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A Graph Theory

This section provides additional graph-theoretic nota-
tions that are standard in the literature and are pro-
vided for ease of access. Let G = (V, D, B) be a graph.
If there is any edge between ¢ and j, they are called ad-
jacent which we may denote i ~ j. Otherwise they are
called non-adjacent and we write i o0 j. We will use
o as a “wildcard” for edge marks, i.e. 70—j denotes
that either ¢ — j or ¢ <» j. We will use subscripts on
these vertex relations as a shorthand way to indicate
the presence or absence of an edge, or the presence of
a particular kind of edge. For example, i <>¢ j and
k o¢ 1 respectively indicate that G has a bidirected
edge between i and j, and no edge between k and .
A graph with only directed edges is called a directed
graph.

A path v = (v1,v9,...,v) is a sequence of distinct
nodes that such that v; and v; 11 are adjacent. A cycle
is a path together with any type of edge between vy
and v+ = v1. A path or a cycle is called directed if all
edges are directed toward later nodes, i.e. v; — v;41.

We extend the notation pag(i),spe(i), and ang(i) to
allow arguments that are subsets of vertices by taking
unions. For example, when S C V', we have

pac(S) := Ujes pac(i).

We add an asterisk to denote that the arguments are
not included in the set, e.g.

pag(9) :=pag(5)\ S.

The colliders on a path « are the nodes where two ar-
rowheads meet, i.e., v; is a collider if v;_1 o—v; 0 v;11.
A triple of nodes (i, j, k) is called a v-structure if j is
a collider on the path (i, j, k) and i £ k.

B Proof of Proposition 1

We will prove Proposition 1 via a sequence of interme-
diate Lemmas. Since our goal is to prove that all the
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m-separation statements of a given DMAG are satis-
fied by a given P, it will be helpful to have the follow-
ing lemma which reduces the number of m-separation
statements we must consider.

Lemma 1. Let G* and H be DMAGs. Then G* <
H if and only if whenever i g j, i is ang({,5}-
separated from j in G*, i.e. i Lo j | ang({i,5}).

Proof. This is an immediate consequence of Theorem 3
in (Sadeghi and Lauritzen, 2014). O

Throughout the rest of this section, let it be under-
stood that G* is a DMAG that is restricted-faithful to
some fixed joint distribution P. We will not repeat this
assumption. Moreover, we will suppress P in our no-
tation and write G instead of G, and AG(w) instead
of AG(m,P). Also, note that when H is a DMAG,
po(H) = po(H) since H is obtained from H by adding
only bidirected edges (Richardson and Spirtes, 2002).
We will make repeated tacit use of this fact.

Lemma 2. Let m be a partial order on the random
variables of P such that G, = AG(rw). Then G, is an
IMAP of P.

Proof. Lemma 1 implies that it suffices to show that
whenever i £qg_ 7, X; lp X | Xanz, (ij)- SO assume
i %a, j. Since G = AG(po(AG(7))), i %, j implies

X, Up X; | Xpre;;o(AG(ﬂ))(i’j). But now we are done

since preg 4 n) (0, J) = anfyg(q (4,5) = anzgi(ﬂ)(i,j)

and we are assuming G, = AG(w). O

Lemma 3. Let m be a partial order on the random
variables of P. Then po(G,) = po(AG(r)).

Proof. We must show
Po(AG(po(AG()))) = po(AG(T))
If i < jin po(AG(po(AG(7)))), then there exists a di-

rected path i =iy — -+ — i = j in AG(po(AG(7)))
and so i =iy < -+ < iy = j in po(AG(n)).
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We now proceed to show that if i < j in po(AG(7)),
then the same is true in po(AG(po(AG(w)))). We
do this by showing that if i —ag@r) J, then
i —AG(po(AG(r))) J- S0 for the sake of contradiction,
assume that i —4g(r) J but not i = 4gpo(ac(n)))
j. By the definition of AG, this implies that
i % AG(po(AG(r))) J and so i is m-separated from j given
anjjm(ﬂ) (4,7) in G*. But i = 4¢(r) j implies that i is
m-connected to j given prek(i,7) in G*. Let P be an
m-connecting path from i to j given prek(i,j) in G*.
Since anZG(W)(i,j) C prei(i,j), we can write

prey (i, j) = aan‘G(w)(i,j) us

for some nonempty set S, disjoint from an’ (,7)-
Since i is m-separated from j given anf4g(7r)(i7j) in
G*, P must contain a collider with a descendent in
S, but no descendant in anZG(W)(i,j). Let d be such
a collider that is closest to j along P and let s be a
po(G*)-minimal descendent of d from S.

We now construct a path @ in G* that m-connects j
and s given preX(j,s). Since S C pre,(j), this would
imply existence of the edge s —4q(r) J, contradict-
ing s € S. If s =d, we let @ be the subpath of P
from j to s. Otherwise, we let @@ be obtained by con-
catenating the subpath of P from j to d, followed by
a directed path from d to s. Since P is m-connecting
given pre’ (i,7) and ¢, s < j in 7, it follows that when Q
is a subpath of P, @ is m-connecting given preX(j, s).
When @ additionally has a directed path from d to
s, @ is m-connecting given preZ (4, s) since the non-P
segment has no colliders, and assumptions on d and
po(G*)-minimality of s imply that no element of this
segment is in an’ o) (s, 7). O

Proof of Proposition 1. Define 7 := po(AG()). Since
po(H) = po(H) for any DMAG H, we have

G, = AG(po(Gxr)).

Lemma 3 implies that this is equal to AG(po(AG(7))),
which is equal to both G, and AG(7). Thus we have
shown that G, = G, = AG(7) and so Lemma 2 im-
plies that G is an IMAP of P.

We now show that G, is a minimal IMAP of P, i.e.
that removing any edge results in a directed ancestral
graph that is either not maximal, or not an IMAP
of P. Let i,j be such that i ~¢_ j and let G’ be the
graph obtained from G, by removing the edge between
i and j. If G’ is still maximal, then Lemma 1 implies
that ¢ is m-separated from j given anf, (¢, ) in G'. If
G* < G’ then i is m-separated from j given ang, (i, j)
in G*. Note that anf, (i,7) = ang_(i,7), and that
Lemma 2 implies that ang, (i,7) = prey, 4c(x))(E.4)-

But if i were pre;O(AG(W))(i, j)-separated from j in G*,

then X; lp X; | XPYCIT,O(AG(W))(M') and s0 @ % ag(r) J-
This would imply that AG(w) is a subgraph of G'.
Since G’ is maximal, G; would be a subgraph as well

contradicting ¢ ~q, J. O

C Proof of Theorem 1

We begin by proving the following lemma, which ex-
tends classic results for the case of DAGs and deals
with discriminating paths.

Lemma 4. Let G* and H be DMAGs and let P be a
distribution that is Markov to both G* and H.If P is
adjacency-faithful to G*, then

(a) skel(G*) C skel(H).
If P is furthermore orientation-faithful to G*, then

(b) If iosk<oj is a v-structure in G*, then either
to—=k<+oj is a v-structure in H or i ~p j.

(c) If io—k<+oj is a v-structure in H, then either
io—>k<oj is a v-structure in G*, or i g~ k or
J Fa- k.

Finally, if P is also discriminating-faithful to G*, then

(d) Ify = {(i,...,k, j) is a discriminating path in both
H and G*, then k is a collider in v in H iff k is
a collider in v in G*.

Proof. (a) If i oy j, then by the pairwise Markov
property (Richardson and Spirtes, 2002), X; 1p X; |
Xanz, (i), and by adjacency-faithfulness, i #g+ j in

*

(b) Let ¢ oty j, so X; Alp X; | Xan, ({i.4})- Suppose
k is a parent of either 7 or j. Since k € an%; ({i,j}),
i is m-connected to j in G* given an};({i,j}) by the
path io—k <o j, and thus X; fp X; | Xan, (fij}) bY
orientation faithfulness. Hence, H is not an I-MAP of
P.

(¢) Suppose i ~g k and j ~g k. We have X; lp
X; X an?, ({i,})» and thus by orientation faithfulness ¢
and j are m-separated given an’;({7,7}) in G*. Since
H is ancestral, k ¢ an};({¢,7}). Thus, to ensure the
required m-separation in G, k must be a collider in G
on the path ¢ — k — j.

(d) Assume v = (i,Cy,...,Cl,k,5). If kis a non-
collider in v in G*, then i is m-connected to j given S
for every S containing C,...,C; but not k. Discrim-
inating faithfulness implies X; Ap X, | Xg for every
such S. Then k must also be a non-collider in v in H,
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Figure 1: A scatter plot of the number of edges of the graphs that we tested the oracle version of our algorithm
on. The plot includes over 200,000 points, representing graphs with varying number of bidirected edges and total

number of edges.

since otherwise there would exist some S containing
C4,...,C; but not k such that 7 is m-separated from j
given S in H*, contradicting Z(H) C Z(P). If K is a
collider in « in G*, then 7 is m-connected to j given S
for every S containing Cq,...,Cj, k. Again, discrimi-
nating faithfulness implies X; fp X; | Xg for every
such S. Then K must also be a collider in v in H,
since otherwise there would exist some S containing
C4,...,Cp, k such that i is m-separated from j given
S in H*. O

We proceed to proving the theorem.

Proof of Theorem 1. (a) is implied by Lemma 4(a).

Since restricted faithfulness implies adjacency faithful-
ness, skel(G) = skel(G*). It remains to show that G
and G* have the same v-structures, and that if v is a
discriminating path for £ in both G and G*, then k is
a collider on v in G iff it is a collider on v in G*.

Equality of skeletons together with Lemma 4(b) and
(c) imply that G and H have the same v-structures.
If v := (i,C4,...,Cl, k,j) is a discriminating path in
both G* and G, then Lemma 4(d) implies that k is a
collider in v in G* iff k is a collider in v in G. 0

D Proof of Proposition 2

Proof. 1t is sufficient to show this for G = G*, since
Markov equivalence implies that Z(G) = Z(G*). Sup-
pose G = (V, D, B). Let m = po(G). We have already
shown that G is an IMAP. Therefore, it is sufficient
to show the converse, i.e., that if X; llp X; | S then
illg j|S.

By Theorem 4.2 of Richardson and Spirtes (2002),
for any i,j € V adjacent, i Lg, jlang (i,j). The
faithfulness condition would then imply that X; Ap
X1 Xprez (i.3)- -

E Conjecture Simulations

In figure 1, we display a scatter plot of the number of
edges of the graphs that we tested our algorithm on,
without failure. The plot includes over 200,000 points,
corresponding to 200,000 generated graphs of various
parameters. For each of these, graphs, we have tested
the oracle version of our algorithm, i.e., Z(P) = Z(G*),
and it converged to a graph in the Markov equivalence
class of the true graph. We have not found a single
counterexample to the conjecture thus far.
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Figure 2: Average performance over 100 MAGs for
each algorithm, when p = 50, K = 12, and s = 3.
Each variant of GSPo was run on 8 « values from 10719
to .7, and each variant of FCI was run on 7 « values
from 10720 to .5

F Additional Simulations

GSPo (MD)

. ) BN GSPo (GSP)
In this section, we followed the same procedure for o ' FCl+
DMAG sampling procedure as described in Section 5. [ el

Fig. 2 gives the precision-recall curve for the same
settings as in Fig. 6a in Section 5.

In Figure 3, we use p = 50 nodes, K = 12 latent
variables, and s = 3 expected neighbors per node in
the DAG before marginalization. For 100 graphs, we
find that this results in MAGs with an average of 43%
bidirected edges, ranging from 14% to 71% bidirected
edges, and an average of 5 neighbors per node in the
MAGs. Due to the slow runtime of FCI, GSPo with
empty initialization, and FCI+ with high « values, our
comparison between the algorithms for larger graphs is
limited, and mainly serves to demonstrate that GSPo
has similar performance on larger graphs for the same
range of o values.

In Figure 4, we use the same set of DMAGs as used
in 6¢, in particular, p = 10, 20, 30, 40, 50, K = 3,
and s = 3, but report the average computation time
instead of the median computation time. We can ob-
serve that GSPo with the empty initialization and
FCI both have much higher average computation times
than median computation times, indicating that they
are more susceptible to outlier instances from our sam-
pled MAGs.
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