

(4) We use our tools to study other notions of privacy
and to give better conversion rules between Rényi
differential privacy and (ε, δ)-differential privacy.

(5) We give sufficient and necessary conditions for a
quasi-convex divergence to be k-generated.

Related work. Several works have studied the
semantics of formal notions of data privacy and differen-
tial privacy [Dwork, 2006, Wasserman and Zhou, 2010,
Kifer and Machanavajjhala, 2011,
Dwork and Roth, 2013, Hsu et al., 2014,
Kifer and Machanavajjhala, 2014,
Kasiviswanathan and Smith, 2015, Liu et al., 2019].
The hypothesis testing interpretation of dif-
ferential privacy was first introduced by
[Wasserman and Zhou, 2010] and then used to



Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, Tetsuya Sato

develop the optimal composition theorem for differen-
tial privacy [Kairouz et al., 2015]. [Dong et al., 2019]
propose to define new notions of privacy based
on the hypothesis testing interpretation; our work
supports this direction, showing that other existing
variants of privacy do not enjoy a hypothesis testing
interpretation. [Liu et al., 2019] use the hypothesis
testing interpretation to reason about the privacy
parameters. The hypothesis testing interpretation of
differential privacy has also inspired techniques in
formal verification [Sato, 2016, Sato et al., 2017], in-
cluding techniques to detect violations in differentially
private implementations [Ding et al., 2018].

2 Background: hypothesis testing,
privacy, and Rényi divergences

2.1 Hypothesis testing interpretation for
(ε, δ)-differential privacy

We view randomized algorithms as functionsM : X →
Prob(Y ) from a set X of inputs to the set Prob(Y ) of
discrete probability distributions over a set Y of out-
puts. We assume that X is equipped with a symmetric
adjacency relation—informally, inputs are datasets and
two inputs x0 and x1 are adjacent iff they differ in the
data of a single individual.

Definition 1 (Differential Privacy (DP)
[Dwork et al., 2006]). Let ε > 0 and 0 ≤ δ ≤ 1.
A randomized algorithm M : X → Prob(Y ) is (ε, δ)-
differentially private if for every pairs of adjacent
inputs x0 and x1, and every subset S ⊆ Y , we have:

Pr[M(x0) ∈ S] ≤ eεPr[M(x1) ∈ S] + δ.

[Wasserman and Zhou, 2010, Kairouz et al., 2015]
proposed a useful interpretation of this guarantee in
terms of hypothesis testing. Suppose that x0 and x1

are adjacent inputs. The observer sees the output y
of running a private mechanism M on one of these
inputs—but does not see the particular input—and
wants to guess whether the input was x0 or x1.

In the terminology of hypothesis testing, let y ∈ Y be
an output of a randomized mechanism M, and take
the following null and alternative hypotheses:

H0 : y came fromM(x0),
H1 : y came fromM(x1).

One simple way of deciding between the two hypotheses
is to fix a rejection region S ⊆ Y ; if the observation
y is in S then the null hypothesis is rejected, and if
the observation y is not in S then the null hypothesis
is not rejected. This is an example of a deterministic
decision rule.

Each decision rule can err in two possible ways. A
false alarm (i.e. Type I error) is when the null hypoth-
esis is true but rejected. This error rate is defined
as PFA(x0, x1,M, S)

def
= Pr[M(x0) ∈ S]. On the other

hand, the decision rule may incorrectly fail to reject
the null hypothesis, a false negative (i.e. Type II er-
ror). The probability of missed detection is defined
as PMD(x0, x1,M, S)

def
= Pr[M(x1) /∈ S]. There is a

natural tradeoff between these two errors—a rule with
a larger rejection region will be less likely to incorrectly
fail to reject but more likely to incorrectly reject, while
a rule with a smaller rejection region will be less likely
to incorrectly reject but more likely to incorrectly fail
to reject.

Differential privacy can now be reformulated in terms
of these error rates.
Theorem 2 ([Wasserman and Zhou, 2010,
Kairouz et al., 2015]). A randomized algorithm
M : X → Prob(Y ) is (ε, δ)-differentially private
if and only if for every pair of adjacent inputs x0

and x1, and any rejection region S ⊆ Y , we have:
PFA(x0, x1,M, S) + eεPMD(x0, x1,M, S) ≥ 1 − δ and
eεPFA(x0, x1,M, S) + PMD(x0, x1,M, S) ≥ 1− δ.

Intuitively, the lower bound on the sum of the two error
rates means that no decision rule is capable of achieving
low Type I error and low Type II error simultaneously.
Thus, the output distributions from any two adjacent
inputs are statistically hard to distinguish.

Following [Kairouz et al., 2015], we can also reformu-
late the definition of differential privacy in terms of a
privacy region describing the attainable pairs of Type
I and Type II errors.
Theorem 3 ([Kairouz et al., 2015]). A randomized al-
gorithm M : X → Prob(Y ) is (ε, δ)-differentially pri-
vate if and only if for every pair of adjacent inputs x0

and x1, and every rejection region S ⊆ Y , we have

(PFA(x0, x1,M, S), PMD(x0, x1,M, S)) ∈ R(ε, δ),

where the privacy region R(ε, δ) is defined as:

R(ε, δ) = { (x, y) ∈ [0, 1]× [0, 1] | (1− x) ≤ eεy + δ } .

Figure 1 shows an example of a privacy region (the
area between the dashed lines) R(0.67, 0.05) and its
mirror image and of all the points (PFA, PMD) that can
be generated by a randomized response mechanism
MRR : {0, 1}3 → Prob({0, 1}3) working on vectors of
three bits and flipping each bit with probability 0.34.

After the introduction of differential privacy, re-
searchers have proposed alternative definitions based on
Rényi divergence. The central question of this paper is:
can we give similar hypothesis testing interpretations
to these (and other) variants of differential privacy?



Hypothesis Testing Interpretations and Interpretations and RDP

Figure 1: Pairs (PFA, PMD) ofMRR and R(0.67, 0.05)

2.2 Variants of differential privacy based on
Rényi divergence

We recall here notions of differential privacy based on
Rényi divergence.
Definition 4 (Rényi divergence [Renyi, 1961]). Let
α > 1. The Rényi divergence of order α between two
probability distributions µ1 and µ2 on a space X is
defined by:

Dα
X(µ1||µ2)

def
=

1

α− 1
log

∑
x∈X

µ2(x)

(
µ1(x)

µ2(x)

)α
. (1)

The above definition does not consider the cases α = 1
and α = +∞. However we can see Dα

X as a function of
α for fixed distributions and consider the limits to get:

D1
X(µ1||µ2)

def
= lim

α→1+
Dα
X(µ1||µ2) = KLX(µ1||µ2),

D∞X (µ1||µ2)
def
= lim

α→∞
Dα
X(µ1||µ2) = log sup

x

µ1(x)

µ2(x)
.

The first limit is the well-known KL divergence, while
the second limit is the max divergence that bounds
the pointwise ratio of probabilities; standard (ε, 0)-
differential privacy bounds this divergence on distribu-
tions from adjacent inputs.

There are several notions of differential privacy based
on Rényi divergence, differing in whether the bound
holds for all orders α or just some orders. The
first notion we consider is Rényi Differential Privacy
(RDP) [Mironov, 2017].
Definition 5 (Rényi Differential Privacy
(RDP) [Mironov, 2017]). Let α ∈ [1,∞). A ran-
domized algorithm M : X → Prob(Y ) is (α, ρ)-Rényi
differentially private if for every pair x0 and x1 of
adjacent inputs, we have

Dα
Y (M(x0)||M(x1)) ≤ ρ.

Renyi Differential privacy considers a fixed value
of α. In contrast, zero-Concentrated Differ-

ential Privacy (zCDP) [Bun and Steinke, 2016], a
simplification of Concentrated Differential Privacy
(CDP) [Dwork and Rothblum, 2016], quantifies over
all possible α > 1.

Definition 6 (zero-Concentrated Differential Privacy
(zCDP) [Bun and Steinke, 2016]). A randomized algo-
rithm M : X → Prob(Y ) is (ξ, ρ)-zero concentrated
differentially private if for every pairs of adjacent inputs
x0 and x1, we have

∀α > 1. Dα
Y (M(x0)||M(x1)) ≤ ξ + αρ. (2)

Truncated Concentrated Differential Privacy
(tCDP) [Bun et al., 2018] quantifies over all α
below a given threshold.

Definition 7 (Truncated Concentrated Differential
Privacy (tCDP) [Bun et al., 2018]). A randomized al-
gorithm M : X → Prob(Y ) is (ρ, ω)-truncated con-
centrated differentially private if for every pairs of
adjacent inputs x0 and x1, we have

∀1 < α < ω. Dα
Y (M(x0)||M(x1)) ≤ αρ. (3)

These notions are all motivated by bounds on the pri-
vacy loss of a randomized algorithm. This quantity is
defined by

Lx0→x1(y)
def
=

Pr[M(x0) = y]

Pr[M(x1) = y]
,

where x0 and x1 are two adjacent inputs. Intuitively,
the privacy loss measures how much information is
revealed by an output y. While output values with a
large privacy loss are highly revealing—they are far
more likely to result from a private input x0 rather than
a different private input x1—if these outputs are only
seen with small probability then it may be reasonable to
discount their influence. Each of the privacy definitions
above bounds different moments of this privacy loss,
treated as a random variable when y is drawn from the
output of the algorithm on input x0. The following
table summarizes these bounds.

Privacy Bound on privacy loss L = Lx0→x1

(ε, δ)-DP PrM(x0)[L(y) ≤ eε] ≥ 1− δ
(α, ρ)-RDP EM(x1)[L(y)α] ≤ e(α−1)ρ

(ξ, ρ)-zCDP ∀α ∈ (1,∞). EM(x1)[L(y)α] ≤ e(α−1)(ξ+αρ)

(ω, ρ)-tCDP ∀α ∈ (1, ω). EM(x1)[L(y)α] ≤ e(α−1)αρ

In particular, DP bounds the maximum value of the
privacy loss,1 (α, ·)-RDP bounds the α-moment, zCDP
bounds all moments, and (·, ω)-tCDP bounds the mo-
ments up to some cutoff ω. Many conversions are
known between these definitions; for instance, RDP,

1Technically speaking, this is true only for sufficiently
well-behaved distributions [Meiser, 2018].
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zCDP, and tCDP are known to sit between (ε, 0) and
(ε, δ)-differential privacy in terms of expressivity, up
to some modification in the parameters. While this
means that RDP, zCDP, and tCDP can sometimes
be analyzed by reduction to standard differential pri-
vacy, converting between the different notions requires
weakening the parameters and often the privacy anal-
ysis is simpler or more precise when working with
RDP, zCDP, or tCDP directly. The interested reader
can refer to [Bun and Steinke, 2016, Mironov, 2017,
Bun et al., 2018].

3 k-generated divergences

3.1 Background and notation

We use standard notation and terminology from dis-
crete probability. For every x ∈ X, we denote by
dx the Dirac distribution centered at x defined by
dx(x′) = 1 if x = x′ and dx(x′) = 0 otherwise.
For any probability distribution µ ∈ Prob(X) and
γ : X → Prob(Y ), we define γ(µ) ∈ Prob(Y ) to be
(γ(µ))(y) =

∑
x∈X(γ(x))(y) · µ(x) for every y ∈ Y .

For any function γ : X → Y , as an abuse of nota-
tion, we define γ(µ) ∈ Prob(Y ) to be {x 7→ dγ(x)}(µ),
equivalently, (γ(µ))(y) =

∑
x∈γ−1(y) µ(x) for every

y ∈ Y . Every function γ : X → Y can be regarded
as {x 7→ dγ(x)} : X → Prob(Y ).

3.2 Divergences between distributions

We start from a very general definition of divergences.
Our notation includes the domain of definition of the
divergence; this distinction will be important when
introducing the concept of k-generatedness.
Definition 8. A divergence is a family ∆ = {∆X}X
of functions (indexed by all sets):

∆X : Prob(X)× Prob(X)→ [0,∞].

We use the notation ∆X(µ1||µ2) to denote the diver-
gence between distributions µ1 and µ2 over X.

Our notion of divergence subsumes the general no-
tion of f -divergence from the literature [Csiszár, 1963,
Csiszàr and Shields, 2004]. In particular, this includes
the ε-divergence [Barthe and Olmedo, 2013] used to
formulate (ε, δ)-differential privacy:

∆ε
X(µ1||µ2)

def
= sup

S⊆X
(Pr[µ1 ∈ S]− eεPr[µ2 ∈ S]).

Specifically, a randomized algorithmM : X → Prob(Y )
is (ε, δ)-differentially private if and only if for every
pair of adjacent inputs x0 and x1, we have

∆ε
Y (M(x0)||M(x1)) ≤ δ.

Many useful properties of divergences have been ex-
plored in the literature. Our technical development
will involve the following two properties.

• A divergence ∆ satisfies the data-processing
inequality iff for every γ : X → Prob(Y ),
∆Y (γ(µ1)||γ(µ2)) ≤ ∆X(µ1||µ2).
• A divergence ∆ is quasi-convex iff for every
α1, . . . , αm ∈ [0, 1] such that

∑N
m=1αm = 1 and

every discrete set X,

∆X(
∑
m

αmd1,m||
∑
m

αmd2,m) ≤ max
m

∆X(d1,m||d2,m).

These properties are satisfied by many com-
mon divergences. Besides Rényi divergences,
they also hold for all f -divergences [Csiszár, 1963,
Csiszàr and Shields, 2004]. We will consider only di-
vergences satisfying them in the following.

3.3 k-cuts of divergences

We now introduce a technical construction that will be
useful in the rest of the paper.

Definition 9. Let k ∈ N ∪ {∞}. We define a k-cut
∆
k

= {∆k

X}X : set of a divergence ∆ as follows: fix a
set Y with cardinality k (i.e. |Y | = k), and define

∆
k

X(µ1||µ2)
def
= sup

γ : X→Prob(Y )

∆Y (γ(µ1)||γ(µ2)).

For divergences ∆ that satisfy the data-processing in-
equality, then the k-cut is well-defined: it does not
depend on the choice of Y .

Lemma 10. If a divergence ∆ satisfies the data-
processing inequality, we have the inequality ∆

k ≤ ∆

and the equality ∆
k

Y = ∆Y for any set Y with |Y | = k.

Hence, without loss of generality, in the sequel we will
refer to this as the k-cut.

Another interesting property of k-cuts is that a k-cut
∆
k
of a divergence ∆ satisfies the data-processing in-

equality, even if the original ∆ does not satisfy it.

Without loss of generality, we can assume the function γ
in the definition of a k-cut to be deterministic. This can
be proved by a weak version of Birkhoff-von Neumann
theorem, which decomposes every probabilistic decision
rule into a convex combination of deterministic ones.

Theorem 11 (Weak Birkhoff-von Neumann). Let
k, l ∈ N and k > l. Let X and Y with |X| = k and
|Y | = l. For any γ : X → Prob(Y ), there exist N ∈ N,
γ1, . . . , γN : X → Y and a1, . . . , aN ∈ [0, 1] such that∑N
m=1 am = 1 and γ(x) =

∑N
m=1 amdγm(x) (x ∈ X).
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This result allows us to consider simplified formulations
of a k-cut of a divergence. Examples of this fact that
will be useful in the sequel are the 2-cut and 3-cut of the
Rényi divergence of order α. These can be reformulated
as follows:

Dα2

X(µ1||µ2) = sup
S⊆X

1

α− 1
log
{

Pr[µ1 ∈ S]αPr[µ2 ∈ S]1−α

+Pr[µ1 /∈ S]αPr[µ2 /∈ S]1−α

}
,

Dα3

X(µ1||µ2)

= sup
S1,S2⊆X,
S1∩S2=∅

1

α− 1
log

{
Pr[µ1 ∈ S1]αPr[µ2 ∈ S1]1−α

+Pr[µ1 ∈ S2]αPr[µ2 ∈ S2]1−α

+Pr[µ1 /∈ S1 ∪ S2]αPr[µ2 /∈ S1 ∪ S2]1−α

}
.

3.4 k-generatedness of divergences

We now introduce the notion of k-generatedness. In-
formally, k-generatedness is a measure of the number
of decisions that are needed in an hypothesis test to
characterize a divergence.

Definition 12. Let k ∈ N ∪ {∞}. A divergence ∆ is
k-generated if a k-cut ∆

k
of ∆ is equal to ∆ itself.

k-generatedness can also be reformulated as follows:

Lemma 13. If ∆ = {∆X}X : set is k-generated, for
any set Y with |Y | = k, we have

∆X(µ1||µ2) = sup
γ : X→Prob(Y )

∆Y (γ(µ1)||γ(µ2)).

Lemma 14. The following basic properties hold for
all k-generated divergences.

• If ∆ is 1-generated, then ∆ is constant, i.e. there
exists c ∈ [0,∞] such that for every X and every
µ1, µ2 ∈ Prob(X), we have ∆X(µ1||µ2) = c.

• If ∆ is k-generated, then it is also k + 1-generated.

• If ∆ has the data-processing inequality, then it is
at least ∞-generated.

• Every k-cut of a divergence ∆ is k-generated.

To compare a k-generated divergence and a divergence,
we have the following lemma where all the inequalities
are defined pointwise.

Lemma 15. Consider a divergence ∆ and a k-
generated divergence ∆′. For any k-cut ∆

k
of ∆,

∆′ ≤ ∆ =⇒ ∆′ ≤ ∆
k
.

Also, if ∆ has the data-processing inequality, the k-cut
is the greatest k-generated divergence below ∆:

∆′ ≤ ∆ ⇐⇒ ∆′ ≤ ∆
k ≤ ∆.

3.4.1 A 2-generated divergence for DP

The divergence ∆ε that can be used to characterize
(ε, δ)-DP is 2-generated. This implies that DP can
be characterized completely by its hypothesis testing
interpretation.
Theorem 16. The ε-divergence ∆ε is 2-generated.

Since ∆ε is quasi-convex and satisfies data-processing
inequality, the 2-cut can be reformulated as:

∆ε2

X(µ1||µ2) = sup
S⊆X

(Pr[µ1 ∈ S]− eεPr[µ2 ∈ S]).

This is exactly the same as the original definition of
∆ε, from which follows that it is 2-generated.

3.4.2 Rényi divergences are ∞-generated

In contrast to the divergence ∆ε, the 2-cut of the Rényi
divergence is not complete with respect to the Rényi
divergence.

To see this let X = {a, b, c} and let µ1, µ2 ∈ Prob(X)
be defined by µ1(a) = µ1(b) = µ1(c) = 1

3 and µ2(a) =
p2

p2+p+1 , µ2(b) = p
p2+p+1 and µ2(b) = 1

p2+p+1 .

We set β > α + 1 and p = (1/2)β/(α−1), a simple
calculation shows:

Dα2

X(µ1||µ2) +
1

α− 1
log

2β + 2−β + 1

max(2α+1, 2β + 1)

≤ Dα
X(µ1||µ2)

The difference is quantitatively small, but it is never-
theless strictly positive. This shows also that the Rényi
divergence is not 2-generated.

Similarly, one can show that the 3-cut is not complete,
that the 4-cut is not complete, etc. In fact, Rényi diver-
gence is exactly∞-generated. Indeed, Rényi divergence
satisfies the data-processing inequality, hence it is at
most∞-generated. Moreover, any f -divergences whose
weight function f is strictly convex is not k-generated
for any finite k. The formulation of Rényi divergence
of order α given by exp((α − 1)Dα

X(µ1||µ2)) is an f -
divergence related to the weight function t 7→ tα, which
is strictly convex. Since the logarithm function is con-
tinuous on (0,∞) and strictly monotone, we conclude
that the Rényi divergence is ∞-generated. The formal
details can be found in the supplementary material.

4 Hypothesis Testing Interpretation
of Divergences

In this section, we give an hypothesis testing charac-
terization similar to the one that differential privacy
satisfies for the 2-cut of an arbitrary divergence.
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We first define privacy regions for divergences using
their 2-cuts.
Definition 17. For any divergence ∆, we define its
privacy region R∆(ρ) ⊆ [0, 1]× [0, 1] by

R∆(ρ)
def
=

 (x, y)

∣∣∣∣∣∣
∆

2

{Acc,Rej}(µ1||µ2) ≤ ρ,
µ1 = (1− x)dAcc + xdRej

µ2 = ydAcc + (1− y)dRej

 .

Notice that if ∆ satisfies the data-processing inequality,
or is 2-generated, then ∆

2

{Acc,Rej} in the definition above
can be replaced by ∆{Acc,Rej}.

As an example, we can give the privacy region of DP:

R∆ε

(δ) =

{
(x, y)

∣∣∣∣ 1− x ≤ eεy + δ
x ≤ eε(1− y) + δ

}
Privacy regions are intimately related to the hypothesis
testing interpretation of privacy definitions based on
divergences.

Theorem 18. Let µ1, µ2 ∈ Prob(X). ∆
2

X(µ1||µ2) ≤ ρ
holds if and only if for any γ : X → Prob({Acc, Rej}),

(Pr[γ(µ1) = Rej],Pr[γ(µ2) = Acc]) ∈ R∆(ρ).

In the theorem above, the functions γ : X →
Prob({Acc, Rej}) can be seen as probabilistic decision
rules. Moreover, the privacy region can be actually
relaxed to R∆(ρ) ∪ { (x, y) | x+ y ≥ 1 } since for any
decision rule γ : X → Prob({Acc, Rej}), we can take
its negation ¬γ. Hence we do not need to check the
cases of Pr[γ(µ1) = Rej] + Pr[γ(µ2) = Acc] > 1. This
also corresponds to the symmetry that we have in their
graphical representations.

Finally, if a divergence ∆ is quasi-convex, we also
have the equivalent of Theorem 18 under deterministic
decision rules. In this case, we have the following
reformulation. Let µ1, µ2 ∈ Prob(X). ∆

2

X(µ1||µ2) ≤ ρ
iff for any S ⊆ X, (Pr[µ1 ∈ S],Pr[µ2 /∈ S]) ∈ R∆(ρ).

This give us the hypothesis testing characterization of
DP, since the ε-divergence is 2-generated and quasi-
convex.
Corollary 19. Let µ1, µ2 ∈ Prob(X). Set ε, δ ≥ 0.
∆ε
X(µ1||µ2) ≤ δ iff for any S ⊆ X,

(Pr[µ1 ∈ S],Pr[µ2 /∈ S]) ∈ R∆ε

(δ).

We conclude this section by stressing that Theorem 18
tell us two important things:

• Every privacy definition similar to differential privacy
but based on a 2-generated divergence is character-
ized completely by its hypothesis testing interpreta-
tion.

• For every privacy definition similar to differential
privacy but based on an arbitrary divergence we
can have an hypothesis testing interpretations by
considering its 2-cut. However, this characterization
will not be necessarily complete.

The second remark applies in particular to relaxations
of differential privacy based on the Rényi divergence: if
we want to have the hypothesis testing interpretation
for one of these relaxations we can use the 2-cut of the
Rényi divergence.

5 Applications

In this section we will use the technical tools we de-
veloped in the previous sections to better study the
relations between different privacy definitions.

5.1 Conversions from Divergences to DP

Privacy regions can be used to give better conversion
rules between privacy definitions based on divergences
and differential privacy. Let ∆′ = {∆′X}X : set be a
divergence satisfying the data-processing inequality.
We want to find the minimal parameters (ε(ρ), δ(ρ))

such that ∆′X(µ1||µ2) ≤ ρ implies ∆
ε(ρ)
X (µ1||µ2) ≤ δ(ρ).

By Theorem 18 and Lemma 15, R∆′(ρ) ⊆ R∆ε(ρ)

(δ(ρ))
holds if and only if for any pair µ1, µ2 ∈ Prob(X),

∆′X(µ1||µ2) ≤ ρ =⇒ ∆
ε(ρ)
X (µ1||µ2) ≤ δ(ρ).

This means that to find a good conversion law we can
just compare the privacy regions.

5.1.1 Better Conversion from RDP to DP

Figure 2: A refined conversion law from RDP to DP.
The gray region is RD

α

(ρ). The gray and black lines
show original and refined DP-bounds for the same δ.

Using privacy regions, we can refine Mironov’s conver-
sion law from RDP to DP in a simple way.
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Theorem 20. If a mechanismM is (α, ρ)-RDP then
it is (ρ+ log((α−1)/α)− (log δ+ logα)/(α−1), δ)-DP
for any 0 < δ < 1.

The privacy region RD
α

(ρ) of Rényi divergence is:

{(x, y)|xα(1− y)1−α+(1− x)αy1−α ≤ eρ(α−1)}.

Inspired from Mironov’s original proof, we compute

xα(1− y)1−α + (1− x)αy1−α ≤ eρ(α−1)

=⇒ (1− x) ≤ (eρy)
α−1
α (†)

=⇒ (1− x) ≤ eρ−log d/(α−1)y + δ. (‡)

The inequality (‡) gives Mironov’s original conversion
law. However, starting from (†), we have a better bound
for DP as follows: consider a curve C defined by the
equation 1−x = (eρy)

α−1
α . We can find parameters that

the line (1−x) = eεy+ δ meets a tangent of C. Simple
computations give ε∗ = log

(
α−1
α

)
+ ρ − log δ+logα

α−1 .

We then have eε
∗
y + δ ≤ (eρy)

α−1
α . From this, by

the symmetries of geometrical presentations of RD
α

(ρ)
and R∆ε

(δ), we obtain RD
α

(ρ) ⊆ R∆ε

(δ). This is
equivalent to: Dα

X(µ1||µ2) ≤ ρ =⇒ ∆ε∗

X (µ1||µ2) ≤ δ.

5.2 On Gaussian Differential Privacy

Gaussian differential privacy (GDP) [Dong et al., 2019,
Def. 2.6] has been recently proposed as a privacy def-
inition trading-off PMD and PFA. This can be char-
acterized by means of privacy regions. We have seen
that privacy regions correspond to 2-generated diver-
gence. Thus, a natural question is: can we characterize
GDP using a 2-generated divergence? Indeed, we can
characterize GDP by the following divergence:

∆Gauss
X (µ1||µ2) = sup

{
δ

∣∣∣∣ ∃γ : X → Prob({Acc, Rej}).
Pr[γ(µ2) = Acc]

≥ Φ(Φ−1(Pr[γ(µ1) = Rej])− δ)

}
.

where Φ is the standard normal CDF. The data-
processing inequality of the divergence ∆Gauss is proved
from [Dong et al., 2019, Lem. 2.6]. Hence, the privacy
region is given as follows:

R∆Gauss

(δ) =

{
(x, y)

∣∣∣∣ y ≥ Φ(Φ−1(1− x)− δ)
1− y ≥ Φ(Φ−1(x)− δ)

}
.

By Theorem 18, ∆Gauss is 2-generated.

5.3 Informativeness of k-cuts

The concept of k-cut can be related to the ability that
a divergence has of distinguishing two distributions.

Definition 21. We say that a divergence ∆ is δ-
distinguishing a pair µ1, µ2 ∈ Prob(X) of probability
distributions if ∆X(µ1, µ2) > δ.

Now, consider a divergence ∆ satisfying the data-
processing inequality. Then the k-cuts form a mono-
tone increasing sequence: ∆

1 ≤ ∆
2 ≤ ∆

3 ≤ · · · ≤
∆
k ≤ ∆

k+1 ≤ · · · . Thus for any divergence with data-
processing inequality, k + 1-cut of ∆ is always more
informative than the k-cut of ∆ for every k ∈ N in
the following sense. If the k-cut of a divergence is δ-
distinguishing a pair µ1, µ2 ∈ Prob(X) then the k + 1
cut is δ-distinguishing them too:

∆
k+1

X (µ1||µ2) ≥ ∆
k

X(µ1||µ2) > δ.

For example, for the pair µ1, µ2 ∈ Prob({a, b, c}) in the
counterexample given in Section 3.4.2, we can find a
value of δ such that Dα3

is δ-distinguishing µ1, µ2 and
Dα2

is not δ-distinguishing them.

6 A characterization of k-generated
divergences

As we have seen, k-generated divergences satisfy a num-
ber of useful properties; known divergences from the
literature can be classified according to this parameter
k—we show some examples here, more examples are
in the supplemental material. In the other direction,
we give a simple condition to ensure that a divergence
is k-generated.
Theorem 22. Let F : [0, 1]2k → [0,∞] be a quasi-
convex function. Then the divergence ∆F defined below
is k-generated and quasi-convex.

∆F
X(µ1||µ2)

def
= sup
{Ai}ki=1

partition of X

F

(
µ1(A1), · · · , µ1(Ak),
µ2(A1), · · · , µ2(Ak)

)
.

This result characterizes k-generated quasi-convex di-
vergences. It also serves as a useful tool to construct
new divergences with a hypothesis testing interpreta-
tion, by varying the quasi-convex function F .

7 Conclusion

In this paper we have developed analytical tools to
study the hypothesis testing interpretation of privacy
definitions similar to differential privacy but measured
with other statistical divergences. We introduced the
notions of k-cut and k-generatedness for divergences.
These notions quantify the number of decisions that
are needed in an experiment similar to the ones used in
hypothesis testing to fully characterize the divergence.
We used these notions to study the hypothesis test-
ing interpretation of relaxations of differential privacy
based on the Rényi divergence. These notions give a
measure of the complexity that tools for formal verifi-
cation may have. We leave the study of this connection
for future work.
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