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Linear-fractional Utility in Binary Classification”

A Calibration Analysis and Deferred Proofs from Section 4

In this section, we analyze calibration of the surrogate utility. Before proceeding, we need to describe Bayes
optimal classifier for a given metric.
Definition 13. Given a linear-fractional utility U, Bayes optimal set B ⇢ RX

is a set of functions that achieve

the supremum of U, that is, B
.
= {f | U(f) = U

† = sup
f 0 U(f 0)}.

Classifiers in B are referred to as Bayes optimal classifiers. Note that they are not necessarily unique. In this
work, we assume that B 6= ;. First, we characterize Bayes optimal set B.
Proposition 14. Given a linear-fractional utility U in Eq. (1), the Bayes optimal set B for U is

B = {f | f(x){(�a0 � �a1U(f))⌘(x) � (a1,�1U(f) � a0,�1)} > 0 8x 2 X},

where �a0
.
= a0,+1 � a0,�1 and �a1

.
= a1,+1 � a1,�1.

Proof. The maximization problem in Eq. (2) can be restated as follows.

max
�2⇤

Ū(�); Ū(�)
.
=

EX [a0,+1�(X)⌘(X) + a0,�1�(X)(1 � ⌘(X)) + b0]

EX [a1,+1�(X)⌘(X) + a1,�1�(X)(1 � ⌘(X)) + b1]
,

where ⇤
.
= {x 7! `(�f(x)) | f 2 F} ⇢ RX. First, the Fréchet derivative of Ū evaluated at x is obtained as

follows.

[r�Ū(�)]x =
(�a0⌘(x) + a0,�1)E[W1] � (�a1⌘(x) + a1,�1)E[W0]

E[W1]2
p(x)

=
p(x)

E[W1]

⇢✓
�a0 � �a1

E[W0]

E[W1]

◆
⌘(x) �

✓
a1,�1

E[W0]

E[W1]
� a0,�1

◆�

=
p(x)

E[W1]

�
(�a0 � �a1Ū(�))⌘(x) � (a1,�1Ū(�) � a0,�1)

 

Let f
† 2 F be a function that maximizes U, and �† .

= `(�f
†(·)). Then, �† maximizes Ū, and it satisfies (Koyejo

et al., 2014, lemma 12)
Z

X

[r�Ū(�†)]x�
†(x)dx �

Z

X

[r�Ū(�†)]x�(x)dx 8� 2 ⇤.

Thus, the necessary condition for local optimality is that sgn(�†(x)) = sgn([r�Ū(�†)]x) for all x 2 X.5 Since
sgn(�†(x)) = sgn(`(�f

†(x))) = sgn(f†(x)), the above condition is sgn(f†(x)) = sgn([r�Ū(�†)]x) for all x 2 X,
which is equivalent to the condition f

†(x){(�a0 � �a1U(f†))⌘(x) � (a1,�1U(f†) � a0,�1)} > 0 for all x 2 X.
This concludes the proof. Note that p(x)/E[W1] is a positive value, and Ū(�†) = U(f†).

You may confirm that Proposition 14 is consistent with Bayes optimal classifier in the classical case, accu-
racy (Bartlett et al., 2006): a Bayes optimal classifier f

† should satisfy f
†(x)(2⌘(x) � 1) > 0 for all x 2 X, since

a0,+1 = 1, a0,�1 = �1, a1,+1 = a1,�1 = b0 = b1 = 0.

Next, we state a proposition which gives a direction to prove the surrogate calibration of a surrogate utility. This
proposition follows a latter half of Gao and Zhou (2015, Theorem 2).
Proposition 15. Fix a true utility U, a surrogate utility U�, and let B a Bayes optimal set corresponding to

the utility U. Assume that

sup
f 62B

U�(f) < sup
f

U�(f). (8)

Then, the surrogate utility U� is U-calibrated.

5This can be confirmed in a similar manner to the proof of Yan et al. (2018, Theorem 3.1).
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Proof. Remind that U�

.
= sup

f
U�(f) and let

�
.
= U

⇤
�

� sup
f 62B

U�(f) > 0,

and {fl}l�1 be any sequence such that U�(fl)
l!1�! U

⇤
�
. Then, for any " > 0, there exists l0 2 Z such that

U
⇤
�

� U�(fl) < " for l � l0. Here we set " = �

2 : U
⇤
�

� U�(fl) <
�

2 for l � l0. If we assume that fl 62 B, this
contradicts with the following facts: for a function f 62 B,

U
⇤
�

� U�(f) = U
⇤
�

� sup
f 0 62B

U�(f
0)

| {z }
=�

+ sup
f 0 62B

U�(f
0) � U�(f)

| {z }
�0

� �.

Thus, it holds that fl 2 B for l � l0, that is, U(fl) = U
†, which indicates U-calibration.

Thus, the proof of U-calibration of U� is reduced to show the condition (8). Below, we show the surrogate
calibration for the F�-measure and Jaccard index utilizing Propositions 14 and 15. The proofs are based on the
above propositions, Gao and Zhou (2015, Lemma 6) and Charoenphakdee et al. (2019, Theorem 11).

Throughout the proofs, we assume that for the critical set C
† .
= {x | (�a0 � �a1U(f†))⌘(x) � (a1,�1U(f†) �

a0,�1) = 0}, P(C†) = 0, where f
† is the classifier attaining the supremum of U. For example, this holds for any

⌘-continuous distribution (Yan et al., 2018, Assumption 2).

A.1 Proof of Theorem 9

As a surrogate utility of the F�-measure following Eq. (4), we have

U
F�

�
(f) =

R
X
{(1 + �

2)(1 � �(f(x)))⌘(x)}p(x)dxR
X
{(1 + �(f(x)))⌘(x) + �(�f(x))(1 � ⌘(x)) + �2⇡}p(x)dx

.
=

EX [W
F�

0,�(f(X), ⌘(X))]

EX [W
F�

1,�(f(X), ⌘(X))]
,

where

W
F�

0,�(⇠, q)
.
= (1 + �

2)(1 � �(⇠))q,

W
F�

1,�(⇠, q)
.
= (1 + �(⇠))q + �(�⇠)(1 � q) + �

2
⇡.

From Proposition 14, the Bayes optimal set B
F� for the F�-measure is

B
F� .

= {f | f(x)((1 + �
2)⌘(x) � U

F� (f)) > 0 8x 2 X}.

We will show F�-calibration by utilizing Proposition 15, which casts our proof target into showing Eq. (8). We
prove it by contradiction. Assume that

sup
f 62B

F�

U
F�

�
(f) = sup

f

U
F�

�
(f).

This implies that there exists an optimal function f
⇤ 62 B

F� that achieves U
F�

�
(f⇤) = sup

f
U

F�

�
(f)

.
= (U

F�

�
)⇤, that

is, U
F�

�
(f⇤) = (U

F�

�
)⇤ and f

⇤(x̄)((1 + �
2)⌘(x̄) � U

F� (f⇤))  0 for some x̄ 2 X.

Let us describe the stationary condition of f
⇤. We introduce a function �f :

�f(x)
.
=

(
1 if x = x̄,

0 if x 6= x̄.
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Figure 6: The range of
(U

F�
� )⇤

(1+�2)+(U
F�
� )⇤

in

(1+�2)⌧
�2�⌧

 (U
F�

� )⇤  1.
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U
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Figure 7: The range of (1+�2)�U
F� (f⇤)

U
F� (f⇤)

in 0 <

U
F� (f⇤)  1.
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� )⇤
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�1
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(U
F
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�
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F
�

�
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F�(f ⇤)

Figure 8: If (1+�2)⌧
�2�⌧

 (U
F�

� )⇤  1, then
(U

F�
� )⇤

1+(U
F�
� )2



U
F� (f⇤).

Let G(�)
.
= U

F�

�
(f⇤ + ��f). Since U

F�

�
is Gâteaux differentiable6 and its Gâteaux derivative at f

⇤ must be zero
in any direction, we claim that G

0(0) = 0, where G
0(0) corresponds to Gâteaux derivative of U

F�

�
at f

⇤ in the

6Fréchet differentiability implies Gâteaux differentiability.



Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification

direction of �f . Here, G
0(0) is computed as

G
0(0) =

1

E[W F�

1,�(f
⇤)]2

⇢
E[W F�

1,�(f
⇤)]

Z

X

{�(1 + �
2)�0(f⇤(x))�f(x)⌘(x)}p(x)dx

�E[W F�

0,�(f
⇤)]

Z

X

{�0(f⇤(x))�f(x)⌘(x) � �
0(�f

⇤(x))�f(x)(1 � ⌘(x))}p(x)dx

�

=
1

E[W F�

1,�(f
⇤)]

⇢Z

X

{�(1 + �
2)�0(f⇤(x))�f(x)⌘(x)}p(x)dx

�(U
F�

�
)⇤
Z

X

{�0(f⇤(x))�f(x)⌘(x) � �
0(�f

⇤(x))�f(x)(1 � ⌘(x))}p(x)dx

�

=
{�(1 + �

2)�0(f⇤(x̄))⌘(x̄) � �
0(f⇤(x̄))(U

F�

�
)⇤⌘(x̄) + �

0(�f
⇤(x̄))(U

F�

�
)⇤(1 � ⌘(x̄))}p(x̄)

E[W F�

1,�(f
⇤)]

,

where E[W F�

0,�(f
⇤)] = EX [W

F�

0,�(f
⇤(X), ⌘(X))] and E[W F�

1,�(f
⇤)] = EX [W

F�

1,�(f
⇤(X), ⌘(X))]. Thus, the stationary

condition is

�(1 + �
2)�0(f⇤(x̄))⌘(x̄) � �

0(f⇤(x̄))(U
F�

�
)⇤⌘(x̄) + �

0(�f
⇤(x̄))(U

F�

�
)⇤(1 � ⌘(x̄)) = 0

n
�(1 + �

2)�0(f⇤(x̄)) � �
0(f⇤(x̄))(U

F�

�
)⇤ � �

0(�f
⇤(x̄))(U

F�

�
)⇤
o
⌘(x̄) + �

0(�f
⇤(x̄))(U

F�

�
)⇤ = 0. (9)

Since �
0(±f

⇤(x̄)) < 0, we have �(1 + �
2)�0(f⇤(x̄)) � �

0(f⇤(x̄))(U
F�

�
)⇤ � �

0(�f
⇤(x̄))(U

F�

�
)⇤ > 0. Thus, the

condition (9) becomes

⌘(x̄) =
�
0(�f

⇤(x̄))(U
F�

�
)⇤

(1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤

. (10)

From now on, we divide the cases to take care of the Bayes optimal condition f
⇤(x̄)((1+�2)⌘(x̄)�U

F� (f⇤)) � 0.

1) If f
⇤(x̄) > 0 and ⌘(x̄) <

1
1+�2 U

F� (f⇤): We show

�
0(�f

⇤(x̄))(U
F�

�
)⇤

(1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤

� U
F� (f⇤)

1 + �2
. (11)

Take the difference of the left-hand side and the right-hand side:

�
0(�f

⇤(x̄))(U
F�

�
)⇤

(1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤

� U
F� (f⇤)

1 + �2

=
(1 + �

2)�0(�f
⇤(x̄))(U

F�

�
)⇤ � (1 + �

2)�0(f⇤(x̄))UF� (f⇤) � (�0(f⇤(x̄)) + �
0(�f

⇤(x̄))(U
F�

�
)⇤UF� (f⇤)

(1 + �2)((1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤)

,

where the denominator is always negative, which reduces to show the numerator is always negative, too:

(1 + �
2)�0(�f

⇤(x̄))(U
F�

�
)⇤ � (1 + �

2)�0(f⇤(x̄))UF� (f⇤) � (�0(f⇤(x̄)) + �
0(�f

⇤(x̄))(U
F�

�
)⇤UF� (f⇤)

= U
F� (f⇤)((1 + �

2) + (U
F�

�
)⇤)

0

BBBB@

(U
F�

�
)⇤

(1 + �2) + (U
F�

�
)⇤

| {z }
�⌧/�2

(1 + �
2) � U

F� (f⇤)

UF� (f⇤)| {z }
��2

�
0(�f

⇤(x̄)) � �
0(f⇤(x̄))

1

CCCCA

 U
F� (f⇤)((1 + �

2) + (U
F�

�
)⇤) (⌧�0(�f

⇤(x̄)) � �
0(f⇤(x̄)))

 0,
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where the first inequality holds because (U
F�
� )⇤

(1+�2)+(U
F�
� )⇤

� ⌧

�2 when (1+�
2)⌧

�2�⌧
 (U

F�

�
)⇤  1 (see Figure 6)

and (1+�
2)�U

F� (f⇤)

U
F� (f⇤)

� �
2 when 0  U

F� (f⇤)  1 (see Figure 7). Note that �0(�f
⇤(x̄)) < 0. The second

inequality holds because of the assumption that limm&0 �
0(m) � ⌧ limm%0 �

0(m) and � is convex, which
implies ⌧�0(�m) � �

0(m)  0 for every m > 0.
Thus, the inequality (11) holds, which implies the following contradiction.

⌘(x̄) =
�
0(�f

⇤(x̄))(U
F�

�
)⇤

(1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤

� U
F� (f⇤)

1 + �2
> ⌘(x̄).

2) If f
⇤(x̄)  0 and ⌘(x̄) >

1
1+�2 U

F� (f⇤): As well as the previous case, we begin from the stationary condi-
tion (10). If �0(�f

⇤(x̄)) < 0,

⌘(x̄) =
�
0(�f

⇤(x̄))(U
F�

�
)⇤

(1 + �2)�0(f⇤(x̄)) + (�0(f⇤(x̄)) + �0(�f⇤(x̄)))(U
F�

�
)⇤

=
(U

F�

�
)⇤

(1 + �2) �0(f⇤(x̄))
�0(�f⇤(x̄)) +

⇣
�0(f⇤(x̄))
�0(�f⇤(x̄)) + 1

⌘
(U

F�

�
)⇤

 1

1 + �2

(U
F�

�
)⇤

1 + (U
F�

�
)⇤

 1

1 + �2
U

F� (f⇤)

< ⌘(x̄), (contradiction)

where the first inequality holds because �
0(�m)
�0(m) � 1 for every m � 0 and f

⇤(x̄)  0, and the second inequality

holds because U
F�

�
(f)  U

F� (f) (8f) implies (U
F�
� )⇤

1+(U
F�
� )⇤

 U
F� (f⇤) when (1+�

2)⌧
�2�⌧

 (U
F�

�
)⇤  1 (see Figure 8).

If �0(�f
⇤(x̄)) = 0, it is easy to see the contradiction.

Combining the above cases, it follows that

sup
f 62B

F�

U
F�

�
(f) < sup

f

U
F�

�
(f).

Eventually, we claim that U
F�

�
is F�-calibrated by using Proposition 15.

A.2 Proof of Theorem 10

As a surrogate utility of the Jaccard index following Eq. (4), we have

U
Jac

�
(f) =

R
X
(1 � �(f(x)))⌘(x)p(x)dxR

X
{�(�f(x))(1 � ⌘(x)) + ⇡}p(x)dx

,

and we have the Bayes optimal set B
Jac for the Jaccard index such as

B
Jac .

=
�
f | f(x){(1 + U

Jac(f))⌘(x) � U
Jac(f)} > 0 8x 2 X

 
,

utilizing Proposition 14. We follow the same proof technique, proof by contradiction, as we use in the proof of
Theorem 9. Assume that

sup
f 62BJac

U
Jac

�
(f) = sup

f

U
Jac

�
(f),
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�2 �1 0 1 2
(UJac

� )⇤

�2

�1

0

1

2
(UJac

�
)⇤

1+(UJac
�

)⇤

Figure 9:
(UJac

� )⇤

1+(UJac

� )⇤
is monotonically increasing if 0  (UJac

� )⇤  1.

which implies that there exits an optimal function f
⇤ 62 B

Jac that achieves U
Jac

�
(f⇤) = sup

f
U

Jac

�
(f)

.
= (UJac

�
)⇤,

that is, U
Jac

�
(f⇤) = (UJac

�
)⇤ and f

⇤(x̄){(1 + U
Jac(f⇤))⌘(x̄) � U

Jac(f⇤)}  0 for some x̄ 2 X.

The stationary condition of U
Jac

�
around f

⇤ can be stated as well as Eq. (10) in Theorem 9:

⌘(x̄) =
�
0(�f

⇤(x̄))(UJac

�
)⇤

�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤

. (12)

1) If f
⇤(x̄) > 0 and ⌘(x̄) <

UJac(f⇤)
1+UJac(f⇤) : We show

�
0(�f

⇤(x̄))(UJac

�
)⇤

�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤

� U
Jac(f⇤)

1 + UJac(f⇤)
.

First, take the difference of the left-hand side and the right-hand side.

�
0(�f

⇤(x̄))(UJac

�
)⇤

�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤

� U
Jac(f⇤)

1 + UJac(f⇤)

=
�
0(�f

⇤(x̄))(UJac

�
)⇤ � �

0(f⇤(x̄))UJac(f⇤)

(�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤)(1 + UJac(f⇤))

,

where the denominator is always negative, which reduces to show the numerator is always negative, too. If
�
0(�f

⇤(x̄)) < 0,

�
0(�f

⇤(x̄))(UJac

�
)⇤ � �

0(f⇤(x̄))UJac(f⇤)

= �
0(�f

⇤(x̄))

✓
(UJac

�
)⇤ � �

0(f⇤(x̄))

�0(�f⇤(x̄))
U

Jac(f⇤)

◆

 �
0(�f

⇤(x̄))

✓
(UJac

�
)⇤ � �

0(f⇤(x̄))

�0(�f⇤(x̄))

◆
(* U

Jac(f⇤)  1)

 �
0(�f

⇤(x̄))((UJac

�
)⇤ � ⌧)

 0, (* (UJac

�
)⇤ � ⌧)

where the second inequality holds because of the assumption that limm&0 �
0(m) � ⌧ limm%0 �

0(m) for every
m > 0, and � is convex. Thus, we admit the contradiction.

⌘(x̄) =
�
0(�f

⇤(x̄))(UJac

�
)⇤

�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤

>
U

Jac(f⇤)

1 + UJac(f⇤)
> ⌘(x̄).
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If �0(�f
⇤(x̄)) = 0, then �

0(f⇤(x̄)) = 0 from the assumption limm&0 �
0(m) � ⌧ limm%0 �

0(m), which imme-
diately results in the contradiction.

2) If f
⇤(x̄)  0 and ⌘(x̄) >

UJac(f⇤)
1+UJac(f⇤) : We begin from the stationary condition in Eq. (12). If �0(�f

⇤(x̄)) < 0,

⌘(x̄) =
�
0(�f

⇤(x̄))(UJac

�
)⇤

�0(f⇤(x̄)) + �0(�f⇤(x̄))(UJac

�
)⇤

=
(UJac

�
)⇤

�0(f⇤(x̄))
�0(�f⇤(x̄)) + (UJac

�
)⇤


(UJac

�
)⇤

1 + (UJac

�
)⇤

✓
* �

0(f⇤(x̄))

�0(�f⇤(x̄))
� 1 8f

⇤(x̄)  0

◆

 U
Jac(f⇤)

1 + UJac(f⇤)

< ⌘(x̄), (contradiction)

where the second inequality follows because U
Jac

�
(f)  U

Jac(f) (8f) and a function x 7! x

1+x
(0  x  1) is

monotonically increasing (see Figure 9).
It is easy to see contradiction in case of �0(�f

⇤(x̄)) = 0.

Combining the above cases, it follows that

sup
f 62BJac

U
Jac

�
(f) < sup

f

U
Jac(f).

Eventually, we claim that U
Jac

�
is Jaccard-calibrated by using Proposition 15.

A.3 Analysis of Accuracy-Calibration

In this subsection, we show accuracy-calibration conditions in the same manners as the F�-measure and Jaccard
index, and confirm that the ⌧ -discrepancy is not necessary in this case. As the true and a surrogate utility of
the accuracy following Eq. (4), define

U
Acc(f) =

Z

X

{`(�f(x))⌘(x) � `(�f(x))(1 � ⌘(x)) + (1 � ⇡)} p(x)dx,

U
Acc

�
(f) =

Z

X

{(1 � �(f(x)))⌘(x) � �(�f(x))(1 � ⌘(x)) + (1 � ⇡)} p(x)dx.

Proposition 16 (Accuracy-calibration). Assume that a surrogate loss � : R ! R�0 is convex, differentiable

almost everywhere, and �
0(0) < 0. Then, U

Acc

�
is accuracy-calibrated.

Proof. We have the Bayes optimal set B
Acc for the accuracy such as

B
Acc .

= {f | f(x)(2⌘(x) � 1) > 0 8x 2 X}

utilizing Proposition 14. In the same manner as the proofs of Theorems 9 and 10, assume that

sup
f 62BAcc

U
Acc

�
(f) = sup

f

U
Acc

�
(f),

and we prove by contradiction. The above assumption implies that there exists an optimal function f
⇤ 62 B

Acc

such that U
Acc

�
(f⇤) = sup

f
U

Acc

�
(f)

.
= (UAcc

�
)⇤, that is, U

Acc

�
(f⇤) = (UAcc

�
)⇤ and f

⇤(x̄)(2⌘(x̄) � 1)  0 for some
x̄ 2 X.

The stationary condition of U
Acc

�
around f

⇤ can be stated in the same way as Eq. (9):

(�0(f⇤(x̄)) + �
0(�f

⇤(x̄)))⌘(x̄) � �
0(�f

⇤(x̄)) = 0. (13)

We divide the cases based on the sign of f
⇤(x̄).
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1) f
⇤(x̄) > 0 and ⌘(x̄) <

1
2 : Since �0(�f

⇤(x̄)) < �
0(f⇤(x̄)) < 0 because of the convexity of �,

⌘(x̄) =
1

1 + �0(f⇤(x̄))
�0(�f⇤(x̄))

>
1

2
,

which contradicts with ⌘(x̄) <
1
2 . Note that �

0(f⇤(x̄))
�0(�f⇤(x̄)) 2 (0, 1) when �0(�f

⇤(x̄)) < �
0(f⇤(x̄)) < 0.

2) f
⇤(x̄) < 0 and ⌘(x̄) >

1
2 : Since �0(f⇤(x̄)) < �

0(�f
⇤(x̄)) < 0 because of the convexity of �,

⌘(x̄) =
1

1 � �0(f⇤(x̄))
�0(�f⇤(x̄))

<
1

2
,

which contradicts with ⌘(x̄) >
1
2 . Note that �

0(f⇤(x̄))
�0(�f⇤(x̄)) > 1 when �0(f⇤(x̄)) < �

0(�f
⇤(x̄)) < 0.

3) f
⇤(x̄) = 0: Since �0(f⇤(x̄)) = �

0(�f
⇤(x̄)) = �

0(0) < 0, the stationary condition (13) reduces to �0(�f
⇤(x̄)) =

0, which contradicts with �0(�f
⇤(x̄)) = �

0(0) < 0.

Thus, it follows that sup
f 62UAcc U

Acc

�
(f) < sup

f
U

Acc

�
(f). Eventually, we claim that U

Acc

�
is accuracy-calibrated by

using Proposition 15.

As we can see from Proposition 16, our surrogate calibration analysis can also be applied to the classification
accuracy. In addition, the ⌧ -discrepancy condition disappears from assumptions in the accuracy case, which
recovers the conditions Theorem 6 in Bartlett et al. (2006). Even so, our analysis still remains to be sufficient
conditions. Further analysis towards the necessary and sufficient conditions in the general calibration analysis is
left as an future work.

A.4 Calibration Analysis of General Linear-fractional Metrics

So far, we analyze the surrogate calibration for the F�-measure in Theorem 9, and Jaccard index in Theorem 10.
In addition, we take a look at how our analysis goes for the classification accuracy in Theorem 16. Now, we move
on to the generalized result of the surrogate calibration which encompasses the entire linear-fractional metrics.
Let us consider the maximization of the true utility U in Eq. (1), and the maximization of the corresponding
surrogate utility U� in Eq. (4).
Theorem 17 (U-calibration in general case). Let f

⇤
be a measurable function that achieves U�(f⇤) =

sup
f

U�(f)
.
= U

⇤
�
. Assume that a surrogate loss � : R ! R�0 is convex, non-increasing, and differentiable

almost everywhere. On the true utility, we assume the following conditions.

(1) �a0 > 0.

(2) �a1  0.

(3) a0,�1 6= 0 or a1,�1 6= 0.

(4) a1,�1 + a0,�1 6= 0.

(5) a0,+1a1,�1 + a0,�1a1,+1 > 0.

(6) If a1,�1 > 0, then U(f⇤) > �a0,�1

a1,�1
.

Moreover, assume that there exists ⌧ 2 (0, 1) such that ⌧ satisfies the following conditions.

(a) � is ⌧ -discrepant.

(b) U
⇤
�

satisfies

⌧  a0,+1 � a1,+1

a1,�1 + a0,�1
·
�a0,�1 + a1,�1U

⇤
�

a0,+1 + a1,+1U
⇤
�

.
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(c) U
⇤
�

and U(f⇤) satisfy

⌧  a0,�1 � a1,�1U(f⇤)

a1,+1U(f⇤) � a0,+1
·

a0,+1 + a1,+1U
⇤
�

�a0,�1 + a1,�1U
⇤
�

.

Then, the surrogate utility U� is U-calibrated.

The conditions (1), (2), (3), (4), and (5) exclude pathological true utilities which cannot be handled by the Bayes
optimal analysis. For instance, the Bayes optimal rule would be a classifier that always outputs positive values
without the conditions (1) and (2); on the other hand, the Bayes optimal rule would be a classifier that always
outputs negative values without the condition (3). The conditions (6), (a), (b), and (c) force the surrogate utility
U� to be calibrated to U.

Below, we give the proof of Theorem 17.

Proof of Theorem 17. We focus on the following surrogate utility U� as in Eq. (4):

U�(f) =

R
X

{a0,+1(1 � �(�f(x)))⌘(x) + a0,�1�(f(x))(1 � ⌘(x)) + b0} p(x)dxR
X

{a1,+1(1 + �(�f(x)))⌘(x) + a1,�1�(f(x))(1 � ⌘(x)) + b1} p(x)dx

=
EX [W0,�(f(X), ⌘(X))]

EX [W1,�(f(X), ⌘(X))]
,

where

W0,�(⇠, q)
.
= a0,+1(1 � �(�⇠))q + a0,�1�(⇠)(1 � q) + b0,

W1,�(⇠, q)
.
= a1,+1(1 + �(�⇠))q + a1,�1�(⇠)(1 � q) + b1.

Proposition 14 tells us that the Bayes optimal set B for the utility U is

B = {f | f(x){(�a0 � �a1U(f))⌘(x) � (a1,�1U(f) � a0,�1)} > 0 8x 2 X}.

We prove U-calibration by contradiction. Assume that

sup
f 62B

U�(f) = sup
f

U�(f).

This implies that there exists x̄ 2 X such that f
⇤(x̄){(�a0 � �a1U(f⇤))⌘(x̄) � (a1,�1U(f⇤) � a0,�1)} � 0.

Let us describe the stationary condition of U� at f
⇤ in the same manner as the proof of Theorem 9. We introduce

a function �f :

�f(x)
.
=

(
1 if x = x̄,

0 if x 6= x̄.

Let G(�)
.
= U�(f⇤ + ��f), then the stationary condition is G

0(0) = 0. Here, G
0(0) is computed as

G
0(0) =

1

E[W1,�(f⇤)]2

·
⇢
E[W1,�(f

⇤)]

Z

X

(�a0,+1�
0(f⇤(x))⌘(x) � a0,�1�

0(�f
⇤(x))(1 � ⌘(x)))�f(x)p(x)dx

�E[W0,�(f
⇤)]

Z

X

(a1,+1�
0(f⇤(x))⌘(x) � a1,�1�

0(�f
⇤(x))(1 � ⌘(x)))�f(x)p(x)dx

�

=
1

E[W1,�(f⇤)]

⇢Z

X

(�a0,+1�
0(f⇤(x))⌘(x) � a0,�1�

0(�f
⇤(x))(1 � ⌘(x)))�f(x)p(x)dx

�U
⇤
�

Z

X

(a1,+1�
0(f⇤(x))⌘(x) � a1,�1�

0(�f
⇤(x))(1 � ⌘(x)))�f(x)p(x)dx

�

=
1

E[W1,�(f⇤)]
{(�a0,+1�

0(f⇤(x̄))⌘(x̄) � a0,�1�
0(�f

⇤(x̄))(1 � ⌘(x̄)))

�U
⇤
�
(a1,+1�

0(f⇤(x̄))⌘(x̄) � a1,�1�
0(�f

⇤(x̄))(1 � ⌘(x̄)))
 

,
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where E[W0,�(f⇤)] = EX [W0,�(f⇤(X), ⌘(X))] and E[W1,�(f⇤)] = EX [W1,�(f⇤(X), ⌘(X))]. Thus, the stationary
condition is

�a0,+1�
0(f⇤(x̄))⌘(x̄) � a0,�1�

0(�f
⇤(x̄))(1 � ⌘(x̄))

�a1,+1�
0(f⇤(x̄))⌘(x̄)U⇤

�
+ a1,�1�

0(�f
⇤(x̄))(1 � ⌘(x̄)) = 0,

which is equivalent to

⌘(x̄) =
(�a0,�1 + a1,�1U

⇤
�
)�0(�f

⇤(x̄))

(a0,+1 � a1,+1U
⇤
�
)�0(f⇤(x̄)) + (�a0,�1 + a1,�1U

⇤
�
)�0(�f⇤(x̄))

(
.
= ⌘̄STA). (14)

From now on, we divide the cases to take care of the Bayes optimal condition f
⇤(x̄){(�a0 � �a1U(f⇤))⌘(x̄) �

(a1,�1U(f⇤)�a0,�1)} � 0. Since �a0��a1U(f⇤) > 0 due to �a0 > 0 and �a1  0, the Bayes optimal condition
can be rewritten as f

⇤(x̄){⌘(x̄) � a1,�1U(f⇤)�a0,�1

�a0��a1U(f⇤) } � 0.

1) If f
⇤(x̄) > 0 and ⌘(x̄) <

a1,�1U(f⇤)�a0,�1

�a0��a1U(f⇤) :

Let ⌘̄OPT

.
= a1,�1U(f⇤)�a0,�1

�a0��a1U(f⇤) . Note that a0,�1 � a1,�1U(f⇤) < 0 and �a0,�1 + a1,�1U
⇤
�

> 0 since a0,�1  0,
a1,�1 � 0, and either a0,�1 or a1,�1 is non-zero (condition (3)). We show the contradiction ⌘̄OPT  ⌘̄STA,
which can be transformed as follows.

⌘̄OPT  ⌘̄STA () 1

1 + a1,+1U(f⇤)�a0,+1

a0,�1�a1,�1U(f⇤)

 1

1 +
a0,+1+a1,+1U⇤

�

�a0,�1+a1,�1U⇤
�

· �0(f⇤(x̄))
�0(�f⇤(x̄))

,

() a1,+1U(f⇤) � a0,+1

a0,�1 � a1,�1U(f⇤)
�

a0,+1 + a1,+1U
⇤
�

�a0,�1 + a1,�1U
⇤
�| {z }

>0

· �
0(f⇤(x̄))

�0(�f⇤(x̄))
.

() a1,+1U(f⇤) � a0,+1

a0,�1 � a1,�1U(f⇤)
| {z }

.
=H(U(f⇤))

·
�a0,�1 + a1,�1U

⇤
�

a0,+1 + a1,+1U
⇤
�

� �
0(f⇤(x̄))

�0(�f⇤(x̄))
. (15)

If a1,�1 6= 0, we have

H(t) =

a0,+1a1,�1+a0,�1a1,+1

a
2
1,�1

t + a0,�1

a1,�1

� a1,+1

a1,�1
.

Since a0,+1a1,�1+a0,�1a1,+1

a
2
1,�1

> 0, H is monotonically decreasing on �a0,�1

a1,�1
< t  1. Together with the

assumption U(f⇤) > �a0,�1

a1,�1
, we have H(U(f⇤)) � H(1) = a0,+1�a1,+1

a1,�1�a0,�1
.

If a1,�1 = 0, H(t) = a1,+1

a0,�1
t � a0,+1

a0,�1
, noting that either a0,�1 or aa,�1 is non-zero (condition (3)). Here, we

have H(U(f⇤)) � H(1) as well since H is a decreasing linear function.
Since � is ⌧ -discrepant and ⌧ satisfies the condition (b),

�
0(f⇤(x̄))

�0(�f⇤(x̄))
 ⌧

 a0,+1 � a1,+1

a1,�1 + a0,�1| {z }
=H(1)

·
�a0,�1 + a1,�1U

⇤
�

a0,+1 + a1,+1U
⇤
�

(using (b))

 a1,+1U(f⇤) � a0,+1

a0,�1 � a1,�1U(f⇤)
| {z }

=H(U(f⇤))

·
�a0,�1 + a1,�1U

⇤
�

a0,+1 + a1,+1U
⇤
�

,

which concludes Eq. (15) and ⌘̄OPT  ⌘̄STA (contradiction).
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2) If f
⇤(x̄)  0 and ⌘(x̄) >

a1,�1U(f⇤)�a0,�1

�a0��a1U(f⇤) :

We show the contradiction ⌘̄OPT � ⌘̄STA, which can be transformed in the same way as Eq. (15) as follows.

a1,+1U(f⇤) � a0,+1

a0,�1 � a1,�1U(f⇤)
·
�a0,�1 + a1,�1U

⇤
�

a0,+1 + a1,+1U
⇤
�

 �
0(f⇤(x̄))

�0(�f⇤(x̄))
.

() a0,�1 � a1,�1U(f⇤)

a1,+1U(f⇤) � a0,+1
·

a0,+1 + a1,+1U
⇤
�

�a0,�1 + a1,�1U
⇤
�

� �
0(�f

⇤(x̄))

�0(f⇤(x̄))
. (16)

Note that a1,+1U(f⇤) � a0,+1 > 0 and �a0,�1 + a1,�1U
⇤
�

> 0 since a0,+1 � 0, a0,�1  0, a1,+1 � 0, and
a1,�1 � 0. Since � is ⌧ -discrepant and ⌧ satisfies the condition (c),

�
0(�f

⇤(x̄))

�0(f⇤(x̄))
 ⌧  a0,�1 � a1,�1U(f⇤)

a1,+1U(f⇤) � a0,+1
·

a0,+1 + a1,+1U
⇤
�

�a0,�1 + a1,�1U
⇤
�

, (using (c))

which concludes Eq. (16) and ⌘̄OPT � ⌘̄STA (contradiction).

Combining the above cases, it follows that

sup
f 62B

U�(f) < sup
f

U�(f).

Eventually, we claim that U� is U-calibrated using Proposition 14.

A.5 Non-negativity of Optimal Surrogate Utilities

Here, we briefly discuss that the optimal surrogate utilities are non-negative even though the numerator can be
negative. Let us focus on the F� case:

W0,�(⇠, q) = (1 + �
2)(1 � �(⇠))q,

W1,�(⇠, q) = (1 + �(⇠))q + �(�⇠)(1 � q) + �
2
⇡,

U�(f) =
EXW0,�(f(X), ⌘(X))

EXW1,�(f(X), ⌘(X))
,

and let f
⇤ and f̌ be suprema of U� and EX [W0(f(X), ⌘(X))] in f within all measurable functions, respectively.

Then,

U�(f
⇤) � U�(f̌) =

sup
f 0 EXW0,�(f 0(X), ⌘(X))

EX [W1,�(f̌(X), ⌘(X))]

(a)
=

EX [H0,�(⌘(X))]

EX [W1,�(f̌(X), ⌘(X))]

=
(1 + �

2)⇡

EX [W1,�(f̌(X), ⌘(X))]

� 0,

where H0,�(q)
.
= sup

⇠2R W0,�(⇠, q). The equality (a) holds under a certain regularity condition (Steinwart, 2007,
Lemma 2.5). Hence, we confirm that the optimal value of U� is non-negative.

The same discussion holds for the Jaccard case.
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B Proof of Quasi-concavity of the Surrogate Utility

Proof of Lemma 5. Define an ↵-super-level set of bU� restricted in F̄ as A↵

.
= {f 2 F̄ | bU�(f) � ↵}. It is enough

to show A↵ is a convex set for any ↵ � 0 owing to f 2 F̄.

Fix any ↵ � 0. Then,

bU�(f) � ↵ ()
1
m

P
m

i=1
fW0,�(f(xi), yi)

1
n�m

P
n

j=m+1
fW1,�(f(xj), yj)

� ↵

() 1

m

mX

i=1

fW0,�(f(xi), yi) � ↵
1

n � m

nX

j=m+1

fW1,�(f(xj), yj)

| {z }
(⇤)

� 0.

Here, 1
m

P
m

i=1
fW0,�(f(xi), yi) is concave in f since it is a non-negative sum of concave functions. Note that

fW0,�(f(xi), yi) is concave in f for any (xi, yi) due to the definition of fW0,� in Eq. (3) and the assumption � is
convex. Similarly, 1

n�m

P
n

j=m+1
fW1,�(f(xj), yj) is convex as well. Thus, (⇤) is concave in f , which means that

A↵ is a convex set since any super-level sets of a concave function is convex.

Hence, we confirm that A↵ is convex for any ↵ � 0.
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C Proof of Uniform Convergence

First, we need carefully analyze our non-smooth surrogate loss to take handle of the Rademacher complex-
ity (Bartlett and Mendelson, 2002), which is defined as follows.

Definition 18 (Rademacher complexity). Let S
.
= {z1, . . . , zn} be a sample with size n. Let G

.
= {g | Z ! R}

be a class of measurable functions, and �
.
= (�1, . . . ,�n) be the Rademacher variables, that is, random variables

taking +1 and �1 with even probabilities. Then, the Rademacher complexity of G of the sample size n is defined

as

Rn(G)
.
= ESE�

"
sup
g2G

�����
1

n

nX

i=1

�ig(Zi)

�����

#
.

Usually, we analyze the Rademacher complexity of the composite function class ��F
.
= {(x, y) 7! �(yf(x)) | f 2

F} by using the Ledoux-Talagrand’s contraction inequality (Ledoux and Talagrand, 1991) when the surrogate �
is Lipschitz continuous: Rn(� � F)  2⇢�Rn(F), where ⇢� is the Lipschitz norm of �. On the other hand, we
need to deal with the case of the uniform convergence of gradients, which requires smoothness of the surrogate,
while ⌧ -discrepant loss is non-smooth surrogates. Thus, we need an alternative analysis.

Lemma 19. Assume that � is ⌧ -discrepant and can be decomposed as �(m) = �+1(m)1{m>0}+��1(m)1{m0}.

For k = 0, 1, denote fW 0
k,�

� F
.
= {(x, y) 7! fW 0

k,�
(f(x), y) | f 2 F}. Then,

Rn(fW 0
k,�

� F)  2(�+1 + ��1)Rn(F).

Proof. First, we prove for k = 0. Note that fW 0
0,�(f(x),+1) = (1 � �(f(x)))0 = ��0(f(x)), and that

fW 0
0,�(f(x), �1) = (��(�f(x)))0 = �

0(�f(x)), thus, fW 0
0,�(f(x), y) = �y�

0(yf(x)).

Rn(fW 0
0,� � F)

= ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i
fW 0

0,�(f(xi), yi)

�����

#

= ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i(�yi�
0(yif(xi)))

�����

#

= ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0(yif(xi))

�����

#

(* �i and ��iyi are distributed in the same way for a fixed yi)

= ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i

�
�
0
�1(yif(xi))1{yif(xi)0} + �

0
+1(yif(xi))1{yif(xi)>0}

 
�����

#

 ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0
�1(yif(xi))1{yif(xi)0}

�����

#

| {z }
(A)

+ ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0
+1(yif(xi))1{yif(xi)>0}

�����

#

| {z }
(B)

,

where the last inequality is just the triangular inequality. For (A), let  �1(m)
.
= �

0
�1(m) m

|m| if m 6= 0, and
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 �1(0)
.
= 0. Since

 
0
�1(m) =

( 0
�1(m)m)0|m| � �

0
�1(m)m · (|m|)0

m2

=
�
00
�1(m)m|m| + �

0
�1(m)|m| � �

0
�1(m)m · m

|m|

m2

=
�
00
�1(m)m3 + �

0
�1(m)m2 � �

0
�1(m)m2

m2|m|

= �
00
�1(m)

m

|m| ,

the Lipschitz norm of  �1 can be computed as

sup
f2F,(x,y)2X⇥Y

| 0
�1(f(x))| = sup

f,x,y

�����
00
�1(yf(x))

yf(x)

|yf(x)|

����

= sup
f,x,y

|�00�1(yf(x))| · sup
f,x,y

����
yf(x)

|yf(x)|

����

= ��1.

Note that the Lipschitz norm of �0�1 is ��1 because ��1 is ��1-smooth. Then, we further bound (A) by using

the fact 1{yif(xi)0} =
1� yif(xi)

|yif(xi|
2 .

(A) = ES,�

2

4sup
f2F

������
1

n

nX

i=1

�i�
0
�1(yif(xi))

1 � yif(xi)
|yif(xi)|

2

������

3

5

 1

2
ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0
�1(yif(xi))

�����

#
+

1

2
ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0
�1(yif(xi))

yif(xi)

|yif(xi)|

�����

#

(* triangular inequality)

=
1

2
ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i�
0
�1(yif(xi))

�����

#
+

1

2
ES,�

"
sup
f2F

�����
1

n

nX

i=1

�i �1(yif(xi))
yif(xi)

|yif(xi)|

�����

#

=
1

2
Rn(�

0
�1 � F) +

1

2
Rn( �1 � F)

 1

2
· 2��1Rn(F) +

1

2
· 2��1Rn(F)

= 2��1Rn(F),

where the inequality is the result of the Ledoux-Talagrand’s contraction inequality (Ledoux and Talagrand, 1991,
Theorem 4.12). Note that both �0�1 and  �1 are ��1-Lipschitz. We can prove that (B) is bounded by �+1Rn(F)
from the above as well. Therefore, the claim is supported. We can prove the case k = 1 in the same manner.

Now, we move on to the proof of Lemma 11.

Proof of Lemma 11. We write V�(f✓) as V�(✓). If we explicit note for which sample we take the empirical average
in bV�(✓), let us write bV�(✓; S). Let E(S)

.
= sup

✓2⇥ kbV�(✓; S) � V�(✓)k. For simplicity, we write zi
.
= (xi, yi) and

fW0,�(✓; zi)
.
= fW0,�(f✓(xi), yi). First, we observe E(S) admits the bounded difference property (McDiarmid,

1989).
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Denote that S
.
= {zi}ni=1 and S

0 .
= {z1, . . . , z

0
k
, . . . , zn}. If 1  k  m,

sup
S⇢X⇥Y,z0

k2X⇥Y

|E(S) � E(S0)|

.
= sup

S,z0
k

����sup
✓2⇥

kbV�(✓; S) � V�(✓)k � sup
✓2⇥

kbV�(✓; S
0) � V�(✓)k

����

 sup
S,z0

k,✓

kbV�(✓; S) � bV�(✓; S
0)k (* triangular inequality)

=
1

m(n � m)
sup
S,z0

k,✓

������
{rfW0,�(✓; zk) � rfW0,�(✓; z

0
k
)}

nX

j=m+1

fW1,�(✓; zj)

�{fW0,�(✓; zk) � fW0,�(✓; z
0
k
)}

nX

j=m+1

rfW1,�(✓; zj)

������

 1

m(n � m)
sup
S,z0

k,✓

8
<

:

⇣
krfW0,�(✓; zk)k + krfW0,�(✓; z

0
k
)k
⌘ nX

j=m+1

|fW1,�(✓; zj)|

+
⇣
|fW0,�(✓; zk)| + |fW0,�(✓; z

0
k
)|
⌘ nX

j=m+1

krfW1,�(✓; zj)k

9
=

;

 2⇢0cX · (n � m)c1 + 2c0 · (n � m)⇢1cX
m(n � m)

=
4cX(⇢1c0 + ⇢0c1)

n
,

where the second inequality also holds due to the triangular inequality, and the last inequality follows from the
fact that fW0,� and fW1,� are ⇢0-/⇢1-Lipschitz and bounded by c0 and c1, respectively. The same holds for the
case m + 1  k  n.

Thus, E is the bounded difference with a constant (4cX(⇢1c0 + ⇢0c1))/n for each index, and we can obtain the
following inequality by McDiarmid’s inequality (McDiarmid, 1989):

P[E(S) � ES[E(S)] > ✏]  2 exp

✓
� n✏

2

8c2X(⇢1c0 + ⇢0c1)2

◆
,

which is equivalent to

E(S) � ES[E(S)] 

s
8c2X(⇢1c0 + ⇢0c1)2 log

2
�

n
,

with probability at least 1 � �.

Next, we bound ES[E(S)] by the symmetrization device (Ledoux and Talagrand, 1991, Lemma 6.3).

ES[E(S)] = ES


sup
✓2⇥

kbV�(✓; S) � V�(✓)k
�

 ES sup
✓

������
1

m(n � m)

mX

i=1

nX

j=m+1

fW1,�(✓; zj)rfW0,�(✓; zi) � E[W1,�rW0,�]

������
| {z }

(A)

+ ES sup
✓

������
1

m(n � m)

mX

i=1

nX

j=m+1

fW0,�(✓; zi)rfW1,�(✓; zj) � E[W0,�rW1,�]

������
| {z }

(B)

, (17)
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where the second line is the result of the triangular inequality, and

ES[(A)]

= ES sup
✓

������
1

m(n � m)

mX

i=1

nX

j=m+1

fW1,�(✓; zj)
⇣
rfW0,�(✓; zi) � E[rW0,�]

⌘

+
1

m(n � m)

mX

i=1

nX

j=m+1

E[rW0,�]
⇣
fW1,�(✓; zj) � E[W1,�]

⌘
������

 ES sup
✓

8
<

:
1

m(n � m)

nX

j=m+1

|fW1,�(✓; zj)| ·

�����

mX

i=1

rfW0,�(✓; zi) � E[rW0,�]

�����

+
1

m(n � m)

mX

i=1

kE[rW0,�]k ·

������

nX

j=m+1

fW1,�(✓; zj) � E[W1,�]

������

9
=

;

 ES

2

4sup
✓

8
<

:c1

�����
1

m

mX

i=1

rfW0,�(✓; zi) � E[rW0,�]

�����+ ⇢0cX

������
1

n � m

nX

j=m+1

fW1,�(✓; zj) � E[W1,�]

������

9
=

;

3

5

= c1 ES

"
sup
✓

�����
1

m

mX

i=1

rfW0,�(✓; zi) � E[rW0,�]

�����

#

| {z }
(A’)

+⇢0cX ES

2

4sup
✓

������
1

n � m

nX

j=m+1

fW1,�(✓; zj) � E[W1,�]

������

3

5

| {z }
(A”)

,

where the first inequality is the triangular inequality. Now we introduce the Rademacher random variables
�1:n

.
= {�1, . . . ,�n} that are independently and uniformly distributed on {+1, �1}.

• For (A’), we can bound it from the above by the symmetrization device and the fact that k · k2  k · k1.

(A’) = ES

"
sup
✓

�����
1

m

mX

i=1

rfW0,�(✓; zi) � E[rW0,�]

�����

#

 ES,�1:m

"
sup
✓

dX

l=1

�����
1

n

mX

i=1

r✓l
fW0,�(✓; zi) � E[r✓lW0,�]

�����

#
(k · k2  k · k1)


dX

l=1

ES,�1:m

"
sup
✓

�����
2

m
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�ir✓l
fW0,�(✓; zi)

�����

#
(symmetrization device)

=
dX

l=1

2ES,�1:m

"
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✓

�����
1

m
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�i
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0,�(✓; zi) · xl

�����
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(f✓(x) = ✓

>
x)


dX

l=1

2ES,�1:m

"
sup
✓

�����
1

m

mX

i=1

�i
fW 0

0,�(✓; zi)

����� · cX

#
(|xl|  kxk  cX 8x 2 X)

 4dcX(�+1 + ��1)Rm(F)

= 4dcX(�+1 + ��1)Rn/2(F),

where the last inequality uses Lemma 19.
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• For (A”), we can bound it from the above by the symmetrization device.

(A”) = ES

2

4sup
✓

������
1

n � m

nX

j=m+1

fW1,�(✓; zj) � E[W1,�]

������

3

5

 ES,�m:n�m

2

4sup
✓

������
2

n � m

nX

j=m+1

�j
fW1,�(✓; zi)

������

3

5 (symmetrization device)

 4⇢1Rn�m(F) (contraction inequality)
= 4⇢1Rn/2(F),

where the second inequality uses the Ledoux-Talagrand’s contraction inequality (Ledoux and Talagrand,
1991, Theorem 4.12), together with the fact that fW1,� is ⇢1-Lipschitz continuous.

Thus, Eq. (17) can be bounded as follows.

ES[E(S)]

 c1(A’) + ⇢0cX(A”) + ES[(B)]
 4dcXc1(�+1 + ��1)Rn/2(F) + 4⇢0⇢1cXRn/2(F) + 4dcXc0(�+1 + ��1)Rn/2(F) + 4⇢1⇢0cXRn/2(F)| {z }

can be proven in the same manner as (A)

= (4cXc0d� + 4cXc1d� + 8⇢0⇢1cX)Rn/2(F) (�
.
= �+1 + ��1)

 (4cXc0d� + 4cXc1d� + 8⇢0⇢1cX)

p
2cXc⇥p

n
,

where the last inequality comes from Mohri et al. (2012, Theorem 4.3), which results in Rn(F) = Rn({x 7! ✓
>

x |
✓ 2 ⇥})  cXc⇥/

p
n.

After all, we obtain the desired uniform bound: with probability at least 1 � �,

sup
✓2⇥

kbV�(✓; S) � V�(✓)k = E(S)

 ES[E(S)] +

p
8cX(⇢1c0 + ⇢0c1)

q
log 2

�p
n


(4cXc0d� + 4cXc1d� + 8⇢0⇢1cX) +

p
8cX(⇢1c0 + ⇢0c1)

q
log 2

�p
n

.



Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification

D Experimental Results

D.1 Details of Datasets

Datasets that we use throughout this section are obtained from the UCI Machine Learning Repository (Lichman,
2013) and the LIBSVM (Chang and Lin, 2011). For those which have independent training data, validation
data, and test data, all of them are merged into one dataset. We randomly split the original data with the ratio
8 : 2, and the former is used for training while the latter is used for evaluation. Each feature value is scaled
between zero and one.

Table 4: Details of datasets.

Dataset dimension sample size class-prior
adult 123 48842 0.239

australian 14 690 0.445
breast-cancer 10 683 0.350

cod-rna 8 331152 0.333
diabetes 8 768 0.651

german.numer 24 1000 0.300
heart 13 270 0.444

ionosphere 34 351 0.641
mushrooms 112 8124 0.482
phishing 68 11055 0.557
phoneme 5 5404 0.293

skin_nonskin 3 245057 0.208
sonar 60 208 0.394

spambase 57 4601 0.394
splice 60 1000 0.517
w8a 300 64700 0.030

D.2 Details of Baseline Methods

We describe the details of baseline methods. Baselines 2 and 3 are also mentioned in Sec. 6.

Baseline 1 (ERM): The first baseline is the vanilla empirical risk minimization, which does not optimize the
metric of our interest but accuracy. The hinge loss and `2-regularization are employed with the regularization
parameter 10�2.

Baseline 2 (W-ERM): Weighted empirical risk minimization, or cost-sensitive empirical risk minimization, is
often used to optimize non-linear performance metrics (Koyejo et al., 2014; Narasimhan et al., 2014; Parambath
et al., 2014). Here, we applied a simple approach: Find a cost parameter from a given cost parameter space,
which gives the maximum validation performance of a classifier trained by the cost-sensitive empirical risk
minimization (Scott, 2012). The training dataset is split to 4 to 1 at random, and the latter is saved for
validation of a regularization parameter. The former set is further split to 9 to 1 at random, and the former
90% is used for training the base classifier, while the latter 10% is used for the validation. As the base cost-
sensitive learner, we use the hinge loss minimizer with `2-regularization (a regularization parameter is chosen
from {10�1

, 10�3
, 10�5} by cross validation). The cost parameter is chosen from the range [10�3

, 1�10�3] evenly
split to 20 ranges, that is,

n
10�3 + 1�2·10�3

20 i | i = 1, . . . , 20
o

.

Baseline 3 (Plug-in): Plug-in estimator is one of the other common methods to optimize the non-linear
performance metrics (Koyejo et al., 2014; Yan et al., 2018), which is the two-step method: To estimate the class
posterior probability b⌘(x) = p(y = +1|x) first, and then to decide the optimal threshold b�. The classifier is
constructed as x 7! sgn(b⌘(x) � b�). The training dataset is split to 4 to 1 at random, and the latter is saved
for validation of a regularization parameter. The former set is further split to 9 to 1 at random, and they
are independently used for the first and second step. For estimating p(y = +1|x) (the first step), the logistic
regression is used (Reid and Williamson, 2009), with `2-regularization (a regularization parameter is chosen from
{10�1

, 10�3
, 10�5} by cross validation). For deciding b�, we pick a threshold with the highest validation metric

from
n
10�3 + 1�2·10�3

20 i | i = 1, . . . , 20
o

.
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D.3 Convergence Comparison

Figures 10 and 11 are the full version of the convergence comparison of U-GD and U-BFGS. Figure 10 shows
the result of F1-measure, and Figure 11 shows the result of Jaccard index. The vertical axes show test metric
values, where the higher the better. Note that both F1-measure and Jaccard index ranges over zero to one. The
horizontal axes show the number of iterations. For each dataset, metric, and method, we ran 300 iterations to
see their convergence behaviors.

Overall, U-BFGS shows faster convergence than U-GD in terms of the number of iterations. In almost all
cases, U-BFGS converges within 30 iterations, except german.numer and mushrooms in Jaccard case. Moreover,
it usually achieves higher performance than U-GD. U-GD convergences require at least around 100 iterations
(mushrooms and phishing in F1 case), and sometimes it does not converge even within 300 iterations such as
heart and ionosphere in F1 and Jaccard cases.

D.4 Performance Comparison with Benchmark Data

Benchmark results are shown in Tabs. 5 and 6. Each entry shows its final metric value for either F1-measure or
Jaccard index. For each dataset, we first picked the method with the highest test performance as a outperforming
method within that dataset, then conducted one-sided t-test with the significant level 5%, and they are also
regarded as outperforming methods if the performance differences are not significant as a result of hypothesis
tests. Outperforming methods are indicated in bold-faces.

As general tendencies, we observe that U-BFGS and Plug-in work well for both F1-measure and Jaccard index.
As for F1-measure, their performances are competitive, while U-BFGS is better as for Jaccard index. In practice,
both U-BFGS and Plug-in are worth being tried.

As for other methods: ERM does not work good as we expect, because it does not optimize the metrics of our
interests, F1-measure and Jaccard index, at all. W-ERM does not work as well as Plug-in even though both of
them are known to be consistent to the linear-fractional utilities. We may need more finer split of the threshold
search space, or try a binary-search-type algorithm provided by recent work (Yan et al., 2018). U-GD does not
work as well as U-BFGS contrary to our expectation. We may need more iterations to make U-GD converge, as
we see in Figures 10 and 11. Note that we ran 100 iterations for both U-GD and U-BFGS for the results shown
in Tabs. 5 and 6.

Table 5: Results of the F1-measure: 50 trials are conducted for each pair of a method and dataset. Standard errors
(multiplied by 104) are shown in parentheses. Bold-faces indicate outperforming methods, chosen by one-sided t-test with
the significant level 5%.

(F1-measure) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in
adult 0.617 (101) 0.660 (11) 0.639 (51) 0.676 (18) 0.681 (9)

australian 0.843 (41) 0.844 (45) 0.820 (123) 0.814 (116) 0.827 (51)
breast-cancer 0.963 (31) 0.960 (32) 0.950 (37) 0.948 (44) 0.953 (40)

cod-rna 0.802 (231) 0.594 (4) 0.927 (7) 0.927 (6) 0.930 (2)
diabetes 0.834 (32) 0.828 (31) 0.817 (50) 0.821 (40) 0.820 (42)
fourclass 0.638 (70) 0.638 (64) 0.601 (124) 0.591 (212) 0.618 (64)

german.numer 0.561 (102) 0.580 (74) 0.492 (188) 0.560 (107) 0.589 (73)
heart 0.796 (101) 0.802 (99) 0.792 (80) 0.764 (151) 0.764 (137)

ionosphere 0.908 (49) 0.901 (43) 0.883 (104) 0.842 (217) 0.897 (54)
madelon 0.666 (19) 0.632 (67) 0.491 (293) 0.639 (110) 0.663 (24)

mushrooms 1.000 (1) 0.997 (7) 1.000 (1) 1.000 (2) 0.999 (4)
phishing 0.937 (29) 0.943 (7) 0.944 (8) 0.940 (12) 0.944 (8)
phoneme 0.648 (27) 0.559 (22) 0.530 (201) 0.616 (135) 0.633 (35)

skin_nonskin 0.870 (3) 0.856 (4) 0.854 (7) 0.877 (8) 0.838 (5)
sonar 0.735 (95) 0.740 (91) 0.706 (121) 0.655 (189) 0.721 (113)

spambase 0.876 (27) 0.756 (61) 0.887 (42) 0.881 (58) 0.903 (18)
splice 0.785 (49) 0.799 (46) 0.785 (55) 0.771 (67) 0.801 (45)
w8a 0.297 (80) 0.284 (96) 0.735 (35) 0.742 (29) 0.745 (26)
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Table 6: Results of the Jaccard index: 50 trials are conducted for each pair of a method and dataset. Standard errors
(multiplied by 104) are shown in parentheses. Bold-faces indicate outperforming methods, chosen by one-sided t-test with
the significant level 5%.

(Jaccard index) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in
adult 0.499 (44) 0.498 (11) 0.471 (51) 0.510 (20) 0.516 (10)

australian 0.735 (63) 0.733 (59) 0.702 (144) 0.693 (143) 0.707 (76)
breast-cancer 0.921 (54) 0.918 (55) 0.905 (66) 0.903 (78) 0.913 (69)

cod-rna 0.854 (3) 0.785 (8) 0.864 (11) 0.865 (9) 0.869 (3)
diabetes 0.714 (44) 0.702 (50) 0.692 (70) 0.698 (56) 0.695 (60)
fourclass 0.469 (69) 0.457 (68) 0.436 (112) 0.434 (171) 0.449 (66)

german.numer 0.433 (64) 0.429 (69) 0.335 (153) 0.391 (98) 0.418 (71)
heart 0.665 (135) 0.675 (135) 0.664 (102) 0.629 (178) 0.626 (163)

ionosphere 0.826 (76) 0.829 (65) 0.796 (134) 0.749 (245) 0.815 (87)
madelon 0.495 (31) 0.459 (69) 0.346 (225) 0.474 (100) 0.496 (27)

mushrooms 0.999 (2) 0.995 (4) 1.000 (1) 0.999 (4) 0.997 (7)
phishing 0.883 (43) 0.893 (11) 0.894 (14) 0.888 (22) 0.894 (15)
phoneme 0.435 (51) 0.436 (24) 0.371 (160) 0.450 (104) 0.461 (34)

skin_nonskin 0.744 (5) 0.751 (5) 0.746 (10) 0.780 (13) 0.722 (7)
sonar 0.600 (125) 0.600 (111) 0.552 (147) 0.495 (202) 0.572 (134)

spambase 0.827 (22) 0.708 (22) 0.798 (67) 0.790 (86) 0.824 (31)
splice 0.670 (60) 0.672 (56) 0.646 (71) 0.629 (84) 0.672 (57)
w8a 0.496 (151) 0.452 (28) 0.580 (44) 0.590 (35) 0.595 (33)

D.5 Sample Complexity

It is interesting to study the relationship between the metric performances and the size of samples, because
we expect Plug-in, which requires to estimate probabilities accurately, does not work well when the size of
samples is quite small. Figures 12 and 13 show the sample complexity results. Even though learning is not
stable for small samples (e.g., heart and w8a), we can observe clear differences in some cases such as cod-
rna, diabetes, german.numer, ionosphere, sonar, and splice in F1-measure, and australian, cod-rna, diabetes,
ionosphere, phishing, sonar, and spambase in Jaccard index, where either U-GD or U-BFGS works better than
Plug-in even if sample sizes are quite small around 20 to 40. In addition, Plug-in seldom works significantly
better than the gradient-based methods in the cases where sample sizes range around 100 to 400 as investigated
in this section. This is contrary to the behavior shown in Tabs. 5 and 6, where the full-size datasets are used to
train classifiers.

As a conclusion, it can be a good option to consider using the gradient-based methods where sample sizes are
very small.

D.6 Performance Sensitivity on ⌧

Lastly, we see the performance sensitivity on the choices of ⌧ . We change ⌧ 2 {0.1, 0.2, . . . , 0.9} and run U-GD
and U-BFGS for both the F1-measure and Jaccard index. The results are summarized in Figures 14 and 15.
From these figure, we can say there is a tendency that the performance becomes better as ⌧ becomes closer to
1. For example, the below combinations of the datasets and metrics have such a tendency.

• australian, breast-cancer, german.numer, heart, ionosphere, mushrooms, phishing, and splice in the F�-
measure,

• australian, mushrooms, phishing, and splice in the Jaccard index.

However, there are also other cases where there exist extrema of the performance with respect to the choices of
⌧ . For example, the below combinations of the datasets and metrics have such a tendency.

• german.numer and sonar in the F�-measure,

• breast-cancer, heart, ionosphere and sonar in the Jaccard index.
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From our theoretical results in Theorems 9 and 10, we cannot determine whether the surrogate utility is calibrated
or not if ⌧ exceeds about 0.33 for the F�-measure, and becomes closer to 1.0 for the Jaccard index. These
thresholds are not so clear in Figures 14 and 15 since the conditions on ⌧ is merely sufficient conditions, as we
explain in Sec. 4. Further analyses on the discrepancy parameter are left for future work.
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Figure 10: Convergence comparison of the F1-measure (vertical axes). Standard errors of 50 trials are shown as shaded
areas.
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Figure 11: Convergence comparison of the Jaccard index (vertical axes). Standard errors of 50 trials are shown as
shaded areas.
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Figure 12: The relationship of the test F1-measure (vertical axes) and sample size (horizontal axes). Standard errors of
50 trials are shown as shaded areas.
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Figure 13: The relationship of the test Jaccard (vertical axes) and sample size (horizontal axes). Standard errors of 50
trials are shown as shaded areas.
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Figure 14: The relationship of the test F1-measure (vertical axes) and the choices of ⌧ (horizontal axes). Standard
errors of 50 trials are shown as shaded areas.
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Figure 15: The relationship of the test Jaccard (vertical axes) and the choices of ⌧ (horizontal axes). Standard errors
of 50 trials are shown as shaded areas.


