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Abstract

We consider the problem of graph logistic re-
gression, based on partial observation of a
large network, and on side information asso-
ciated to its vertices. The generative model
is formulated as a matrix logistic regression.
The performance of the model is analyzed in
a high-dimensional regime under a structural
assumption. The optimal statistical rates are
derived, and an estimator based on penalized
maximum likelihood is shown to attain it.
The algorithmic aspects of this problem are
also studied, and optimal rates under compu-
tational constraints are derived, and shown
to differ from the information-theoretic rates
- under a complexity assumption.

1 Introduction

In the field of network analysis, the task of link pre-
diction consists in predicting the presence or absence
of edges in a large graph, based on the observations of
some of its edges, and on side information. Network
analysis has become a growing inspiration for statisti-
cal problems. Indeed, one of the main characteristics
of datasets in the modern scientific landscape is not
only their growing size, but also their increasing com-
plexity. Most phenomena now studied in the natural
and social sciences concern not only isolated and in-
dependent variables, but also their interactions and
connections.

Most statistical problems based on graphs are unsu-
pervised: the graph itself is the sole data, there is
no side information, and the objective is to recover
an unknown structure in the generative model. Ex-
amples include the planted clique problem (Kucera,
1995; Alon and Sudakov, 1998), the stochastic block
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model Holland et al. (1983)—see Abbe (2017) for a re-
cent survey of a very active line of work Decelle et al.
(2011); Mossel et al. (2013); Massoulié (2014); Mossel
et al. (2015); Abbe and Sandon (2015); Banks et al.
(2016), the Ising blockmodel Berthet et al. (2016), ran-
dom geometric graphs — see Penrose (2003) for an in-
troduction and Devroye et al. (2011); Bubeck et al.
(2014) for recent developments in statistics, or metric-
based learning Chen et al. (2009); Bellet et al. (2014)
and ordinal embeddings Jain et al. (2016).

In supervised regression problems on the other hand,
the focus is on understanding a fundamental mech-
anism, formalized as the link between two variables.
The objective is to learn how an explanatory vari-
able X allows to predict a response Y, i.e. to find
the unknown function f that best approximates the
relationship Y & f(X). This statistical framework is
often applied to the observation of a phenomenon mea-
sured by Y (e.g. of a natural or social nature), given
known information X: the principle is to understand
said phenomenon, to explain the relationship between
the variables by estimating the function f (Holland
and Leinhardt, 1981; Hoff et al., 2002).

We follow this approach here: our goal is to learn how
known characteristics of each agent (represented by
a node) in the network induce a greater or smaller
chance of connection, to understand the mechanism
of formation of the graph. We propose a model for
supervised inference on graphs. For each vertex, we
are given side information: a vector of observations
X € R% Given observations X, X; about nodes ¢
and j of a network, we aim to understand how these
two explanatory variables are related to the probabil-
ity of connection between the two corresponding ver-
tices, such that P(Y(; j) = 1) = f(X;, Xj), by estimat-
ing f within a high-dimensional class based on logis-
tic regression. Besides this high-dimensional paramet-
ric modelling, various fully non-parametric statistical
frameworks were exploited in the literature, see, for
example, Wolfe and Olhede (2013); Gao et al. (2015),
for graphon estimation, Papa et al. (2016); Biau and
Bleakly (2008) for graph reconstruction and Bickel and
Chen (2009) for modularity analysis.
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Graph regression can be useful in any application
where data can be gathered about the nodes of a net-
work. With access to side information about each
member of a social network, the objective is to un-
derstand the mechanisms of connection between mem-
bers: shared interests, artistic tastes (Wasserman and
Faust, 1994; Liben-Nowell and Kleinberg, 2003). This
can also be applied to citation networks, or in the nat-
ural sciences to biological networks of interactions be-
tween molecules or proteins (Yu et al., 2008; Madeira
and Oliveira, 2004). The key assumption in this model
is that the network is a consequence of the information,
but not necessarily based on similarity: it is possible to
model more complex interactions, i.e. where opposites
attract.

We therefore decide to tackle graph regression by mod-
elling it as matrix logistic regression. We study a gen-
erative model for which P(Y{; ;) = 1) = o(X,' ©,X}),
where ¢ is the sigmoid function, and ©, is the un-
known matrix to estimate. It is a simple way to model
how the variables interact, by a quadratic affinity func-
tion and a sigmoid function. In order to model real-
istic situations with partial observations, we assume
that Y(; ;) is only observed for a subset of all the pairs
(i,7), denoted by .

The matrix logistic regression model can be seen as
a type of a high-dimensional logistic regression, us-
ing vectorization, and is naturally linked to trace re-
gression models and graphons, which have received
a significant amount of attention in the last years
(Wolfe and Olhede, 2013; Klopp and Tsybakov, 2015;
Gao et al., 2015; Zhang et al., 2015; Fan et al., 2016,
2017). The recent sparkle of interest in these models
is partly driven by technical challenges in the anal-
ysis of statistical and computational performances in
high-dimensional settings.

To convey the general idea of a simple dependency of
Y j) on X; and X, we make structural assumptions
on the rank and sparsity of ©,. This reflects that the
affinity X,' 0, X ;j is a function of the projections uZX
for the vectors X; and X, for a small number of or-
thogonal vectors, that have themselves a small number
of non-zero coefficients (sparsity assumption). In or-
der to impose that the inverse problem is well-posed,
we also make a restricted conditioning assumption on
O, inspired by the restricted isometry property (RIP).
These conditions are discussed in Section 2.

The classical techniques of likelihood maximization
can lead to computationally intractable optimization
problems. We show that in this problem as well as
others this is a fundamental difficulty, not a weakness
of one particular estimation technique; statistical
and computational complexities are intertwined. Our
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Figure 1: The computational and statistical bound-
aries for estimation and prediction in the matrix logis-
tic regression model located on the real line. Here k
denotes the sparsity of ©, and r its rank, while IV is
the number of observed edges in the network.

findings are depicted in Figure 1.

Notation: For any positive integer n, we denote by
[n] the set {1,...,n} and by [[n]] the set of pairs of
[n], of cardinality SZ) We denote by R the set of real
numbers and by S¢ the set of real symmetric matrices
of size d. For a matrix A € S, we denote by || A its
Frobenius norm, defined by

IAl: = ) A%
i,j€ld]

We extend this definition for B € S™ and any subset
Q C [[n]] to its semi-norm ||B||ro defined by

Z B

4,41 (1,5)€Q

1Bl7q =

The corresponding bilinear form playing the role of
inner-product of two matrices By, By € S" is de-
noted as (Bi,Ba)pq. For a matrix B € S", we
also make use of the following matrix norms and
pseudo-norms for p,q € [0,00), with ||Bl,, =
H(”Bl*”P e ||Bd*||p)‘ o where B, denotes the ith row
of B, and ||B|lc = max(; jye[q) |Bij|- For asymptotic
bounds, we shall write f(z) < g(x) if f(z) is bounded
by a constant multiple of g(x).

2 Problem description

2.1 Generative model

For a set of vertices V = [n] and explanatory variables
X; € R? associated to each i € V, a random graph
G = (V,E) is generated by the following model. For
all ¢,7 € V, variables X;, X; € R¢ and an unknown
matrix O, € S;, an edge connects the two vertices
¢ and j independently of the others according to the
distribution

1
P((i,j) € E)=0(X,'0,X,) = .
(09 € E) = o(X;0.X5) = 7 +exp(—X,'0,X)
(2.1)
Here we denote by o the sigmoid, or logistic function.
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Definition 1. We denote by m;; : Sq — [0,1] the
function mapping a matric © € Sy to the probability
in (2.1). Let ¥ € S, with %;; = X;'OX; denote the
so-called affinity matriz. In particular, we then have

7i;(0) = 0(Zi;).

Our observation consists of the explanatory variables
X, and of the observation of a subset of the graph.
Formally, for a subset 0 C [[n]], we observe an ad-
jacency vector Y indexed by 2 that satisfies, for all
(i,7) € Q, Y(;5 = 1 if and only if (i,5) € F (and 0
otherwise). We thus have

Y ;) ~ Bernoulli(m;(0.)), (i,7) € Q. (2.2)

The joint data distribution is denoted by Pg, and is
thus completely specified by m;;(0,), (¢,7) € Q. For
ease of notation, we write N = |Q|, representing the
effective sample size, which is the size of the set of
observed edges. If all edges are observed, it equals
n(n — 1)/2, but it can be significantly smaller if only
a subset of edges is observed. Our objective is to es-
timate the parameter matrix ©,, based on the obser-
vations Y € R™ and on known explanatory variables
X e R™*",

This problem can be reformulated as a classical logzistic
regression problem. Indeed, writing vec(A) € RY for
the wectorized form of a matrix A € S, we have that

X, 0,X; = Tr(X; X, 0,) = (vec(X; X, ), vec(0,)) .

(2.3)
The vector of observation Y € R¥ therefore follows
a logistic distribution with explanatory design matrix
Do € RV*? guch that D () = vec(X;X;") and
predictor vec(©,) € R%. We focus on the matrix
formulation of this problem, and consider directly the
matrix form of graph logistic regression in order to sim-
plify the notation of the explanatory variables and our
model assumptions on O, that are specific to matri-
ces.

2.2 Connection to other models

This model can be compared to other settings in the
statistical and learning literature.

Generalised linear model. As discussed above in
the remark to (2.3), this is an example of a logistic
regression model. We focus in this work on the case
where the matrix O, is block-sparse. The problem
of sparse generalised linear models, and sparse logis-
tic regression in particular has been extensively stud-
ied, see, e.g. (van de Geer, 2008; Bunea, 2008; Meier
et al., 2008; Bach, 2010; Rigollet, 2012; Abramovich
and Grinshtein, 2016) and references therein. Our
work focuses on the more restricted case of block-
sparse and low-rank parameter, establishing interest-

ing statistical and computational phenomena in this
setting.

Graphon model. The graphon model is a model of a
random graph in which the explanatory variables asso-
ciated with the vertices in the graph are unknown. It
has recently become popular in the statistical commu-
nity, see (Wolfe and Olhede, 2013; Klopp and Tsy-
bakov, 2015; Gao et al., 2015; Zhang et al., 2015).
Typically, an objective of statistical inference is a link
function which belongs to either a parametric or non-
parametric class of functions. Interestingly, the mini-
max lower bound for the classes of Holder-continuous
functions, obtained in (Gao et al., 2015), has not been
attained by any polynomial-time algorithm.

Trace regression models. The modelling assump-
tion (2.1) of the present paper is in fact very close to
the trace regression model, as it follows from the rep-
resentation (2.3). Thus, the block-sparsity and low-
rank structures are preserved and can well be studied
by the means of techniques developed for the trace
regression. We refer to (Koltchinskii et al., 2011; Ne-
gahban and Wainwright, 2011; Rohde and Tsybakov,
2011; Fan et al., 2016) for recent developments in the
linear trace regression model, and (Fan et al., 2017)
for the generalised trace regression model. However,
computational lower bounds have not been studied ei-
ther and many existing minimax optimal estimators
cannot to be computed in polynomial time.

Metric learning. In the task of metric learning, ob-
servations depend on an unknown geometric represen-
tation Vq,...,V,, of the variables in a Euclidean space
of low dimension. The goal is to estimate this rep-
resentation (up to a rigid transformation), based on
noisy observations of (V;,V;) in the form of random
evaluations of similarity. Formally, our framework also
recovers the task of metric learning by taking X; = e;
and O, an unknown semidefinite positive matrix of
small rank (here VTV, since

Vi, Vi) = (Ve;, Ve =e! VVe,.
J J 7 J

We refer to (Chen et al., 2009; Bellet et al., 2014) and
references therein for a comprehensive survey of metric
learning methods.

2.3 Parameter space

The unknown predictor matrix ©, describes the re-
lationship between the observed features X; and the
probabilities of connection 7;;(0,) = o (X, ©,X;) fol-
lowing Definition 1. We focus on the high-dimensional
setting where d?> > N: the number of features for
each vertex in the graph, and number of free param-
eters, is much greater than the total number of ob-
servations. In order to counter the curse of dimen-
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sionality, we make the assumption that the function
(X;,X;) — m;; depends only on a small subset S of
size k of all the coefficients of the explanatory vari-
ables. This translates to a block-sparsity assumption
on O,: the coefficients ©, ;; are only nonzero for ¢ and
j in S. Furthermore, we assume that the rank of the
matrix ©, can be smaller than the size of the block.
Formally, we define the following parameter spaces

Pir(M) = {0 €8 |01 < M, |Blloo <k,
and rank(0) < r} ,

for the coefficient-wise ¢, norm || - [j;,1 on S% and in-
tegers k,r € [d]. We also denote P(M) = Py q(M) for
convenience.

Remark 2. The bounds on block-sparsity and rank in
our parameter space are structural bounds: we con-
sider the case where the matriz ©, can be concisely
described in terms of the number of parameters. This
is motivated by considering the spectral decomposition
of the real symmetric matriz ©, as

r
@* = E )\[U@u;.
{=1

The affinity ¥;; = X;@*Xj between vertices i and j is
therefore only a function of the projections of X; and
X; along the azes ug, i.e.

Si = X[ 0.5 =Y M(uf Xi)(u] X;).
=1

Assuming that there are only a few of these directions
up with non-zero impact on the affinity motivates the
low-rank assumption, while assuming that there are
only few relevant coefficients of X;, X; that influence
the affinity corresponds to a sparsity assumption on
the ug, or block sparsity of ©.. The effect of these
projections on the affinity is weighted by the \p. By
allowing for negative eigenvalues, we allow our model
to go beyond a geometric description, where close or
similar X s are more likely to be connected. This can
be used to model interactions where opposites attract.

The assumption of simultaneously sparse and low-
rank matrices arises naturally in many applications
in statistics and machine learning and has attracted
considerable recent attention. Various regularisation
techniques have been developed for estimation, vari-
able and rank selection in multivariate regression prob-
lems, see, e.g. (Bunea et al., 2012; Richard et al., 2012)
and the references therein.

2.4 Explanatory variables

As mentioned above, this problem is different from
tasks such as metric learning, where no side infor-

mation is present, and “information-less” covariates
X; = e; are used to estimate an unknown geometric
representation of the variables in a Euclidean space
of low dimension. Here X; are seen as covariates, al-
lowing us to infer from the observation on the graph
the predictor variable ©,. For this task to be even
possible in a high-dimensional setting, we settle the
identifiability issue by making the following variant of
a classical assumption on X € R4x™,

Definition 3 (Block isometry property). For a matriz
X € R™™ and an integer s € [d], we define Aq s(X) €
(0,1) as the smallest positive real such that

||XTBX\ 2
TR ¢ (1 A (X)) B3

for all matrices B € S? that satisfy the block-sparsity
assumption || Blo,0 < s.

Definition 4 (Restriced isometry properties). For a
matriz A € R"*P and an integer s € [p], 65(A) € (0,1)
1s the smallest positive real such that

n(1 = 6,(A))[oll3 < [[Av]3 < n(1+3:(A))[lv]3,

for all s-sparse vectors, i.e. satisfying ||v|lo < s.

When p = d? is a square, we define dp,s(A) as the
smallest positive real such that

n(1— bs.1(4)) 0] < | 4v]3 < (1 + s o (4)) 013

for all vectors such that v = vec(B), where B satisfies
the block-sparsity assumption || Bllo,0 < s.

The first definition is due to (Candes and Tao, 2005),
with restriction to sparse vectors. It can be extended
in general, as here, to other types of restrictions, see
e.g. (Traonmilin and Gribonval, 2015). Since the re-
striction on the vectors in the second definition (s-by-s
block-sparsity) is more restricting than in the first one
(sparsity), 0ps is smaller than d,2. These different
measures of restricted isometry are related, as shown
in the following lemma

Lemma 5. For a matriz X € R>", let Dg € RNV xd”
be defined row-wise by D ;) = vee(X;X;") for all
(i,7) € Q. It holds that

Aq s(X) = dp,s(Dgq) .

Proof. This is a direct consequence of the definition of
Dgq, which yields [[XTBX||% o = [[Dq vec(B)]3, and
[vee(B)|3 = [IB]I3-

O

The assumptions above guarantee that the matrix ©,
can be recovered from observations of the affinities,
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settling the well-posedness of this part of the inverse
problem. However, we do not directly observe these
affinities, but their image through the sigmoid func-
tion. We must therefore further impose the following
assumption on the design matrix X that yields con-
straints on the probabilities 7;; and in essence governs
the identifiability of ©,.

Assumption 6. There exists a constant M > 0
such that for all © in the class P(M) we have
max(; j)eQ ‘X;@X” < M.

In particular, under this assumption a constant

L(M) =0 (M)=0c(M)(1-0c(M)), (2.4)
is lower bounded away from zero, and we have
inf o' (X;'0X;) > L(M) >0, (2.5)

0P (M)

for all (i, 7) € Q. Assuming that £(M) always depends
on the same M, we sometimes write simply L.

Remark 7. Assumption 6 is necessary for the identi-
fiability of ©,: if X;'©,X; can be arbitrarily large in
magnitude, m;; = o(X;' ©,X;) can be arbitrarily close
to 0 or 1. Since our observations only depend on O,
through its image m;;, this could lead to a very large
estimation error on O, even with a small estimation
error on the ;.

Remark 8. This assumption has already appeared
in the literature on high-dimensional estimation, see
(van de Geer, 2008; Abramovich and Grinshtein,
2016).

Proposition 9. The identifiability assumption
max(; jeq |X; ©X;| < M is guaranteed for all
© € P(M) and design matrices X satisfying either of
the following

o XX o < 1,

e 0|2 < M1/N for some My > 0 and the block
1sometry property.

2.4.1 Random designs

For random designs, we require the block isometry
property to hold with high probability. Then the re-
sults in this article carry over directly and thus we
do not discuss it in full detail. It is well known that
for sparse linear models with the dimension of a tar-
get vector p and the sparsity k, the classical restricted
isometry property holds for some classes of random
matrices with i.i.d. entries including sub-Gaussian and
Bernoulli matrices, see (Mendelson et al., 2008), pro-
vided that 7 > klog(p/k), and i.i.d. subexponen-
tial random matrices, see (Adamczak et al., 2011),

provided that 7 > klog®(p/k). In the same spirit,
the design matrices with independent entries follow-
ing sub-Gaussian, subexponential or Bernoulli distri-
butions can be shown to satisfy the block isometry
property, cf. (Wang et al., 2016a), provided that
the number of observed edges in the network satisfies
N > k2?log?(d/k) for sub-Gaussian and subexponen-
tial designs and N 2> k? log(d/k) for Bernoulli designs.

3 DMatrix Logistic Regression

The log-likelihood for this problem is

ly(©) = — Z (s, X ©X;),
(1,7)€Q

where 5(; jy = 2Y{; ;) — 1 is a sign variable that depends
on the observations Y and £ : z — log(1l + €%) is a
softmax function, convex on R. As a consequence, the
negative log-likelihood —/¢y is a convex function of ©.
Denoting by ¢ the expectation Eg, [¢y], we recall the
classical expressions for all © € 8¢

((©) = £(6,) — KL(Pe,, Po),
where we recall 7;;(0) = o(X,; ©X;), and
ty(0) = £(0) +(V(,0)p,

where ( is a stochastic component of the log-likelihood
with constant gradient V¢ € R¥*? given by V(¢ =
>ipeaYag — 7:;(04))X; X,", which is a sum of in-
dependent centered random variables.

3.1 Penalized logistic loss

In a classical setting where d is fixed and N grows, the
maximiser of ¢y - the maximum likelihood estimator
- is an accurate estimator of ©,, provided that it is
possible to identify © from Pg (i.e. if the X; are well
conditioned). We are here in a high-dimensional set-
ting where d? > N, and this approach is not directly
possible. Our parameter space indicates that the in-
trinsic dimension of our problem is truly much lower
in terms of rank and block-sparsity. Our assumption
on the conditioning of the X; is tailored to this struc-
tural assumption. In the same spirit, we also modify
our estimator in order to promote the selection of el-
ements of low rank and block-sparsity. Following the
ideas of (Birgé and Massart, 2007) and (Abramovich
and Grinshtein, 2016), we define the following penal-
ized maximum likelihood estimator

6 € argmin { —{y(©) —l—p(@)} , (3.1)
@eP(M)
with a penalty p(©) = g(rank(0), ||0|o,0), for
9(R,K) = cKR + cK log (%), (3.2)
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where ¢ > 0 is a universal constant and to be specified
further. The proof of the following theorem is based on
Dudley’s integral argument combined with Bousquet’s
inequality and is deferred to the Appendix.

Theorem 10. Assume the design matriz X satisfies
max(; jeq |X;' 0.X;| < M for some M > 0 and all
O, in a gien class, and the penalty term p(©) sat-
isfies (3.2) with the constants ¢ > c1/L, ¢1 > 1, L
given in (2.4). Then for the penalised MLE estimator
é), the following non-asymptotic upper bound on the
expectation of the Kullback-Leibler divergence between
the measures Po, and Pg holds

EKL(Pg,,Pg kr k de
BB Poll < 0,271 0, Loy (49

(3.3)
where C7 > 3¢ is some universal constant for all k =
1,...,dandr=1,.. k.

Remark 11. Random designs with i.i.d.  entries
following sub-Gaussian, Bernoulli and subexponential
distributions discussed in Section 2.4.1 yield the same
rate as well. It can formally be shown using standard
conditioning arguments, see, e.g. (Nickl and van de
Geer, 2013).

Corollary 12. Assume the design matriz X satis-
fies the block isometry property from Definition 3 and
max(; jyeq | X; 0.X;| < M for some M > 0 and all
O, in a given class, and the penalty term p(0©) is as in
Theorem 10. Then for the penalised MLE estimator
é), the following non-asymptotic upper bound on the
rate of estimation holds

sup
e*EPk,r(M) N

sup  IB[||6 - 0, ]F] <
9*6Pk7(M)

kr k

Cl de
L(M) (1 — AQ,zk(X)) (N + N log (

D)

where C7 > 3c is some universal constant for all k =
1,...,dandr=1,.. k.

Let us define rank-constrained maximum likelihood es-
timators with bounded block size as

O, € argmin {—/y(O)}.
@ka.r(M)

It is intuitively clear that without imposing any reg-
ularisation on the likelihood function, the maximum
likelihood approach selects the most complex model.
In fact, the following result holds.

Theorem 13. Assume the design matrix X satis-
fies the block isometry property from Definition 3 and
max(; jeo |X;' 0.X;| < M for some M > 0 and all
O, in a given class. Then for the mazximum likeli-
hood estimator ékm the following non-asymptotic up-
per bound on the rate of estimation holds

sup E[”ékr —0,]7] <
@*E'Pk,r(M)
Cs kr k de
MR e (26
LOM)(1 = Agar(X)) (N v loe (5 >) ’

forallk =1,....,d and r = 1,....,k and some constant
Cs > 0.

Remark 14. The penalty (3.2) belongs to the class of
the so-called minimal penalties, cf. (Birgé and Mas-
sart, 2007). In particular, a naive MLE approach with
p(©) = 0 in (3.1) yields a suboptimal estimator as it
follows from Theorem 13.

3.2 Prediction

In applications, as new users join the network, we are
interested in predicting the probabilities of the links
between them and the existing users. It is natural
to measure the prediction error of an estimator © by
E[ Z(i,j)eg(ﬁij(é)*mj (64))?] which is controlled ac-
cording to the following result using the smoothness of
the logistic function o.

Theorem 15. Under Assumption 6, we have the
following rate for estimating the matriz of probabili-
ties 3, = X'O,X € R™ "™ with the estimator Y =
XTOX € R™™, for all ©, € Py.(M):

1 Ch ( kr k de

v B =2kl < 25 (F + w8 (3)

with the constant Cy1 from (3.3). The rate is mini-
max optimal, i.e. a minimaz lower bound of the same
asymptotic order holds for the prediction error of es-
timating the matrix of probabilities ¥, = XTOe,X €
Rnxn'

Remark 16. Whilst Assumption 6 is needed for the
estimation task, there are results on the prediction task
in logistic regression showing that it can be unneces-
sary, see Bach (2010). Whilst the main focus of this
paper is on estimation, it is a promising avenue for
future research to weaken or even remove this assump-
tion in the matrix logistic regression setting as well.

3.3 Convex relaxation

In practice, computation of the estimator (3.1) is of-
ten infeasible. In essence, in order to compute it,
we need to compare the likelihood functions over all
possible subspaces Py ,(M). Sophisticated step-wise
model selection procedures allow to reduce the num-
ber of analysed models, see e.g. Section 3.3.2 in Hastie
et al. (2001). However, they are not feasible in a high-
dimensional setting either. We here consider the fol-
lowing estimator

(;)1,1 = argmin{—/ly (0) + \||O]|1.1},
©csd

(3.4)
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with A > 0 to be chosen further, which is equivalent
to the logistic Lasso on vec(®). Using standard argu-
ments, cf. Example 1 in (van de Geer, 2008), combined
with the block isometry property the following result
immediately follows.

Theorem 17. Assume the design matriz X satis-
fies the block isometry property from Definition 3 and
max(; jeo |X; ©.X;| < M for some M > 0 and all
O, in a given class. Then for A = Cyy/logd, where
Cy > 0 is an appropriate universal constant, the esti-
mator (3.4) satisfies for all O, € Py (M)

Cs k2

E[|6,, - 06,]%] < ~ ogd:
1011 =6ullE) = Zap = Aqamm) N

(3.5)

forallk=1,....d and r = 1,...,k and some universal
constant Cs > 0.

As one could expect the upper bound on the rate of
estimation of our feasible estimator is independent of
the true rank r. It is natural, when dealing with a
low-rank and block-sparse objective matrix, to com-
bine the nuclear penalty with either the (2,1)-norm
penalty or the (1, 1)-norm penalty of a matrix, cf. (Gi-
raud, 2011; Koltchinskii et al., 2011; Bunea et al., 2012;
Richard et al., 2012). In our setting, it can be eas-
ily shown that combining the (1,1)-norm penalty and
the nuclear penalty yields the same rate of estimation
(k?/N)logd. This appears to be inevitable in view of
a computational lower bound, obtained in Section 4,
which is independent of the rank as well. In particular,
these findings partially answer a question posed in Sec-
tion 6.4.4 in (Giraud, 2014). Results about prediction
bounds are presented in the appendix.

3.4 Information-theoretic lower bounds

The following result demonstrates that the minimax
lower bound on the rate of estimation matches the
upper bound in Theorem 10 implying that the rate of
estimation is minimax optimal.

Theorem 18. Let the design matriz X satisfy the
block isometry property. Then for estimating ©, €
Prr(M) in the matriz logistic regression model, the
following lower bound on the rate of estimation holds

inf s B0 - 6.3] >
O 0,eP (M)

Oy kr k de
T (v F v e ()

where the constant Cy > 0 is independent of d, k,r and
the infimum extends over all estimators ©.

Remark 19. The lower bounds of the same order hold
for the expectation of the Kullback-Leibler divergence

between the measures Po, and Pg and the prediction
error of estimating the matriz of probabilities >, =
XTe,X € R,

4 Computational lower bounds

In this section, we investigate whether the lower bound
in Theorem 18 can be achieved with an estimator com-
putable in polynomial time. Recently, the gap between
computational and statistical optimal performance has
attracted a lot of attention in the statistical commu-
nity. We refer to (Berthet and Rigollet, 2013a,b; Wang
et al., 2016b; Gao et al., 2017; Zhang and Dong, 2017;
Hajek et al., 2015; Chen, 2015; Ma and Wu, 2015;
Chen and Xu, 2016) for computational lower bounds in
high-dimensional statistics based on the planted clique
problem (see below), (Berthet and Ellenberg, 2015)
using hardness of learning parity with noise (Oymak
et al., 2015) for denoising of sparse and low-rank ma-
trices, (Agarwal, 2012) for computational trade-offs in
statistical learning, as well as (Zhang et al., 2014) for
worst-case lower bounds for sparse estimators in lin-
ear regression, as well as (Bruer et al., 2015; Chan-
drasekaran and Jordan, 2013) for another approach
on computational trade-offs in statistical problems, as
well as (Berthet and Chandrasekaran, 2016; Berthet
and Perchet, 2017) on the management of these trade-
offs. In order to establish a computational lower bound
for the block-sparse matrix logistic regression, we ex-
ploit a reduction scheme from (Berthet and Rigollet,
2013a): we show that detecting a subspace of Py, .(M)
can be computationally as hard as solving the dense
subgraph detection problem. An introduction to this
problem, and the complexity assumption at hand, is
presented in the appendix.

4.1 Reduction to the dense subgraph
detection problem

We define in the appendix a class of parameter ma-
trices representing instances of the planted dense sub-
graph problem, in the graph logistic regression model.
In this problem, a conjecture is posed, summarized
here and developped in the appendix.

Conjecture 20. There is no algorithm that can dis-
tinguish - with high probability and in polynomial time
- a graph with independent edges with probability 1/2,
from a graph in which a subset of k vertices out of n
is connected with probability ¢ > 1/2; if k < n? for
B <1/2.

Consider the vectors of explanatory variables X; =
N'Y%;, i =1,...,n and assume without loss of gener-
ality that the observed set of edges ) in the matrix
logistic regression model consists of the interactions of
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an }k

GN206=

Figure 2: The construction of matrices ggN used in
the reduction scheme.

the n nodes X;, i.e. it holds N = |Q| = (3). It fol-
lows from the matrix logistic regression modelling as-
sumption (2.1) that the Erdés-Rényi graph G(n,1/2)
corresponds to a random graph associated with the
matrix ©p = 0 € R¥™?  Let G/(k) be a subset of
Py..1(M) with a fixed support [ of the block. In addi-
tion, let GV C Py,1(M) be a subset consisting of the
matrices ©; € Gi(k),l =1,..,K, K = (Z) such that
all elements in the block of a matrix ©; equal some
an = a/v/N >0, see Figure 2. Then we have

1 1

P((:,9 EX;,X‘ = = ’
((Z,]) € | g J) 1—|—67X7T@Xj 1+e«

for all © € G'~. Therefore, the testing problem

Hy:Y ~Pg, vs. H :Y ~Pg,0cGN, (4.1)
where Y € {0,1}? is the adjacency vector of binary
responses in the matrix logistic regression model, is re-
duced to the dense subgraph detection problem with
g = 1/(1 + e ®). This reduction scheme suggests
that the computational lower bound for separating the
hypotheses in the dense subgraph detection problem
mimics the computational lower bound for separating
the hypotheses in (4.1) in the matrix logistic regres-
sion model. The following theorem exploits this fact
in order to establish a computational lower bound of
order k?/N for estimating the matrix ©, € Py ,.(M).

Theorem 21. Let Fj be any class of matrices con-
taining Gy~ U ©g from the reduction scheme. Let
¢ > 0 be a positive constant and f(k,d,N) be a
real-valued function satisfying f(k,d, N) < ck?/N for
k=k,<n? 0<pB<1/2 and a sequence d = d,,, for
all n > mgy € IN. If Conjecture 20 holds, for some the
design X that fulfils the block isometry property from
Definition 3, there is no estimator of ©, € Fy, that at-
tains the rate f(k,d, N) for the Frobenius norm risk,
and can be evaluated using a (randomised) polynomial-
time algorithm, i.e. for any estimator O, computable
in polynomial time, there exists a sequence (k,d, N) =
(kn,dn, N), such that

sup 1E[||@ — 03] = oo,

1
f(k7 da N) O, EF) (42)

asn — 0o. Similarly, for any estimator é, computable
in polynomial time, there exists a sequence (k,d, N) =
(kn,dn, N), such that

1 1 .
—————— sup —IE}[HZ—E*H%’Q] — 00,

JUd.N) o0, N (4.3)

for the prediction error of estimating ¥, = X' 0,X.

Remark 22. Thus the computational lower bound for
estimating the matriz ©, in the matriz logistic regres-
sion model is of order k? /N compared to the minimax
rate of estimation of order kr/N+(k/N)log(de/k) and
the rate of estimation (k? /N)log(d) for the Lasso esti-
mator @Lasso, cf. Figure 1. Hence the computational
gap is most noticeable for the matrices of rank 1. Fur-
thermore, as a simple consequence of this result, the
corresponding computational lower bound for the pre-
diction risk of estimating ¥, = X'0,X is k2/N as
well.
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