Sample Complexity of Estimating the Policy Gradient

A  Proof of Theorem 4.6

Preliminaries. Note that the expected cumulative reward is equivalent to

J(0) = V" (s0)
Vi0(s) = Rols) + Epio) [y (o) +0] (W€ (01,7~ 1))
v (s)=0

and the expected model-based policy gradient is

Vo (0) = VoVy” (s0)
VoVs" () = VoRa(s) + Epe) [VaVy ™ (fals) + Q) + VoV (fals) + O Vao(s)
VoVy? () = VaRa(s) + Epie) [V (fols) + OV, fals)]
VaVy " (s) = VoV (s) = 0.

—

Similarly, given a sample 5 ~ p(¢), the stochastic approximation of the expected cumulative reward is

J(0;0) = V(505 C)
= Ro(s) + VI (fols) + ¢ O) (vt e {0,1,..,T —1})

Ve (0;0) = VoV, (505 )
VoVy(5:0) = VoRo(s) + VoV ™ (fo(s) + ¢ Q) + Vi TV (fo(s) + G OV fo (s)
VVy " (5:0) = VaRg(s) + VsV ™ (fals) + G OV fols)
VoV D (s:0) = Vv,V (s:0) =0

Bounding the deviation of Vg%(t) from Vé?Ve(t). We claim that for ¢ € {0, 1, ..., T}, we have

V6V, (5;0) — VoV (s)]| < BS()

— —

IV V0 (s:0) — vV (s)] < BO(O)

for all 6 € © and s € S, where

B{(Q) = Z BI(E) + LSV (L, + D(IG] + 0c/ds)

’ﬂ@
,_.w

BOQ) = 3 LG LE (G + 0c/ds)

1=t

—

500 =B =0
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where L(Vt)v is a Lipschitz constant for VVe(t). The base case ¢ = T follows trivially. Note that o¢v/dg >

EpolllC?] = Epey[lICNl]. Then, for ¢t € {0,1,...,T — 1}, we have

—

19675 (5:0) = VoV @Il < || VaVi D (fals) + ) = Eyiey [VoVs ™ ols) + ) |

V3 (a() + 6 0) ~ By [VaV T (fols) + )|

< | VoV I (ols) + GO = VoV (fols) + 1)
By [[| Vs (ol + ) = VoV (hals) + 0|

VU fals) + GO = VoV (fals) + 6|

+ LBy [||VsVa T als) + ) = VoV (fuls) + 0]

<BIV) + LEV (N6 + ocv/ds) + L, BYTV () + Ly, LSV (1G] + 0¢v/ds)
=B + Ly, BV () + LTV (L, + 1)(IG]] + 0c1/ds)

—

=By ().

+Lf9

+Lf9

Similarly, we have

—

19.V59 (5:0) = Vo Vg ()]l <Ly, || VT3V (fols) + 6 8) = By [TV fols) + 0|
VoV fals) + 6 Q) = TV (o) + )

+ LiEyo) |||V o)+ 6) = TV o) + 0
<Ly, (BIVO) + L 1G] + ocVds))

=

=B{"({).

<Ly,

The claim follows.
Bounding the deviation of ng from VyJ. We claim that
IV6J (6;0) — Vo J (0)]| < 13277 Ly, L) (E + 0¢c\/ds),
where £ =T~} E " {|¢;||. To this end, letting Lyy = arg max,cqo.1,.. 73 L V)V, note that

B < TLovLE Y(E + 0¢\/ds)

for t € {1,2,...,T}, so

T—1
IVeJ (6:0) = Vo (0)| < B () = 3" Ly, BYTV(O) + Lov (L, + 1D)(IGH] + 0¢/ds)

< TQLVVEZC; (E +o¢v dS) + Tva(Lfe + 1)(E +ocv ds)
< 3T2vaf/?g (E+oc\/ds)
< 13277 Lg, L} (E + oc/ds),

where the last step follows from our bound on L( ) in Lemma D.2.
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Upper bound on sample complexity of VyJ — VyJ. Note that E < ||5||1, where we think of  as the
length T'dg concatenation of the vectors (o, (1, ..., (7—1, so ¢ is o¢-sub-Gaussian. We apply Lemma G.7 with

—

Y = Vo J(0;C) — Vo J(0)
X=FE

T 75T
A=132T"Lg, L]

B= AO’C\/%.

Thus, Y is omp-sub-Gaussian, where
OMB — max{lOAUCTdS log(TdS)7 5A0< vV ds}
= 10AO’<TdS IOg(Tds)
< 13207°Lg, L} 0cdslog(Tds).

Thus, by Lemma G.6, the sample complexity of ng(@) —VoJ(0) is

ompy/ 2log(2ds/6)

€
o <T8LRGL§0Ta<dS log(T) log(dg)3/2 log(1/8)*/2 )

’nMB(G, 5) =

€
The claim follows.

Lower bound on sample complexity of VyJ — VyJ. Consider a linear dynamical system with S = A = R,
time-invariant deterministic transitions f(s,a) = 8s + a (where 8 € R), time-varying noise

pt(C) = {N(C ‘ 0702) ift=0

4(0) otherwise,

where o € R, initial state so = 0, time-varying rewards

ift=T-1
Ri(s,a) = { e

0 otherwise,

control policy class my(s) = 0s, and current parameters § = 0. Note that

_J0 ift=20

e {(5 +6)!=1¢  otherwise,
where ¢ = (j is the noise on the first step. Thus, we have

J(0:0) =571 = (B+0)7°C,
SO

Vo (6;:¢) = (T = 2)(B+6)" ¢,
Also, note that

Ve J (0) = Ey)[Vo (05€)] = Epo) [(T = 2)(B+6)" ¢ = 0.

Next, note that for n i.i.d. samples ¢, ..., ¢ ~ N(0, Z), we have

> 71 - T-3 oME
Dui(0) ~ Vo (0 *EZT 2)87 ¢ (o,n,
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where
OMB = o?(T —2)232(T=3),
Thus, by Lemma G.8, for
_ ous (log (y/5=) +log(1/4))

€2 ’

we have
- € —ne?/o?
Pr [\DMB(O) —VoJ(0)] > e} =Pr, 0,02, /m 2] = €] > \/% ceTe/oue > 6,

Thus, the sample complexity of Dyp(0) — VgJ(0) satisfies

ol(T - 2)2B%T=3) . (log (/=) + log(1/6)) .

2

nus (€, 0) >
€

Note that the numerator is positive as long as 6 < 1/2. The claim follows, as does the theorem statement. [

B Proof of Theorem 4.7

Preliminaries. Recall the form of the policy gradient based on Theorem 3.1:

T—1
Vo (0) =Eppe) | Y AY ()Velog To(ar | st)

t=0

where, for t € {0,1,...,T — 1}, we have

where

The stochastic approximation of VyJ () for a single sampled rollout a ~ p(«) is

ﬂ

Dpa(6;a) = At () Vglogmg(ar | st).

w
i
=

Bounding Qét) — Ve(t). We claim that

105 (¢) — V3 (o)l <BO(0),

where
T—1
BY(C) = > (Lr+ LUV L) (&l + ocvVd) + LV (16 + o V),
1=t

where Lg) is a Lipschitz constant for f/(,(t). We prove by induction. The base case ¢ = T is trivial. Note
that ooV > /B0l = Eyo)[<]], and similarly ocvd > /By [€]2] > By o[l Then, for ¢ €
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{0,1,...,T — 1} we have
1Q57(©) = Vs (s)| <Epeey LI R(5t, 7o (s0) + &) — R(se, mo(s4) + E)Il]
+ Q5 (@) = ViV (s
+ Epeerpe) 176"V (e malse) + )+ G) = Vit (f (s, mo(s) +€) + Q)]
<Lr(l&]l + ocVd) + BV () + LYV (|G| + oevVd) + LETV Ly (||| + ocVd)
:B(t)(C)~
The claim follows.

Bounding log7(a | s). We claim that

- Ln
IVologmo(a | s)ll < —5 - [I€]],

o2
¢
where € = a — mg(s). Recall that pe(€) = N(0, 0Zla,). Thus, we have
I”.

- 1 1
log 7g(a | s) = logpe(a — mo(s)) = log N (a — ma(s) | O,agIdA) =-3 10g(27rag) 5.7 lla — mo(s)
¢

Thus, we have

- 1 1 L,
IVologg(a|s)l =5 5 - [Vella = ma(s) 11| = o [ Vema(s) " (a —ma(s))|| < =5 - lI€]l,
9¢ 9¢ 9¢
as claimed.
Bounding the deviation of Dpg from VyJ. We claim that
X o E+ E+20:\/d
1Dpc(6:C) ~ Vo ()] < 3T*(Li + Ly, ) Ly LoL% d- <4d ¥ U<> 7
¢

ry LY E =T |G, and B =T S5 [l€. First, note that

.....

where Ly = argmax;¢
1Q5°(€) = Vsl < T (L + Ly L) (E + 0cVad) + Ly (B + 0cVd) )
<373(Lg+ LRG)Lngl(E + E +20:Vd),

®

where the last step follows from the bound on LV in Lemma D.3. Then, we have

T-1

ST@QY () = Vi (s1) Vo log Folar | 1)

0

| Dpc(6;€)|| =

o~
Il

=
L

105(¢) = Vi (so)ll - [ Vo log Falar | 50)]

(]

-
Il
=)

T—1
- Ly
< 33T L+ L )LgLE (B + E+ 200Vd) - 75 - el
t=0 ¢
. - —r (E+E+20:VAE
=3T (LR+LR9)LfL7rLf9 . U?
Furthermore, we have
IV T (O)II < Epy ()1 Dp (6; O]
(E + E +20Vd)E

4 T 7T
< Epy(¢) [3T*(Lr + Ly, ) Ly L LT, - .

=12T*(Lg + LRG)EfLWE;CGd,
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where we have used the fact that E [E] = T S BpenlGl] < o¢Vd, and similarly Epe¢)lE] =

T-1 Z?:Bl Epe(e)lIe]l] < o¢v/d. Therefore, we have

) ) _ E+FE+20V/d)E
1Doc(6:¢) = VoI O)]] < |1Dec (6Ol + VoI O)]] < 3T*(Li+ Ly, )LrLnL%d- <4d+( 20¢vd) )

¢

as claimed.

Upper bound on the sample complexity of Dpa —VpJ. We have E/ = (E—i—E—i—QUC\/ﬁ)E < |l¢ll1, where
we think of ¢ as the T?%(d4 + ds + 1)da values & ;& v, & i, and 204\/&}/@/, for all t,¢' € {0,1,....,T — 1},

i,7" € [da], and j € [dg]. Since & and (; are o.-sub-Gaussian for each ¢ € T, by Lemma H.6, ¢ is (7,b)-sub-
exponential, where 7,b = O(dag). Thus, we can apply Lemma H.7 with

Y = Dpc(6;¢) — Vo J (0)

X =F
4 N T TT
. 3T (LR+LR9)LfLwa6d
2
9¢
B =0.

Thus, Y is (Tpg, bpg )-sub-exponential, where
Tp, bpc = O(A(r + b)dlogd + B) = O (TG(LR + Ly, )Ly L LT d* log(Td)> .

Thus, by Lemma G.6, the sample complexity of Dpg (0) — VoJ(0) is

Jrraled) = PaV2108(2Tda/0)

€
(TG(LR + L RB)@L,,EE d*log(T) log(d)3/? 1og(1/5)1/2>
= O 5

€

for all e < dTI%G /bpg. The claim follows.

Lower bound on the sample complexity of Dpg — VgJ. Consider a linear dynamical system with S =
A =R, time-varying deterministic transitions

fi(s,a) = {5(5+a) ifs=0

Bs otherwise,

zero noise p;(¢) = 6(0) (i.e., o = 0), initial state so = 0, time-varying rewards

Ri(s,a) s ift=T-1
s,a) =
‘ 0 otherwise,

control policy class mg(s) = 6, current parameters § = 0, and action noise pe. Note that
ar = 6 + T§£t7

where & ~ pe(€) i1.d., so

0 ift=0
S+ =
! B0 + 1¢€) otherwise,
where £ = & is the action noise on the first step. Note that

QP (€) = BT2(0 + 7€),
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and
f/(t)(s) _ Epg(é)[ﬂT72(S+9+T£§)] =0 ift=0
o pr—t=25 otherwise.
In particular, note that
T—2 :
3O ey 7O (s 4P O+ TeE) ift=0
@’ (&) 0 (s0) {0 otherwise.

Also, note that Vg J(0) = 87~2. Therefore, we have

\V4 a—0

- a—10 £p£< T ) 1 a—0

Vglogw(as)=Vglogp§< - )— ie ——T—-Vglogpg (T)
) ) T

Thus, for i.i.d. samples £, ..., () ~ pe(€), we have

%zn: (Q((;)(g(i)) 0 (sii))) . (_W log 7(al” | sti))) g

i=1

1 — _ i 1 g -
*ZBT 27_55( ). < Ve 1ogp§(§( ))) - B2
ni4 K

Dpc(0) — VpJ(0) =

I~ :
- (O ()
1+nZ§ Ve logpe(€ )] .

i=1

_ _BT—Q

Note that for pe(§) satisfying our conditions (differentiable on R and satisfying lime 100 & - pe(§) = 0), we have

Epe ()€ - Ve logpe(6)] Z/_ §- Vepe(§)ds = —/_ pe(€)de = —1, (2)

where the second-to-last step follows from integration by parts. Thus, by the definition of the sample complexity,

n

1 , .
- Zg(z) Ve 1ng£(§(2)) +1

n <
i=1

Pr 26‘|>(5

for any n < ng(e, 6), so we have
n

1 ) .
- 25(1) Ve 1ng§(€(l)) +1

i=1

> ﬁT_QG] > 0.

Pr || Dpc(0) — Vo J(0)] > e} — Pr |72

for any n < ng(e/B72,5). Thus, we have
npg(€,0) > ng(e/ﬁT_Q,(S).

Next, consider the case where pg(§) = N (€ | 0,02), for any o € R;. Then, we have

2
Velogpe(§) = Ve (—log\/ﬂ— |2i|2> — _%7

SO
n

S Z@“))ﬂ =g

=1

Dpc(0) — Vg (0) = g72
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where 2 ~ N(0,1) are i.i.d. standard Gaussian random variables for i € [n]. By Lemma H.8, letting x =
n~tY (29)2 (so py = Ep(z) = 1), for

R { 2872 (L1og(1/6) + log(1/€2v/2)) 1}
—_ 76 b

€

we have

1 1 ___ne _
> . e 212 >/§./5=4.

Pr [ﬁp(}(O) — V@J(O) > 6} = Pl"p(m) |:.’L‘ > e + 6;2:| > \/ﬁ 62\/5

Thus, the sample complexity of Dpg — VgJ (0) satisfies

2572 (1 1og(1/6) + log(1/€2/2)) 1}
b) (5 .

€

npg(€,0) > min{
Note that the numerator is positive as long as 6 < 1/12. The claim follows, as does the theorem statement. [

C Proof of Theorem 4.11

Preliminaries. Note that the expected cumulative reward is equivalent to

(
V() = Ro(s) + Byey [Vi ™V (fols) + Q)] (e {0,1,..,7 = 1})
(

l

The finite difference approximation of Vy.J(#) is

S JO+ W) — g0 - wh) L8

Dyp(0) = o )

k=1

where v(*) is a basis vector for k € [d] and de is the dimension of the parameter space © = R%. Finally, an
estimate of the finite difference approximation for two samples ¢,n ~ p(() is

i J(0+2w®:0) = J(O - Wi L)

Dyp(6;C,7) = o ,

k=1

where J(6; () is as defined in the proof of Theorem 4.6.

Bounding the deviation of Ve(t) from Ve(t). We claim that for ¢t € {0,1,...,T}, we have

— —

1V, (s:0) — V9 (s)|l < BO(O)

for all 6 € ©® and s € S, where

(t) Z (H—l) (Gl + o¢ [dy),



Sample Complexity of Estimating the Policy Gradient

where LS) is a Lipschitz constant for V(,(t). The base case t = T follows trivially. Note that o¢v/da >

VEollICTP] = Eyo)[lI¢I]. Then, for ¢ € {0,1,...,T — 1}, we have
157 :0) = Ve () = | V5 o) + 6 O) = By [Vo™™ (o) + 0|
<IV5 " (fols) + 6O = Vi TV (fols) + QI
+Epo) [IVe D Uos) + 6) = Vi (fals) + Ol

—

<BED )+ LYV (1G] + ocv/da)
=B ({).

The claim follows.

Bounding the deviation of Dgp from Dpp. Let
Den(0)E ) ) [Dr (6)]-

Then, letting Lyy = argmax,co1,... 7} L(Vt)v, note that

T—-1
1705 C) — J(0)[| < BOC) = S LETV(IGill + 0¢\/da) < 3T3Li, LY, (E + 0¢\/da),
1=0

where E =T~ " |[¢;]|. Thus, we have

—

JO+ w00~ JO - Wi g SO D) —T0 -2 B) g
2\ 2

|1 Drp (6 ¢, n)i — Drp(0)5]| =

IO+ 2w B0 — JO+ W)+ (170 — wBif) — J (0~ )|
- 2X
< 3T3LR€E}; (E + E + 20'C\/ dA)
- 2
for k € [de], where E = T~* ZZ:OI [172¢]]-

Upper bound on the sample complexity of Dgp — Drp. Note that E+ E < IE'||1, where E' = fo 7 is
the length 2T'ds concatenation of the vectors o, (1, ..., (7—1, 70, M1, ---s =1, SO E’ is o¢-sub-Gaussian. We apply
Lemma G.7 with

Y = Dep(6;, )i — Drp(0)

X=F
3T°Lg, L7,
A
B = Aag\/a.

Thus, Y is opp-sub-Gaussian, where
orp = max{10Ac(2T7d4)log(2TdA),5A0:1/da)}
= QOAO'CTdA log(TdA)
- 6OT4LRQI_/};UCdA log(Tda)
- A
Thus, by Lemma G.6, for k € [dg], the sample complexity of ﬁFD(G)k — Dpp(0)y is

—  owpy/2log(2d4/d)

ﬁFD(e,CS) = z

0 <T4LR0 L% o¢dalog(T)log(da)/? log(1 /5‘)1/2)

AE
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Upper bound on the sample complexity of ﬁFD —VyJ(0). By Theorem 3.3, we have
VoJ(0) = Drp(0) + A,
where
|A]l € Ly jdaX < 44T° L, L3 da),

where the second inequality follows from the fact that Ly = L(voz/ and the bound on L(VO%, in Lemma D.2. Now,

taking
€
A ———
88T5Lp, L‘]%;FdA
€
2v/de
)

do’

™
|

S
Il

then with probability 1 — §, we have
1Den(0) = Vo (0)| < [ Den(0) — Den(9) + Al < e,
so the sample complexity of Dpp(8) — VoJ(0) is

VrEn(6,8) = = 0 (T%i?{ 0@ v/e log(T) log(d.)*/* log(do) 1og<1/5>1/2>

2
The claim follows.

Lower bound on the sample complexity of Dpp — VoJ (). Consider a linear dynamical system with
S =R? A =R, time-varying deterministic transitions

B(s,s"+a) ifs=0

B(s,s) otherwise,

ft((svsl)’a) = {

time-varying noise

N(C0,02) ift=0
4(0) otherwise,

pt((CvO)) = {

where o¢ € R, initial state so = (0,0), time-varying rewards

s+o(s) ift=T-1

0 otherwise,

Ri((s,8"),a) = {

where ¢ : R — R is defined by

20 —1 ifz>1
o(x) = < 2 if —1<z<1
204+ 1 ifx < —1,
control policy class my((s,s’)) = 6, and current parameters 6 = 0. Note that technically, R is not twice continu-
ously differentiable, so it does not satisfy Assumption 4.2. However, the only place in the proof of Theorem 4.11

where we need this assumption is to apply Lemma F.2 in Lemma D.2. By the discussion in the proof of
Lemma F.2, the lemma still applies, so our theorems still apply to this dynamical system. Now, we have

0 ift=20
S+ =
K B=1(¢,0) otherwise,
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where ( = (p is the noise on the first step. Thus, we have
J(0:¢) = sr1 + sy = BT+ 9(8770).
Also, note that
Vo (0) = Ey)[Vo (0:0)] = ¢'(877%0) - 572,
so Vg J(0) = 0, since ¢/(0) = 0.
Next, note that for 2n i.i.d. samples ¢, ..., ¢, M . 5™ ~ N(0, aZ), we have

bFD(O)_VQJ(O):Ql)\ [12(?)\(( ZJ (=0 ]

[ﬂT 2¢(0) 6T72n(i)} +i

o5 (057720 = (=BT 2N)].

Letting (") = —n(®) for i € [n], and using the fact that ¢(—z) = —¢(z), we have
Dyp(0) = VoI (0 ZﬁT 20 4S8N ~ N (e, 2.
2/\n n

where

pep = ¢(B72N)

T—2JC
OFD — )\ .

Thus, by Lemma G.8, for

o%p (log (\/%) + log(l/S))

2 9

n <
€

and recalling that Dyp(0) = Ep, (o) [Dep (0; )] = prp, we have

~ . " e —ne2 /o2 ~
Pr | Dep (0) — Dpp(0) > e} = Pryn(ooz, mlltl > 8 > /% e /oEn 5§,
Thus, the sample complexity of Dpp(0) — Dpp(0) satisfies

o%p <log (\/%) + log(1/5)>

€2

fFp(€,0) >
Now, recall that VyJ(0) = 0, so

Pr [ Dpp(0) — V. (0) > e] — Pr [bFD(O) > e] — Pr [DFD(O) — Dpp(0) > e — uFD} .

Thus, using our assumption § < 1/2, then we need to have upp < € for Pr {ZA)FD(O) —VeJ(0) > e] < 6 to hold.
As a consequence, using our assumption € < 1, we must have

e > ppp = ¢(BT2N) = TN,

where the last step follows since 0 < ¢(8772)\) < 1 implies ¢(x) = 2. Thus, we have A\ < , / 55—, so we have

B
OFD > ﬁ4(T_2)Jg/€. Finally, we have

Pr [ Dep (0) — Vo (0)) > e] > Pr [DFD(O) — Dpp(0) > e} ,
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so the sample complexity of Dpp(0) — V.J(0) satisfies

opp(T —2)°52779) - (log (/55) +log(1/6))
(T —2)°8°" 9 - (10g (log(1/9) + v/57))

= o

nrp (€, 6) > fipp(€,6) >

Finally, for any deo € N, we can consider dg independent copies of this dynamical system. Then, estimating the
gradient Vg.J(6) is equivalent to estimating 4" (0) for each i € [dg]. Thus, we have

(T = 2% 9otde - (log (log(1/9) + /5))

nrp(€,0) > fpp(€,6) > 1

€

The claim follows, as does the theorem statement. [

D Bounds on Lipschitz Constants

We prove bounds on the Lipschitz constants Lg) for Ve(t), L(Vt)v for VVe(t), and Lgﬁ) for ‘N/H(t). We use implicitly
use the commonly known results in Appendix F throughout these proofs.

Lemma D.1. We claim that fort € {0,1,...,T}, Ve(t) 18 Lg)-LipschitZ, where

(t) FT—t—1
Ly, §3T2LReLfB =1

Proof. First, we show that Ve(t) is LS’)Q-Lipschitz in 6 and Lg)) Lipschitz in s, where

~

T-1
t i+1
Ly = > (L, + Ly, LESY)

i=t

T-1
) _ i—
LV,S - Z sz@ tLRQ’
i=t
We prove by induction. The base case t = T is trivial. Then, for ¢ € {0,1,...,7 — 1}, note that Vo(t) is
(Lg)e)’—Lipschitz in 6, where
t t+1 t+1 t
(Y = L+ H + 2 1430 = 14,
Similarly, note that Ve(t) is (Lg’)s)’ -Lipschitz in s, where
t t4+1 t
(L§/7)S)/ = LRB + LfeLg/,s ) = LE/,)S7
as was to be shown. Finally, note that
() 7T—t—
Ly, <TLg,Ly ",
S0
t FT—t— FT —t—
L), < T(Lg, + Ly, - TLg,L¥""%) < 2TLp, LT,
Thus, VG(T) is (LS))’ -Lipschitz, where
(L) < 1)+ 1), < 370, 71 = 1Y)

The claim follows. O
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Lemma D.2. We claim that fort € {0,1,...,T}, VVg(t) 18 L(Vt)V-Lipschitz, where

(T—t—1)
. )

LY, = 44T Ly, L}

Proof. First, we show that Vg%(t) is L(Vt)Vﬂ’e—Lipschitz in  and L(Vt)vﬂ,s—Lipschitz in s, and that VSVQ(t) is

L(Vt)v’e’s-Lipschitz in 6 and L(Vt)‘/7S,S-Lipschitz in s, where

T—1
¢ it+1 i1 i1
L(v)v,a,e => (Lvr, + 2LfeL(vv,9),s + LQQL(VV,S),S + Loy, L§™)
1=t
T-1
t i— i+1 1+1
L(V)V,G,s = Z Lfgt(LVRG + L?BL(V‘/?S),S + vaSL§/ ))
i=t
T—1
t 2(i—t i+l
LY., = > L3 (Lyg, + Lvs, LVTY)
1=t
(T) _ (1™ _ (™ _
Lgyge=Lyves=Lyyvss=0

We prove by induction. The base case t = T is trivial. First, for ¢ € {0,1,...,7 — 1}, note that Vg\/a(t) is

(L(Vt)ve o)'-Lipschitz in 6, where
t t+1 t4+1 t+1 t+1 t+1 t
(L(v)v,e,e)/ =Lvr, + L(vv,e),e + LfeL(vv,e),s + Ly, (L(vv,a),s + LfeL(vv,s),s) + LerL§/ )= L(v)v,e)ﬂ~
Second, note that VgVe(t) is (L(Vt)veys)’—Lipschitz in s, where
¢ t+1 t+1 t+1 ¢
(L(V)V,H,s)/ = LVRS + LfBL(VV,O),s + LzeL(VKs),s + LVfBL§/ ) = L(V)V,O,s'
Third, note that V,V;" is (L), | ,)'-Lipschitz in 6, where
¢ t+1 t+1 t+1 ¢
(Lv,eo) = Lyn, + Ly (Lgig, + L Loyl ) + Los Ly ™) = Loy, -
Fourth, note that Vs‘/:g(t) is (L(Vt)v’sys)’—Lipschitz in s, where
(Ly,e) = Lyn, + L3, Loy + Loy, Ly = LGy .
as was to be shown. Finally, note that

Ly, <TLY" ™"V (Lgg, + Lyy, -37°Lg, LT %) < 4T% Ly, LY,

SO
) FT—t— = =3(T—t—2) =Tt = F4(T—t—1)

Loy, <TL; " '(Lyr, + L, - 4T°Lg, Ly, + Lyy, - 3T Lp, L}, ""%) <8T*Lg, L},
SO

LY, 59 < T(Lyr, +2Ls, - 8T L, LY "% + L2 - 4T*Lp, L") + Lyy, - 3T%L, LT 72)

= A(T—t-1
< 4T°Lg, L} ).
Thus, VVB(t) is (L(Vt)v)’—Lipschitz7 where
(L(Vt)v)' =Lyvee+2Lvves+ Lvvss < 44T5ERGE;£T_I€_1) = L(vt)v

The claim follows.

Lemma D.3. We claim that fort € {0,1,...,T}, f/e(t) 18 Lg) -Lipschitz, where

) _ qmq27 _ FT—-t—-1
L\"/ =3T LReLfB .

Proof. Note that f/o(t) is exactly equal to Ve(t) with Ry replaced with Ry and fo replaced with fg. Thus, the

claim follows by the same argument as for Lemma D.1.

O



Osbert Bastani

E Proof of Theorem 3.3

Theorem E.1. (Taylor’s theorem) Let f : R — R be an everywhere differentiable function with L -Lipschitz
derivative. Then, for any x,e € R, we have

fla+e)=f(z)+ f(z) e+ A,
where

2
Al < Lre
2

Proof. The claim follows from Theorem 5.15 in Rudin et al. (1976), together with Lemma F.2, which implies
that | f”(z)| < Ly for all z € R. O

Now, we prove Theorem 3.3. By Taylor’s theorem, we have
fl@+p) = fz) +(Vf(x), m) + Ap),
where
1 2
1AW < SLogllpl™
Thus, we have

flz+ X ®)) — f(z— k) ®)

M=

P 2A
d
-3 (f (@) + (Vf(2), w®) + AQw®)) — (f(z) = (VF(2), W) + A= ) L(0)
2\
k=1
d
AR — A(= k)
= (k)y . (k) . (k)
(V1)) ) + . v
k=1
d d
AR — A(= k)
_ k k)T k
=Y () V) + Y - o
k=1 k=1
d (B)) — A(=Av®)
k=1
Therefore, we have
d
A= ; ) -\
SO
d
AR — A(= k) , 1
Ial= 3 - v < SLoph )P < Ly g,

as claimed. [

F Technical Lemmas (Lipschitz Constants)

We define Lipschitz continuity (for the Ls norm), and prove a number of standard results.
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Definition F.1. A function f : X — Y (where X C R% and Y C Rd/) is Lg-Lipschitz continuous if for all
r,x' € X,

1f (@) = f@) < Lylle — 2| (3)

If X is a space of matrices or tensors, we assume x and 2’ are unrolled into vectors. in (3).
Lemma F.2. If f : X — Y is Ly-Lipschitz and continuously differentiable, then for all x € X,
V@)l < Ly
Proof. Note that
flx+e) - f(x)

Vi@ = M T
SO
o f@te) = f(a)] . Lyllell
”vf(x)”WlﬁIEo [lell = a0 el — "

as claimed. Note that the result holds even if each component f; is continuously differentiable except on a finite set
X. In particular, for each point x € X, we can use the standard definition (V f(z)); = (fi , (v)+f] _(z))/2, where

i+ () is the right derivative and f/ () is the left deriviative. Letting (V4 f(x)); = f] . (z) and (V_f(z)); =
fi _(x), then Vf(z) = (Vy f(z) + V_f(x))/2. Then, we have

Ve f@) + V- f (=)
2

V()] < <Ly,

as claimed. O

Lemma F.3. If f,g: X = Y are Ly- and Ly-Lipschitz, respectively, then h(z) = f(x) + g(z) is Ly-Lipschitz,
where Ly, = Ly + Lg.

Proof. Note that

[h(z) = h(2)|| < [If(x) = f@)]l + lg(x) = g(a)|| < (Ly + Lg)|lw — || = Lp[lz — 2",
as claimed. O

Lemma F.4. If f,g : X — Y where f is Ly-Lipschitz and bounded by My (i.e., |f(z)| < My for allx € X),
and g is Lg-Lipschitz and bounded by My. Then h(z) = f(x)- g(x) is Ly-Lipschitz, where Ly = MgLy + M¢Lg.

Proof. Note that

1h(z) = h(@)I| < I(f () = f(2")g(@)l| + II(g(z) = g()) f ()]
< MyLy|lz — @'l + My Lylw — /||
= Lp|lz — 2|,

as claimed. 0

Lemma F.5. If f : X — Y is Ly-Lipschitz and g : Y — Z is Ly-Lipschitz, then h(x) = g(f(x)) is Ly,-Lipschitz,
where Ly, = LyLy.

Proof. Note that

lg(f(@)) = g(f (@I < Lol f () = f(@)| < LoLyllz — 2'|| < Lallx — 2],

as claimed. O
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Lemma F.6. Let f : X xY — Z be Ly ,-Lipschitz in X (for ally € ¥) and Ly, -Lipschitz in Y (for all x € X ).
Then, f is Ly-Lipschitz in X x Y, where Ly = Ly + Ly .

Proof. Note that
||f(:v,y) - f(xl7yl)|| < ||f(w,y) - f(x/7y)H + ||f(m’,y) - f($/>yl)H
< Lpallz =2’ + Leylly — ¥l
< Lyal(@,y) = (@9 + Lyyll(z,y) — @)l

< (Lpa + Lyy)li(2,y) — (9]
= Lyll(z,y) — ("9,

as claimed. ]

Lemma F.7. Let f : X — Y be Ly-Lipschitz, and g : X — Z be Ly-Lipchitz. Then, h(z) = (f(z),g(x)) is
Ly-Lipschitz, where Ly, = Ly + L.

Proof. Note that

[h(2) — h(z")]| < [I(f(2) = f(z"), 9(x) = g())]]

dy dz

= \ Z(fz(x) — fi(@))? + Z(gz(w) — gi(2'))?
i1 j=1
dy dz

< Z(fi(ﬂf) — fi(@))? + 4 (9i(x) — gi(z"))?

= [If(z) = f@)] + llg(z) — g(2")]

< Lyllz — 2l + Lgllz — |

< (Ly + Ly)llz — 2|

= Lulla —a]|

as claimed. 0

Lemma F.8. Let f: X x Z — ) be Ly-Lipschitz. Then, g(x) = Ep.)[f(z, 2)] (where p(z) is a distribution over
Z) is Lg-Lipschitz, where Ly = Ly.

Proof. Note that

lg(x) = 9@l < Epee) Il £ (2, 2) = f(&, 2] < Lglle — 2’| = Lglla — 2|,

as claimed. ]

G Technical Lemmas (Sub-Gaussian Random Variables)

We define sub-Gaussian random variables, and prove a number of standard results. We also prove Lemma G.7,
a key lemma that enables us to infer a sub-Gaussian constant for a random variable bounded Y in norm by a
sub-Gaussian random variable X, i.e., ||Y]| < A||X]||1 + B (where || - || is the Ly norm). This lemma is a key step
in the proofs of our upper bounds for the model-based and finite-difference policy gradient estimators. Finally,
we also prove Lemma G.8, which is a key step in the proof of our lower bounds.

Definition G.1. A random variable X over R is ox-sub-Gaussian if E[X] = 0, and for all ¢ € R, we have
E[etX] < e”§t2/2.

Lemma G.2. If a random variable X over R is ox -sub-Gaussian, then E[|X|?] < o%.

Proof. See Stromberg (1994). O
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Lemma G.3. (Hoeffding’s inequality) Let a1, ..., 2, ~ px(x) be i.i.d. ox-sub-Gaussian random variables over
R. Then,

_ ne?

Pr Ze] <2 2%,

n
1
02
n-
i=1

Proof. See Proposition 2.1 of Wainwright (2019). O

Definition G.4. A random vector X over R? is o x-sub-Gaussian if each X; is o x-sub-Gaussian.
Lemma G.5. If a random vector X over R% is o x-sub-Gaussian, then E[| X||] < oxV/d.

Proof. Note that

d d
EIx =E || S Ixl2| < | S EX[2) < ox V4,
1=1 =1

where the first inequality follows from Jensen’s inequality. O

Lemma G.6. Let X be random vector over R% with mean px = E[X], such that X — px is ox-sub-Gaussian.
Then, given €,6 € Ry, the sample complexity of X satisfies

202 log(2d/0)

nx(e,d) < 2

)

i.e., given Ty,..., Ty ~ px(x) i.i.d. samples of X with empirical mean x = n~* Y. | z,, then Pri||z — px|| >
€] <6.

Proof. Note that

as claimed. O

Lemma G.7. Let X be a ox-sub-Gaussian random vector over R, and let Y be a random vector over RY
satisfying

Y] < Al X[ + B,
where A, B € R.. Then'Y is oy -sub-Gaussian, where

oy = max{10Aoxdlogd,5B}.

Proof. We first prove that |Y;| is bounded for each i € [d], and then use this fact to prove that Y; is sub-Gaussian.
In particular, we claim that for any i € [d] and any ¢ € R, we have
+2

2

Pr[|V;| > 1] < 2e >°%

)

where
Fy = max {4A0Xd\/log d, 23} .

To this end, note that by Theorem 5.1 in Lattimore and Szepesvéri (2018), for any ¢ € [d] and any ¢ € R, we
have

+2

Pr[|X;| > t] < 2e % .




Osbert Bastani

Now, note that

t—B] & t—B L
Pyl = 4 < PafIy] > o < P[] > S5 < > r x> 7 | < 2 i,
We consider three cases. First, suppose that ¢ > max{4Aoxd\/logd,2B}. Then, (t — B)? > (t/2)?, so

+2 t2 —(Ado x VB)? log d
_ —E=(Adox VB) lod
Pr[|Y;| > t] < 2de “4doxV®? = 2¢ (Adox V®) .

Furthermore, t? — (Adoxv/8)?logd > (t2/2), so

_t2=(Adox VB)? logd e _ 2
Pr[|K| > t] < 2e (Ado x V8)2 < 2¢ 2(AdoxVE? < ¢ 253
Second, if t < 2B, then
+2 (2B)2

SO

Third, if t < 4Aoxd+/logd, then

2 _ (4Aox dvTogd)?
—2 — =2 —
2 Y > 2 o >2e7 12>,

SO
+2

Pr[|Y;] > 1] <1< 2 %,

As a consequence, by Note 5.4.2 in Lattimore and Szepesvéri (2018), Y; is &y v/5-sub-Gaussian. Note that
oy > 6y /5, so the theorem follows. O

e 2, 2
Pr,.. St > [ — et/
Tam N (0,0%) [ 7] > ]—V% e

Proof. By Theorem 2 in Chang et al. (2011), we have

Lemma G.8. Given o € Ry,

1 e 2
1—®@)> =4/ — et
B =5\ 5

where ®(t) is the cumulative distribution function of N'(0,1). Thus, for € € R, we have

t t e _$2 /52
PFZN/\/(O’Jz)H:ﬂ > t] = Prsz(O,l) [|Z| > 0':| =2 (1 - <0>) > ”% et/ > ).

The claim follows. O

H Technical Lemmas (Sub-Exponential Random Variables)

We define sub-exponential random variables, and prove a number of standard results. Additionally, we prove
Lemma H.7 (an analog of Lemma G.7), a key lemma that enables us to infer a sub-exponential constant for a
random variable bounded Y in norm by a sub-exponential random variable X, i.e., ||[Y]| < A||X||; + B (where
I - || is the Ls norm). This lemma is a key step in the proof of our upper bound in Theorem 4.7. Finally, we also
prove Lemma H.8, which is a key step in the proof of our lower bound in Theorem 4.7.
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Definition H.1. A random variable X over Ris (7x, bx )-sub-ezponential if E[X] = 0, and for all ¢ € R satisfying
lt| < bx', we have E[etX] < e™x1°/2,
Lemma H.2. Let xq,...,z, ~ px(x) be i.i.d. (7x,bx)-sub-exponential random variables over R. Then, we have

2

Pri|ES a2 < {2 % il < 7R/bx
n. = 2¢” %x  otherwise.
Proof. See (2.20) in Wainwright (2019). O

Definition H.3. A random vector X over R? is (7x, bx )-sub-exponential if each X; is (7x, bx )-sub-exponential.

Lemma H.4. Let X be a random vector over R? with mean ux = E[X], such that X — ux is (7x,bx)-sub-
exponential. Then, given €,0 € Ry such that € < dt% [bx, the sample complezity of X satisfies

27% log(2d/6
nx(e,8) = 21080
€
i.e., given T1,..., Ty ~ px(x) i.i.d. samples of X with empirical mean x = n~* " | x,, then Pri||z — px|| >

€] <6.

Proof. Note that

nt?

22 <9de 7% <§

— 9

d
Prlllz — pxll = < Prfle - x| = < 37 Pr [lai — pxs
=1

as claimed. O

Lemma H.5. Let X be ox-sub-Gaussian. Then, X? is (Tx,bx )-sub-exponential, where Tx,bx = O(c%).

Proof. The result follows from Lemma 5.5, Lemma 5.14, and the discussion preceding Definition 5.13 in Vershynin
(2010). In particular, using the notation in Vershynin (2010), by Lemma 5.5, we have that X satisfies || X ||y, =
O(ox). Then, by Lemma 5.14, we have that || X?||y, = 2| X[|7, = O(c%). Finally, by the discussion preceding
Definition 5.13, we have that X? is (7x,bx)-sub-exponential with parameters 7x,bx = O(||X?||y,) = O(c%).
O

The claim follows.

Lemma H.6. Let X andY be ox-sub-Gaussian, respectively. Then, Z = XY is (77, bz )-sub-exponential, where
TZ, bZ = O(O'g()

Proof. Note that

(X+Y)2— (X -Y)?
- .

Z =XY =

By Lemma H.5, we have X + Y and X — Y are (7, b)-sub-exponential for 7,b = O(c%), so Z is 7z, bz-sub-
exponential, for 77,bz = O(T +b) = O(c%), as claimed. O

Lemma H.7. Let X be a (Tx,bx)-sub-exponential random vector over R%, and let Y be a random vector over
R satisfying

IVl < Al X1 + B,

where A, B € Ry. Then'Y is (1y,by)-sub-exponential, where v ,by = O(A(tx + bx)dlogd + B).

Proof. We use Lemma 5.14 and the discussion preceding Definition 5.13 in Vershynin (2010). In particular, let
~ . . . . . s |
Tx = max{7x, bx }; then, from the definition of sub-exponential random variables with ¢t = 75", we have

X, _t2
E [e%} <E {62%3(} <e
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for each i € [d]. Thus, using the notation in Vershynin (2010), so by the discussion preceding the Definition 5.13
in Vershynin (2010), we have X; satisfies || X;|4, = O(7x), and furthermore satisfies

Pr|X;| > t] < 3¢ /K

for all t € Ry, where K = O(||X;l|y,) = O(Tx). Thus, for each ¢ € [d], we have
d
t— B t— B _t-B
PI'HK‘ 2 t] S Pr |:||X|1 Z A:| S 7;:51 Pr |:XZ| 2 M:| S del AKd ,

Now, let
Ty = max{4AKdlogd,2B}.

We consider three cases. First, suppose that ¢ > max{4AKdlogd,2B}. Then, t — B > t/2, so

|_t=2AKdlogd

Pl“HY;l > t} < del_ﬁ —e 3AKd

Furthermore, t — 2AKdlogd > t/2, so

_t—2AKdlogd t

Pr[|YZ| > t] < elm T zaka - < 617m < eli?y_

Second, if t < 2B, then
2B
el T >e' T > 1,
S0
'_L

Pr|Y;| >t]<1<e 7.

Third, if t < 4AKdlogd, then

1— -t |_4AKdlogd
e v >e Ty >1

SO
Pr[|Y;| > 1] <1<e 7.

As a consequence, by the discussion preceding Definition 5.13 in Vershynin (2010), we have Y; satisfies Y|y, =
O(7y). Thus, by Lemma 5.15 in Vershynin (2010), we have that Y; is (7y, by )-sub-exponential, where

Ty,by = O(HYl”wl) = O(7y) = O(AKdlogd + B) = O(A7xdlogd + B) = O(A(rx + bx)dlogd + B).
The claim follows. O
Lemma H.8. Given o € Ry, let

(zMW)2 4 ..+ (2(™)?

3

T =
n

where z(V . 2™ ~ N(0,02) i.i.d., and let ju, = Epy)[z] = 0®. Then, we have

! e 207 .
e2v/2n

Prp(w) [‘T 2> pg + 6] >

Proof. Let z = (2(0)2 + ... + (2(™)? be the sum of the squares of n i.i.d. standard Gaussian random variables
AN O N(0,1). We assume that n = 2k is even. Then, z is distributed according to the ng distribution,
which has density function

1 k—1_—=z

ka(Z):mZ €
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and mean o = 2k. For z > o = 2k, we have

pak(z) > é(%)k_le‘z/2 _ L ﬂe_z/2 >1. K e~i2 > 1 ck-x/2
— 28 (k —1)! 2 (k-1 T2 (k—1)k1/2e-k+2 ~ 22k ’
where the second inequality follows from a result
n! < nn+1/2617n

based on Stirling’s approximation Robbins (1955). Thus, for any € € R, we have

1
2e2\/k

Pr. 2 [z 2 pon + € 2 / = k=2 eh—(uarte)/2 _ /2

jonte 2€2Vk 2e2Vk

Finally, for 2 = ((z)2 + .. 4+ (()?) /n, where (1) ... 2™ ~ N(0,0?) i.i.d., note that x = % and

so we have

1 e 207 .
e2v/2n

Prp(w) [17 > pg + 6] = PI‘ZNX% Z 2 phn + g} >
The claim follows.

I Experimental Results

We show enlarged versions of the plots from Figure 1:
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