
Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

Supplementary Material
Corruption-Tolerant Gaussian Process Bandit Optimization

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett (AISTATS 2020)

All citations below are to the reference list in the main document.

A Proof of Lemma 2 (Corrupted vs. Non-Corrupted Posterior Mean)

Our analysis uses techniques from [Chowdhury and Gopalan, 2017, Appendix C]. Let x be any point in D, and
fix a time index t � 1. From the definitions of µ̃t(·), µt(·) and ỹt (Eq. (4), (9) and (1)), we have

µ̃t(x) = kt(x)
T (Kt + �It)

�1ỹt (37)

= kt(x)
T (Kt + �It)

�1yt + kt(x)
T (Kt + �It)

�1ct (38)

= µt(x) + kt(x)
T (Kt + �It)

�1ct, (39)

where ỹt = [ỹ1, . . . , ỹt]T and ct = [c1(x1), . . . , ct(xt)]T . We proceed by upper bounding the absolute difference
between µ̃t(x) and µt(x), i.e, |kt(x)T (Kt + �It)�1ct|.

Let Hk(D) denote the RKHS associated with the kernel k and domain D. We define �(x) := k(x, ·), where
� : D ! Hk(D) maps x 2 D to the RKHS associated with the kernel. For any two functions f1, f2 in Hk(D),
we write f

T
1 f2 to denote the kernel inner product hf1, f2ik, which implies that kfkk =

p
fT f . By the RKHS

reproducing property, i.e., f(x) = hf, k(x, ·)ik for all x 2 D, and the fact that k(x, ·) 2 Hk(D) for all x 2 D, we
can write

k(x,x0) = hk(x, ·), k(x0
, ·)ik = h�(x),�(x0)ik = �(x)T�(x0)

for all x,x0 2 D. It also follows that Kt = �t�T
t where �t = [�(x1), . . . ,�(xt)]T , and kt(x) = �t�(x). (Here

and subsequently, the notation f
T
1 f2 = hf1, f2ik similarly extends to matrix multiplication operations.)

Using these properties, we can characterize the second term of (39) as follows:

|kt(x)
T (Kt + �It)

�1ct|
= |�(x)T�T

t (�t�
T
t + �It)

�1ct| (40)

= |h�(x)T (�T
t �t + �IHk)

�1
,�T

t ctik| (41)

 k(�T
t �t + �IHk)

�1/2
�(x)kkk(�T

t �t + �IHk)
�1/2�T

t ctkk (42)

=
q
�(x)T (�T

t �t + �IHk)
�1�(x)

q
(�T

t ct)
T (�T

t �t + �IHk)
�1�T

t ct (43)

= �
�1/2

�t(x)
q
cTt �t�T

t (�t�T
t + �It)�1ct (44)

= �
�1/2

�t(x)
q
cTt Kt(Kt + �It)�1ct (45)

 �
�1/2

�t(x)
q
�max (Kt(Kt + �It)�1) kctk22 (46)

 �
�1/2

�t(x)C
p
�max (Kt(Kt + �It)�1) (47)

 C�
�1/2

�t(x), (48)

where:

• Eq. (41) follows from the standard identity (see, e.g., [Chowdhury and Gopalan, 2017, Eq. (12)])

�T
t (�t�

T
t + �It)

�1 = (�T
t �t + �IHk)

�1�T
t . (49)

• Eq. (42) is by Cauchy-Schwartz.
• The first term �

�1/2
�t(x) in (44) follows from the following identity:

�
2
t (x) = ��(x)T (�T

t �t + �IHk)
�1

�(x). (50)

Corruption-Tolerant Gaussian Process Bandit Optimization

To prove (50), we first claim the following:

�(x) = �T
t

�
�t�

T
t + �It

��1
�t�(x) + �

�
�T

t �t + �IHk

��1
�(x). (51)

To see this, we apply (49) to the first term to obtain the equivalent expression

�(x) =
�
�T

t �t + �IHk

��1
�T

t �t�(x) + �
�
�T

t �t + �IHk

��1
�(x).

Multiplying from the left by
�
�T

t �t + �IHk

�
, we find that this is in turn equivalent to

�
�T

t �t + �IHk

�
�(x) = �T

t �t�(x) + ��(x),

which trivially holds. Then, note by the definition of �2
t (x) and (51) that

�
2
t (x) = k(x,x)� kt(x)

T (Kt + �It)
�1

kt(x)

= �(x)T�(x)� �(x)T�T
t

�
�t�

T
t + �It

��1
�t�(x)

(51)
= �(x)T�T

t

�
�t�

T
t + �It

��1
�t�(x) + ��(x)T (�T

t �t + �IHk)
�1

�(x)

� �(x)T�T
t

�
�t�

T
t + �It

��1
�t�(x)

= ��(x)T (�T
t �t + �IHk)

�1
�(x),

yielding (50). The second term in (44) (i.e., the square root) follows by again applying (49).
• In (46), �max

�
Kt(Kt + �It)�1

�
denotes the largest eigenvalue of Kt(Kt + �It)�1.

• Eq. (47) follows since kctk1  C (see (2)), and since the `1 norm is always an upper bound on the `2-norm.
• Eq. (48) follows since

�max(Kt(Kt + �It)
�1)  1.

This follows since all eigenvectors of Kt are also eigenvectors of (Kt + �It)�1, and hence, the eigenvalues of
Kt(Kt+�It)�1 are of the form �(Kt)

�(Kt)+� . Since, �(Kt) � 0 and � > 0, all the eigenvalues of Kt(Kt+�It)�1

are bounded by 1.

B Proof of Lemma 4 (Regret Bound with Known Corruption)

Conditioned on the confidence bounds (10) being valid according to Lemma 3, we have

f(x⇤)� f(xt)

 f(x⇤)� µ̃t�1(xt) + �t�t�1(xt) + �
�1/2

C�t�1(xt) (52)

 µ̃t�1(x
⇤) + �

�1/2
C�t�1(x

⇤) + �t�t�1(x
⇤)� µ̃t�1(xt) + �t�t�1(xt) + �

�1/2
C�t�1(xt) (53)

 µ̃t�1(xt) + �
�1/2

C�t�1(xt) + �t�t�1(xt)� µ̃t�1(xt) + �t�t�1(xt) + �
�1/2

C�t�1(xt) (54)

= 2(��1/2
C + �t)�t�1(xt). (55)

where (52) uses the lower confidence bound from (10), (53) uses the upper confidence bound from (10), and (54)
uses the selection rule in (13).

When � � 1, we have from [Chowdhury and Gopalan, 2017, Lemma 4] that3

TX

t=1

�t�1(xt) 
p
4T��T . (56)

This is a variant of a more widely-used upper bound on
PT

t=1 �t�1(xt) in terms of �T from [Srinivas et al., 2010].
3
The statement of [Chowdhury and Gopalan, 2017, Lemma 4] uses � = 1 + 2/T , but the proof states the result for

general � � 1.

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

We set � = 1 in accordance with the lemma statement, and sum over the time steps:

RT =
TX

t=1

�
f(x⇤)� f(xt)

�
(57)

 (2C + 2�T)
TX

t=1

�t�1(xt) (58)

 (2C + 2�T)
p
4T�T (59)


✓
2C + 2B + 2�

q
2
�
�T + ln(1�)

�◆p
4T�T , (60)

where (58) uses (55) and the monotonicity of �t, (59) uses (56), and (60) substitutes the choice of �t in (7) and
applies �T�1  �T . Hence, we have RT = O

�
(B + C +

p
ln(1/�))

p
�TT + �T

p
T
�
, which establishes the lemma.

C Bounding the Simple Regret

While we have focused exclusively on the cumulative regret in our exposition, we can easily adapt our analysis
to handle the simple regret similarly to the idea used in the proof of [Bogunovic et al., 2018a, Theorem 1]. We
outline this procedure for Theorem 5, since all of the other results can be adapted in the same manner.

We claim that under the setup of Theorem 5, for a given � > 0, Algorithm 1 achieves f(x⇤)� f(x(T))  � after
T = O

⇣
�T (�T+C)2

�2

⌘
rounds, where the reported point x(T) is defined as

x(T) = xt⇤ , with t
⇤ = argmax

1,...,T
{µ̃t�1(xt)� (C + �t)�t�1(xt)} . (61)

To prove this claim, we continue from the end of Appendix B. We set � = 1 as before, and define

r̄(xt) := f(x⇤)� µ̃t�1(xt) + (C + �t)�t�1(xt).

Using (52), we have f(x⇤)� f(x) = r(xt)  r̄(xt) for each t � 1. From the definition of the reported point x(T)

in (61), we have that t
⇤ is the time index with the smallest value of r̄(xt). It follows that

r̄(x(T))  1

T

TX

t=1

2(C + �t)�t�1(xt) (62)

 2(C + �T)

T

TX

t=1

�t�1(xt) (63)

 2(C + �T)

T

p
4T�T , (64)

where (62) upper bounds the minimum by the average, (63) uses the monotonicity of �t, and (64) uses (56) with
� = 1.

Re-arranging (64), we find that after T = O
��T (�T+C)2

�2

�
time steps, r̄(x(T))  �, which further implies that

r(x(T))  �.

D Proof of Lemma 6 (Total Corruption Observed by S)

We follow the proof of [Lykouris et al., 2018, Lemma 3.3], making use of the following martingale concentration
inequality.4

4
This result is presented in [Beygelzimer et al., 2011] for the filtration Ft generated by M1, . . . ,MT itself, but the proof

applies in the general case. To prove Lemma 6, we could in fact resort to the classical martingale concentration bound of

Freedman [Freedman et al., 1975], but we found the form given in [Beygelzimer et al., 2011] to be more convenient.

Corruption-Tolerant Gaussian Process Bandit Optimization

Lemma 11. [Beygelzimer et al., 2011, Lemma 1] Let M1, . . . ,MT be a sequence of real-valued random variables

forming a martingale with respect to a filtration {Ft}, i.e., E[Mt|Ft�1] = 0, and suppose that Mt  R almost

surely. Then for any � > 0, the following holds:

P
 TX

t=1

Mt 
V

R
(e� 2) +R ln(1/�)

�
� 1� �,

where V =
PT

t=1 E[M2
t |Ft�1].

Let x(S)
t be the point that would be selected at time t if instance S were chosen. We let Ct = |ct(x(S)

t)|1{At = S}
denote the amount of corruption observed by instance S at time t in Algorithm 2.

Let Ht�1 denote the history (i.e., all selected instances Ai 2 {F, S}, inputs xi 2 D, and observations ỹi 2 R)
prior to round t. Noting that x(S)

t is deterministic given Ht�1, we find that Ct is a random variable equaling
|ct(x(S)

t)| with probability ⇢ := min{1, C�1} and 0 otherwise. As a result, we can define the following martingale
sequence:

Mt = Ct � E[Ct|Ht�1],

where E[Ct|Ht�1] = ⇢|ct(x(S)
t)| as stated above. Since ct(x) 2 [�B0, B0] for all t and x 2 D (see Section 2), we

have Mt  B0 for all t. Hence, we can set R = B0 in Lemma 11.

Next, we note the following:

E[M2
t |Ht�1] = ⇢

⇣
|ct(x(S)

t)|� ⇢|ct(x(S)
t)|

⌘2
+ (1� ⇢)

⇣
⇢|ct(x(S)

t)|
⌘2

= ⇢ct(x
(S)
t)2(1� ⇢)2 + (1� ⇢)(⇢ct(x

(S)
t))2

 ⇢ct(x
(S)
t)2 + ⇢ct(x

(S)
t)2

= 2⇢ct(x
(S)
t)2

 2⇢B0|ct(x(S)
t)|.

where the two inequalities use ⇢ 2 [0, 1] and ct(x
(S)
t)  B0 respectively. By summing over all the rounds and

using the definition of C in (2), we obtain

V =
TX

t=1

E[M2
t |Ht�1]  2B0⇢

TX

t=1

|ct(x(S)
t)|  2B0⇢C  2B0,

since ⇢  C
�1. Applying Lemma 11, we have with probability at least 1� � that

TX

t=1

Mt 
2B0

B0
(e� 2) +B0 ln(1/�)  2 +B0 ln(1/�). (65)

Finally, we complete the proof of Lemma 6 by adding the total expected corruption:

TX

t=1

Ct =
TX

t=1

Mt +
TX

t=1

E [Ct|Ht�1]

 3 +B0 ln(1/�),

where we have used (65) and
PT

t=1 E [Ct|Ht�1] = ⇢
PT

t=1 |ct(x
(S)
t)|  ⇢C  1.

E Proof of Lemma 7 (Characterizing the Points Not Sampled by F)

Consider any round t 2 {1, . . . , T} and any point x 2 St (see (23)). We wish to show that F never selects x, i.e.,
xt 6= x. To establish this, it suffices to prove that

min
A2{F,S}

ucb
(A)
tA�1(x; 1) < min

A2{F,S}

ucb
(A)
tA�1(x

0; 1). (66)

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

for some x0 2 D; this means that x0 is favored over x according to the selection rule of F .

To show (66), we first trivially write

min
A2{F,S}

ucb
(A)
tA�1(x; 1)  ucb

(S)
tS�1(x; 1). (67)

Since x 2 St, by the definition of St in (23), there exists x0 2 D such that

ucb
(S)
tS�1(x; 1) < lcb

(S)
tS�1(x

0; 1). (68)

Moreover, the following two equations provide upper bounds on lcb
(S)
tS�1(x

0; 1):

lcb
(S)
tS�1(x

0; 1)  ucb
(S)
tS�1(x

0; 1) (69)

lcb
(S)
tS�1(x

0; 1)  ucb
(F)
tF�1(x

0; 1), (70)

where (69) follows from the validity of the confidence bounds (see (21)), and (70) is due to At = F , which means
that the condition (19) used in Fast-Slow GP-UCB (Line 12) is not satisfied and thus it cannot hold that
lcb

(S)
tS�1(x

0; 1) > ucb
(F)
tF�1(x

0; 1).

From (69) and (70) we have lcb
(S)
tS�1(x

0; 1)  min{F,S} ucb
(A)
tA�1(x

0; 1), and from (67) and (68) we have
lcb

(S)
tS�1(x

0; 1) > minA2{F,S} ucb
(A)
tA�1(x; 1), which together prove that (66) holds.

F Proof of Lemma 8 (Characterizing the Points Ruled Out via S)

Although we consider the S instance run with ↵ = 2, we are interested in how long it takes before the following
(corresponding to ↵ = 1) is observed for the given suboptimal x and some x0 2 D:

ucb(S)
tS�1(x; 1) < lcb(S)

tS�1(x
0; 1). (71)

Since ucb
(S)
tS�1 and lcb

(S)
tS�1 are tighter confidence bounds than ucb(S)

tS�1 and lcb(S)
tS�1, (71) holding implies that

ucb
(S)
tS�1(x; 1) < lcb

(S)
tS�1(x

0; 1), (72)

meaning that x 2 StS (see (23)). Since ucb
(S)
tS�1 and lcb

(S)
tS�1 are monotone, (72) holding for some tS means that

it continues to hold for all t0S > tS . Hence, to establish the lemma, it suffices to show that after tS rounds (with
tS given in (24)), there exists a point x0 2 D such that (71) holds.

Since this proof only concerns points selected by S, we abuse notation slightly and let xi denote the i-th point
queried by S. We use the fact that the instant regret incurred by the S instance satisfies

r(xi) = f(x⇤)� f(xi)  2↵�(S)
i �

(S)
i�1(xi) (73)

(via an identical argument5 to (55)), and the sum of posterior standard deviations satisfies

1

tS

tSX

i=1

�
(S)
i�1(xi) 

r
4�tS
tS

(74)

when we set � = 1 (by a direct application of (56)). Combining these gives

1

tS

tSX

i=1

r(xi) 
1

tS

tSX

i=1

2↵�(S)
i �

(S)
i�1(xi) 

s
C1(�

(S)
tS)2�tS
tS

, (75)

5
See also (92) in Appendix G.

Corruption-Tolerant Gaussian Process Bandit Optimization

where C1 = 16↵2. It is useful to “invert” the right-hand side of (75); to do this, we define the function

⌧(�) = min

⇢
⌧ :

s
C1(�

(S)
⌧)2�⌧
⌧

 �

�
. (76)

Since (75) and (76) state that the “average” value of 2↵�(S)
i �

(S)
i�1(xi) by time ⌧(�) is at most �, we deduce that

8� > 0, 9i  ⌧(�) such that 2↵�(S)
i �

(S)
i�1(xi)  �. (77)

That is, at least one time index i yields a value less than or equal to the average.

Now consider the given x 2 D with instant regret satisfying r(x) � �0 > 0 in accordance with the lemma
statement. Setting the parameter � = �0

10 in (77) gives

9i  ⌧(�0/10) such that 2↵�(S)
i �

(S)
i�1(xi) 

�0

10
(78)

and hence r(xi) 
�0

10
, (79)

where (79) follows from (73). This means that xi is much closer to optimal than x is. The properties in (78) and
(79) allow us to characterize the confidence bounds of xi:

ucb(S)
i�1(xi;↵) = lcb(S)

i�1(xi;↵) + 2↵�(S)
i �

(S)
i�1(xi) (80)

 f(xi) + 2↵�(S)
i �

(S)
i�1(xi) (81)

 f(x⇤) +
�0

10
, (82)

where (80) uses the definition of the confidence bounds in (15)–(16), (81) uses the validity of the confidence
bounds in (21), and (82) uses (78). Similarly,

lcb(S)
i�1(xi;↵) = ucb(S)

i�1(xi;↵)� 2↵�(S)
i �

(S)
i�1(xi) (83)

� ucb(S)
i�1(x

⇤;↵)� 2↵�(S)
i �

(S)
i�1(xi) (84)

� f(x⇤)� 2↵�(S)
i �

(S)
i�1(xi) (85)

� f(x⇤)� �0

10
, (86)

where (83) is the same as (80), (84) uses the UCB selection rule, (85) uses the validity of the confidence bounds,
and (86) uses (78). Combining (82) and (86), we find that the confidence interval [lcb(S)

i�1(xi;↵), ucb
(S)
i�1(xi;↵)] is

within the range

I =
h
f(x⇤)� �0

10
, f(x⇤) +

�0

10

i
. (87)

It also holds that
ucb(S)

i�1(x;↵)  ucb(S)
i�1(xi;↵) (88)

by the UCB rule used in the S instance. For this fixed i  ⌧(�0/10) and xi, there are then two possible cases
that we need to consider:

1. If it also holds that ucb(S)
i�1(x;↵) < lcb(S)

i�1(xi;↵), then we immediately obtain

ucb(S)
i�1(x; 1) < lcb(S)

i�1(xi; 1)

because we chose ↵ = 2, and decreasing ↵ only makes ucb(S)
i�1(·;↵) decrease and lcb(S)

i�1(·;↵) increase (see
(15)–(16)). Hence, the condition in (71) holds as required.

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

2. Otherwise, by (88), we must have

lcb(S)
i�1(xi,↵)  ucb(S)

i�1(x;↵)  ucb(S)
i�1(xi;↵).

By (82) and (86), this means that ucb(S)
i�1(x;↵) lies in the interval I given in (87).

Since the confidence bounds (21) are valid and f(x)  f(x⇤) ��0 (i.e., r(x) � �0), we must also have
lcb(S)

i�1(x;↵)  f(x⇤)��0. Comparing this with I above, we notice a gap of at least 9�0
10 between the upper

and lower confidence bounds at x. Let this gap be denoted by Gap(↵) � 9�0
10 .

The confidence bounds ucb(S)
i�1(x;↵) and lcb(S)

i�1(x;↵) are equal to µ̃± 1
2Gap(↵), where µ̃ is shorthand for

the corrupted posterior mean. When we compare to ucb(S)
i�1(x; 1) and lcb(S)

i�1(x; 1), the value µ̃ remains
unchanged, but we have Gap(1) = 1

↵Gap(↵); see (15)–(16). Therefore, we have

ucb(S)
i�1(x; 1) = ucb(S)

i�1(x;↵)�
1

2

⇣
1� 1

↵

⌘
Gap(↵)

 ucb(S)
i�1(x;↵)�

1

2

⇣
1� 1

↵

⌘9�0

10

since Gap(↵) � 9�0
10 . Substituting ↵ = 2 gives ucb(S)

i�1(x; 1)  ucb(S)
i�1(x; 2) � 9�0

40 . Since the width of the
interval I (in which ucb(S)

i�1(x; 2) lies) is only 2�0
10 = 8�0

40 , we conclude that ucb(S)
i�1(x; 1) lies strictly below I.

On the other hand, using (82) and (86), we see that the entire confidence interval for xi lies within I (recall
that replacing ↵ > 1 by ↵ = 1 only shrinks this interval). Hence, ucb(S)

i�1(x; 1) < lcb(S)
i�1(xi; 1), as required.

Recall that the above findings all correspond to some time index i  ⌧(�0/10). Hence, (24) follows by setting
tS = ⌧(�0/10).

G Proof of Theorem 9 (Regret Bound in the Known-or-Zero Setting)

Throughout the proof, we condition on the events (20)–(22) that simultaneously hold with probability at least
1� 4�

5 .

G.1 Non-corrupted case

Recall that at time t, the chosen instance and input are denoted by At and xt, respectively, and we use tA to
denote the number of times an instance A 2 {F, S} has been chosen up to time t.

In the non-corrupted case, the condition (19) cannot hold (conditioned on the events (20) and (21)), since the
confidence bounds for both S and F are valid and hence ucb(F)

tF (x; 1) can never be smaller than lcb(S)
tS (x; 1).

Consequently, Algorithm 2 selects only S or F , and never switches permanently to Algorithm 1.

First, we consider the case that At = S is used to select xt for some t. We have

f(x⇤)� f(xt)  ucb(S)
tS�1(x

⇤;↵)� f(xt) (89)

 ucb(S)
tS�1(xt;↵)� f(xt) (90)

 ucb(S)
tS�1(xt;↵)� lcb(S)

tS�1(xt;↵) (91)

 2↵�(S)
tS �

(S)
tS�1(xt), (92)

where (89) and (91) use the validity of the confidence bounds, (90) follows from the selection rule of S, and (92)
uses the definitions (15)–(16).

Corruption-Tolerant Gaussian Process Bandit Optimization

Next, we consider the case that At = F is used to select xt for some t. We have

f(x⇤)� f(xt)  min
A2{F,S}

ucb
(A)
tA�1(x

⇤; 1)� f(xt) (93)

 min
A2{F,S}

ucb
(A)
tA�1(xt; 1)� f(xt) (94)

 ucb
(F)
tF�1(xt; 1)� f(xt) (95)

 ucb
(F)
tF�1(xt; 1)� lcb

(F)
tF�1(xt; 1) (96)

 2�(F)
tF �

(F)
tF�1(xt), (97)

where (93) and (96) use the validity of the confidence bounds, (94) uses the selection rule of F , and (97) follows
similarly to (92) by noting that the intersected confidence bounds are at least as tight as the non-intersected ones.

The regret RT of Algorithm 2 after T rounds can be trivially bounded by the sum R
(S)
T +R

(F)
T , where R

(A)
T is the

regret of instance A when run for T rounds in the non-corrupted case:

RT  R
(F)
T +R

(S)
T (98)


TX

tF=1

2�(F)
tF �

(F)
tF�1(xtF) +

TX

tS=1

2↵�(S)
tS �

(S)
tS�1(xtS) (99)

 2�(F)
T

TX

tF=1

�
(F)
tF�1(xtF) + 2↵�(S)

T

TX

tS=1

�
(S)
tS�1(xtS) (100)

 2�(F)
T

p
4T�T + 2↵�(S)

T

p
4T�T (101)

 4↵�(S)
T

p
4T�T , (102)

where (99) follows from (92) and (97), (100) follows since both �
(S)
tS and �

(F)
tF are non-decreasing in the time

index, (101) follows from (56) by setting � = 1, and (102) follows since ↵ � 1 and �
(S)
T � �

(F)
T (see (25)–(26)).

Substituting �
(S)
T = B+�

q
2
�
�T�1 + ln

�
5
�

��
+ (3+B0 ln

�
5
�

�
) and ↵ = 2 in (102), we arrive at the regret bound,

i.e., with probability at least 1� 4
5� � 1� �, the regret of Algorithm 2 after T rounds is

RT = O
✓⇣

B +B0 ln(
1
�) +

q
ln(1�)

⌘p
T�T + �T

p
T

◆
.

G.2 C-corrupted case

Similarly to the non-corrupted case, we condition on (20)–(22), and we set � = 1. We first address the two parts
of Fast-Slow GP-UCB whose contributions to the cumulative regret are the simplest to handle: That from
Algorithm 1, and that from the slow instance S.

Supposing that Algorithm 1 is run for T
0  T rounds, we simply use the confidence bounds (22) and apply

Lemma 4 (with �
5 in place of �): If �(A1)

t = B + �

q
2
�
�t�1 + ln

�
5
�

��
+ C, then the cumulative regret after T

0

rounds satisfies
R

(A1)
T 0 = O

✓⇣
B + C +

q
ln(1�)

⌘p
�T 0T 0 + �T 0

p
T 0

◆
. (103)

The regret obtained by S is analyzed in the same way via Lemma 4, but with B0 ln
�
5
�

�
in place of C, and the

confidence bounds (21) in place of (22). Lemma 4 then implies that the regret coming from S for a total of T 0

rounds satisfies
R

(S)
T 0 = O

✓⇣
B +B0 ln(

1
�) +

q
ln(1�)

⌘p
�T 0T 0 + �T 0

p
T 0

◆
, (104)

which is the same as (103) but with B0 ln
�
5
�

�
in place of C (and possibly a different T

0 value). It now only
remains to bound the regret of the F instance in the corrupted case.

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

Regret incurred by the F instance. First, we recall a few facts. The F -confidence bounds in (20) are only
valid when there is no corruption, and hence they cannot be used to characterize the regret of the F instance
in the corrupted case. Unlike the F -confidence bounds, the S-confidence bounds in (21) are valid even in the
corrupted case, and they are useful since the F rule explicitly depends on them (Fast-Slow GP-UCB, Line 6).
In Lemma 7, we have shown that no point that is suboptimal according to the S-confidence bounds is sampled
by the F instance. Subsequently, in Lemma 8, we have characterized how many points need to be queried in S

before this occurs. More formally, the results of Lemmas 7 and 8 (with ↵ = 2) state that by time

tS = min
�
⌧ : 8�(S)

⌧

q
�⌧

⌧  �0
10

, (105)

all �0-suboptimal points are ruled out and are not sampled by F in the subsequent time steps. We observe that
the following two statements are equivalent:

• After time tS = min
�
⌧ : 8�(S)

⌧
p�⌧

⌧  �0
10

, the instant regret of each point selected by F is at most �0;

• After time tS , the instant regret of each point selected by F is at most 80�(S)
tS

q
�tS
tS

.

This is by a simple inversion; if we set �0 = 80�(S)
⌧

p�⌧

⌧ in (105) then it trivially holds that 8�(S)
⌧

p�⌧

⌧  �0
10 .

We now seek to characterize how many times F is selected in between successive selections of S. If C  1, then
this is trivial, since S is always selected, so in the following we focus on C > 1. We will establish that with
probability at least 1� �

5 , in between any two selections of S (or prior to the first such selection), there are at
most C ln 5T

� selections of F with probability at least 1� �
5 . We henceforth denote this event by A.

To establish the preceding claim, fix an integer N > 0, and observe that after any given selection of S, the
probability of selecting F for the next N rounds is

�
1� 1

C

�N  e
�N/C . Hence, if N = C ln 1

�0 , then the probability
is at most �

0. The number of selections of S is trivially at most T , so taking a union bound over at most T

associated events, we obtain P[A] � 1� �
5 when �

0 = �
5T .

By the union bound, the event A and the events in (20)–(22) hold simultaneously with probability at least
1� 4

5��
1
5� = 1� �. Conditioned on these events, when Fast-Slow GP-UCB is run for T rounds, the cumulative

regret of the points selected by F satisfies6

R
(F)
T  2B0N +N · 80�(S)

T

p
�T

⌅
T
N

⇧
X

tS=1

q
1
tS

(106)

 2B0N + 80N�
(S)
T

q
4�T

T
N (107)

= 2B0N + 80�(S)
T

p
4N�TT , (108)

where:

• (106) is established using the equivalence stated after (105) and the definition of A as follows: First, the
instant regret bound 80�(S)

tS

q
�tS
tS

is upper bounded by 80�(S)
T

p
�T

q
1
tS

because �
(S)
tS and �tS are monotone.

Then, when summing this weakened upper bound over all time instants, the conditioning on A means that
the worst case (i.e., giving the highest upper bound) is that there are exactly N selections of F before each
selection of S. The first such selection incurs cumulative regret at most 2B0N since f(x) 2 [�B0, B0], and
the subsequent selections indexed by tS incur at most N · 80�(S)

T
p
�T

q
1
tS

.

• (107) uses
PT

t=1
1
p
t
 1 +

R T
t=1

1
p
t
dt 

p
4T .

Substituting N = C ln(5T�) and �
(S)
T (stated above (21)) into (108), we obtain

R
(F)
T = O

✓q
C ln(T�)

⇣⇣
B +B0 ln(

1
�) +

q
ln(1�)

⌘p
�TT + �T

p
T

⌘
+B0C ln(T�)

◆
. (109)

6
We could slightly improve this bound by replacing �T by � T

N
, but we proceed with the former since it is simpler and

only slightly weaker.

Corruption-Tolerant Gaussian Process Bandit Optimization

Overall corrupted regret bound. The obtained regret bounds (103), (104), and (109) hold simultaneously
with probability at least 1� �. We obtain our final bound by noting that the cumulative regret of Fast-Slow
GP-UCB after T rounds can be trivially upper bounded by the sum of the individual regrets in (103), (104),
and (109), where in both (103) and (104) we upper bound T

0 by T . Therefore, with probability at least 1� �,
after T rounds, we obtain

RT = O
✓
(1 + C) ln(T�)

⇣⇣
B +B0 ln(

1
�) +

q
ln(1�)

⌘p
�TT + �T

p
T

⌘◆
. (110)

Note that we have weakened
q
C ln(T�) in (109) to C ln(T�) for the sake of attaining a simpler bound with fewer

terms, since a C
p
T�T term is already present in (103).

H Further Details on the Proof of Theorem 10 (Regret Bound with Unknown C)

As stated in Theorem 10, we set the exploration parameter for each layer ` as follows:

�
(`)
t` = B + �

s

2

✓
�t`�1 + ln

✓
4(1 + log2 T)

�

◆◆
+ 3 +B0 ln

✓
4(1 + log2 T)

�

◆
. (111)

This ensures the following confidence bound for each ` 2 {1, . . . , dlog2 T e} such that 2` � C, with probability at
least 1� �/2:

lcbt`�1(x; 1)  f(x)  ucbt`�1(x; 1), 8x 2 D, t` � 1 (112)

This follows from Lemmas 3 and 6 (with 3 +B0 ln
� 4(1+log2 T)

�

�
in place of C in Lemma 3, and � = 1), by setting

the corresponding failure probabilities to �
4(1+log2 T) in both. By a union bound over the two events in the lemmas,

followed by a union bound over ` 2 {1, . . . , dlog2 T e}, we obtain (112). Once again, (112) remains true when
ucb(`) and lcb(`) are replaced by ucb

(`) and lcb
(`).

There are at most dlog2 T e “corruption-tolerant” layers (i.e., layers such that 2` � C), and their regret is analyzed
via Lemma 4, but with 3 + B0 ln

� 4(1+log2 T)
�

�
in place of C, and the confidence bounds (112) in place of (22).

Lemma 4 then implies that the total regret coming from these layers for a total of T rounds is upper bounded
according to the following analog of (104):

O
✓✓⇣

B +B0 ln(
log T
�) +

q
ln(log T

�)
⌘p

�TT + �T

p
T

◆
log T

◆
, (113)

with probability at least 1� �/2.

It remains to characterize the regret coming from the layers that are not corruption-tolerant, i.e., the layers `

such that 2` < C. By the algorithm design (i.e., by the established properties of the sets of potential maximizers)
and similarly to Lemma 7, it holds that if a point x 2 D becomes suboptimal at time step t according to the
confidence bounds of some layer ` (i.e., x /2 M

(`)
t), then it is not sampled by any layer {1, . . . , `} in the subsequent

time steps {t+ 1, . . . , T}. If we denote the minimum layer that is robust to corruption as

`
⇤ := min

�
` 2 {1, . . . , dlog T e} : 2` � C

(114)

= dlog2 Ce (if 1  C  T), (115)

then we can use this layer to characterize the number of queries t`⇤ made at `⇤ before a suboptimal point becomes
“eliminated” from this and all the lower layers {1, . . . , `⇤ � 1}. This can be done by using Lemma 8 (where `

⇤

plays the role of the S instance), using the confidence bounds from (112) instead of (21).

We can then repeat the arguments of Theorem 9 (Section G.2; Regret incurred by the F instance) and obtain
the regret bounds. First, we characterize how many times layers 1, . . . , `⇤ � 1 are selected in between successive
selections of `⇤. We can establish that with probability at least 1� �/2, in between any two selections of `⇤ (or
prior to the first such selection), there are at most N = 2C log 2T

� selections of layers {1, . . . , `⇤ � 1} (combined)
with probability at least 1� �/2. This is done via the same arguments used in the proof of Theorem 9, and the
fact that layer `

⇤ is chosen with probability at least min
�
1, 1

2C

by the definition of `⇤.

Ilija Bogunovic, Andreas Krause, Jonathan Scarlett

By taking the union bound over the previous event and the one in (112), we have that with probability at least
1� �, the regret coming from the points selected by the layers {1, . . . , `⇤ � 1} is at most given by the following
analog of (109):

O
✓q

C ln(T�)
⇣⇣

B +B0 ln(
log T
�) +

q
ln(log T

�)
⌘p

�TT + �T

p
T

⌘
+B0C ln(T�)

◆
. (116)

The following overall regret bound dominates both (113) and (116), and therefore holds for Algorithm 3 with
probability at least 1� �:

RT = O
✓
(1 + C) ln(T�)

⇣⇣
B +B0 ln(

log T
�) +

q
ln(log T

�)
⌘p

�TT + �T

p
T

⌘◆
. (117)

This matches the expression given in Theorem 10.

I Discussion on the Parameters � and ↵

Recall that our posterior updates are done assuming a sampling noise variance � > 0 that may differ from the
true variance �

2
> 0. In the absence of corruptions, one may be inclined to set � = �

2, as was done (for example)
in [Srinivas et al., 2010]. However, a problem with this approach in the corrupted setting is that if �2 is small,
the posterior mean will follow the corrupted samples very closely even though they are unreliable. More generally,
increasing � generally increases robustness against corruptions, but if � is too high then the model essentially
places no trust in any of the sampled points, which prevents effective learning. In our theoretical analysis, we set
� = 1 as a mathematically convenient choice controlling this trade-off, though other values may also work well in
practice.

Next, we discuss the parameter ↵ � 1 in Fast-Slow GP-UCB. The idea is that if we set ↵ = 1 everywhere, it
becomes difficult or impossible to establish that suboptimal points are “ruled out” by the S instance (in the sense
of Lemma 7) after a certain amount of time. This is because regardless of the suboptimality of a given point x,
the posterior variance may be just high enough for its upper confidence bound to be just below the maximal
function value f(x⇤). Then, x⇤ will be favored over x according to the UCB rule, and the algorithm may fail to
reduce the uncertainty in f(x).

In contrast, if we are using the UCB rule with ↵ = 2 and the preceding “unlucky” scenario is encountered, then
upon halving the confidence width (i.e., considering the confidence bounds with ↵ = 1 instead of ↵ = 2), such a
point x will correctly be ruled out as suboptimal. Lemma 8 formalizes this intuition.

J Optimal Dependence on C and T

We first argue that a linear dependence on the corruption C is unavoidable in any cumulative regret bound.
However, we do not make any claims of optimality regarding the joint dependence on (C, T).

Let the domain be the unit interval [0, 1], and let f0(x) and f1(x) be functions taking values in
⇥
� 1, 1

⇤
and

satisfying the RKHS norm bound, as well as the following property: Any point within 1
2 of optimality for

one function (e.g., f0(x) � f0(x⇤

0) � 1
2) is at least 1

2 -far away from optimality for the other function (e.g.,
f1(x)  f1(x⇤

1)� 1
2). Such functions can easily be constructed (at least when the RKHS norm B is not too small),

for example, via the approach in [Scarlett et al., 2017].

Now suppose that the the true function is known to be either f0 or f1, but the exact one of the two is unknown.
Consider an adversary that, for the first C rounds, simply perturbs the function value to zero. This can be done
within the adversary’s budget, since f(x) 2

⇥
� 1, 1

⇤
. Given such corruptions, the player cannot learn anything

about the function, so at best can randomly guess whether the function is f0 or f1. However, by the property of
1
2 -optimality above, attaining o(C) regret for one function implies incurring ⌦(C) regret for the other function.

Hence, regardless of the sampling algorithm, there exist functions in the function class for which ⌦(C) regret is
incurred.

As for the dependence on T , we recall from (14) that when C is constant, the dependence on T matches well-known
bounds from the non-corrupted setting [Srinivas et al., 2010, Chowdhury and Gopalan, 2017]. Recent lower

Corruption-Tolerant Gaussian Process Bandit Optimization

bounds [Chowdhury and Gopalan, 2017] reveal that this dependence is near-optimal for the SE kernel, though
some gaps still remain for the Matérn kernel. Closing these gaps remains a significant challenge even in the
non-corrupted setting.

K Comparison to Stochastic Linear Bandits

Regret bounds for corrupted stochastic linear bandits were given in the parallel independent work of Li et al. [Li
et al., 2019]. While the stochastic linear setting corresponds to our problem setting with a linear kernel, care
should be taken in comparing our results to those of [Li et al., 2019], since the results of [Li et al., 2019] are
instance-dependent (i.e., depend on certain gaps associated with the underlying function) and ours hold for an
arbitrary (e.g., worst-case) instance satisfying the RKHS norm constraint.

For a polytope-shaped domain in any constant dimension, the cumulative regret bound in [Li et al., 2019] is
logarithmic in T with a constant of O

�
C
� + 1

�2

�
, where � is the gap between the best action (necessarily a corner

point of the domain) and the second-best corner point. By comparison, for fixed B > 0, Theorem 10 yields
cumulative regret Õ(C

p
T), where Õ(·) hides log T factors. This is obtained using the fact that �T = O(d log T)

for the linear kernel [Srinivas et al., 2010, Theorem 5], and the fact that we are focusing on the case d = O(1) in
this discussion.

Naturally, the results of [Li et al., 2019] are stronger when the gaps are constant (i.e., � = ⇥(1)), attaining log T
regret instead of

p
T . On the other extreme, the “worst-case” gap used to convert instance-dependent guarantees

to worst-case guarantees is � = O
�

1
p
T

�
[Abbasi-Yadkori et al., 2011], and in this case the bound of [Li et al.,

2019] becomes trivial (higher than linear), whereas ours remains sublinear for C ⌧
p
T . More generally, our

bound is tighter whenever � ⌧
p
CT

1/4, and the bound of [Li et al., 2019] is tighter whenever � � T
�1/4 and

C � 1.

Overall, however, we believe that the main advantage of our work is the ability to handle general kernels (e.g., SE
and Matérn), thereby allowing the underlying function to be highly non-linear.

	Introduction
	Problem Statement
	Standard (non-corrupted) setting

	Known Corruption Setting
	Known-or-Zero Corruption Setting
	Analysis

	Unknown Corruption Setting
	Conclusion
	Proof of Lemma 2 (Corrupted vs. Non-Corrupted Posterior Mean)
	Proof of Lemma 4 (Regret Bound with Known Corruption)
	Bounding the Simple Regret
	Proof of Lemma 6 (Total Corruption Observed by S)
	Proof of Lemma 7 (Characterizing the Points Not Sampled by F)
	Proof of Lemma 8 (Characterizing the Points Ruled Out via S)
	Proof of Theorem 9 (Regret Bound in the Known-or-Zero Setting)
	Non-corrupted case
	C-corrupted case

	Further Details on the Proof of Theorem 10 (Regret Bound with Unknown C)
	Discussion on the Parameters and
	Optimal Dependence on C and T
	Comparison to Stochastic Linear Bandits

