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Abstract

We focus on kernel methods for set-valued in-
puts and their application to Bayesian set op-
timization, notably combinatorial optimiza-
tion. We investigate two classes of set ker-
nels that both rely on Reproducing Kernel
Hilbert Space embeddings, namely the “Dou-
ble Sum” (DS) kernels recently considered in
Bayesian set optimization, and a class intro-
duced here called “Deep Embedding” (DE)
kernels that essentially consists in applying a
radial kernel on Hilbert space on top of the
canonical distance induced by another kernel
such as a DS kernel. We establish in par-
ticular that while DS kernels typically suffer
from a lack of strict positive definiteness, vast
subclasses of DE kernels built upon DS ker-
nels do possess this property, enabling in turn
combinatorial optimization without requiring
to introduce a jitter parameter. Proofs of
theoretical results about considered kernels
are complemented by a few practicalities re-
garding hyperparameter fitting. We further-
more demonstrate the applicability of our ap-
proach in prediction and optimization tasks,
relying both on toy examples and on two
test cases from mechanical engineering and
hydrogeology, respectively. Experimental re-
sults highlight the applicability and com-
pared merits of the considered approaches
while opening new perspectives in prediction
and sequential design with set inputs.
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1 Introduction

Kernel methods (Aronszajn, 1950; Kimeldorf and
Wahba, 1970; Schölkopf and Smola, 2002; Saitoh and
Sawano, 2016) constitute a versatile framework for a
variety of tasks in classification (Steinwart and Christ-
mann, 2008), function approximation based on scat-
tered data (Wendland, 2005), and probabilistic predic-
tion (Rasmussen and Williams, 2006). One of the out-
standing features of Gaussian Process (GP) prediction,
in particular, is its usability to design Bayesian Opti-
mization (BO) algorithms (Mockus et al., 1978; Jones
et al., 1998; Frazier, 2018) and further sequential de-
sign strategies (Risk and Ludkovski, 2018; Binois et al.,
2019; Bect et al., 2019). While in most usual GP- and
BO-related contributions the focus is on continuous
problems with vector-valued inputs, there has been a
growing interest recently for situations involving dis-
crete and mixed discrete-continuous inputs (Kondor
and Lafferty, 2002; Gramacy and Taddy, 2010; Fortuin
et al., 2018; Roustant et al., 2018; Garrido-Merchan
and Hernández-Lobato, 2020; Ru et al., 2019; Griffiths
and Hernández-Lobato, 2019). Here we focus specif-
ically on kernels dedicated to finite set-valued inputs
and their application to GP modelling and BO, no-
tably (but not only) in combinatorial optimization.

A number of prediction and optimization problems
from various application domains involve finite set-
valued inputs, encompassing for instance sensor net-
work design (Garnett et al., 2010), simulation-based
investigation of the mechanical behaviour of bi-phasic
materials depending on the positions of inclusions
(Ginsbourger et al., 2016), inventory system optimiza-
tion (Salemi et al., 2019), selection of starting centers
in clustering algorithms (Kim et al., 2019), speaker
recognition and image texture classification (as men-
tioned by Desobry et al. (2005)), natural language pro-
cessing tasks with bags of words (Pappas and Popescu-
Belis, 2017), or optimal positioning of landmarks in
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shape analysis (Iwata, 2012), to cite a few. Yet, the
number of available kernel methods for efficiently tack-
ling such problems is still quite moderate, although the
topic has gained interest among the machine learning
and further research communities in the last few years.
In particular, early investigations regarding the defi-
nition of positive definite kernels on finite sets encom-
pass (Kondor and Jebara, 2003; Grauman and Darrell,
2007), and also indirectly (Cuturi et al., 2005) where
kernels between atomic measures are introduced. Ker-
nels on finite sets that have been used in BO include ra-
dial kernels with respect to the earth mover’s distance
(Garnett et al., 2010, where the question of their pos-
itive definiteness is not discussed), kernels on graphs
implicitly defined via precision matrices in the context
of Gaussian Markov Random Fields in (Salemi et al.,
2019), and the class used in (Kim et al., 2019) and
originating in (Haussler, 1999; Gärtner et al., 2002)
that we refer to as Double Sum (DS) kernels. From
the combinatorial optimization side, while an approach
relying on Bayesian networks was considered already
in (Larraiiaga et al., 2000), the topic has recently at-
tracted attention in GP-based BO with respect to set
inputs (see for instance Baptista and Poloczek (2018)
where the emphasis is not on the employed kernels,
and Oh et al. (2019) where graph representations are
used), and also in GP-based BO over the latent space
of a variational autoencoder (Griffiths and Hernández-
Lobato, 2019).

Our approach here is to leverage the fertile frame-
work of Reproducing Kernel Hilbert Space Embed-
dings (Berlinet and Thomas-Agnan, 2004; Smola et al.,
2007; Sriperumbudur et al., 2011; Muandet et al.,
2017) to analyze DS kernels and the introduced Deep
Embedding (DE) kernels, that consist in chaining ra-
dial kernels in Hilbert space with the canonical dis-
tance associated with set kernels like DS ones. As we
establish, wide classes of DE kernels are strictly pos-
itive definite which contrasts with the typical case of
DS kernels. We present in turn a few additional re-
sults pertaining to the parametrization of DE kernels
and to related hyperparameter fitting, including geo-
metrical considerations around the choice of hyperpa-
rameter bounds. Section 2 is mainly dedicated to the
exposition and theoretical analysis of the considered
classes of kernels, complemented by practicalities re-
garding hyperparameter fitting. In Section 3, numer-
ical experiments are discussed that compare DS and
DE kernels in prediction and optimization tasks, both
on analytical and on two application test cases, namely
in mechanical engineering with plasticity simulations
of a bi-phasic material tackled in (Ginsbourger et al.,
2016), and in hydrogeology with an original monitor-
ing well selection problem based on the contaminant
source localization test case from (Pirot et al., 2019).

2 Set Kernels via RKHS Embeddings

2.1 Notation and Settings

We focus on positive definite kernels defined over sub-
sets of some base set X . Depending on the cases, X
may be finite or infinite. The considered set of sub-
sets of X , denoted S(X ), may be the whole power set
P(X ) or a subset thereof, e.g. Sp(X ) (also tradition-
ally noted [X ]p in set theory) the set of p-element sub-
sets of X (where p ∈ N, with p ≤ #X in case of a finite
X with cardinality #X ), or the set of all (non-void)
finite subsets of X denoted here Sfin(X ) = ∪p≥1Sp(X ).
Given a positive definite kernel kX over X and the as-
sociated Reproducing Kernel Hilbert Space HkX , we
call here embedding of Sfin(X ) in HkX the mapping

E : S ∈ Sfin(X )→ 1

#S

∑
x∈S

kX (x, ·) ∈ HkX . (1)

Note that this “set embedding” coincides with the Ker-
nel Mean Embedding (Muandet et al., 2017) in HkX
of the uniform probability distribution over S.

2.2 From Linear to Deep Embedding Kernels

A natural idea to create a positive definite kernel on
Sfin(X ) from this embedding is to plainly take:

k0(S, S′) =
1

#S#S′

∑
x∈S
x′∈S′

kX (x,x′),
(2)

which is none other than the kernel used in (Kim et al.,
2019) and that we refer to here as double sum ker-
nel. As we will see in the next section and in the
applications, this positive definite kernel may suffer in
some settings from its lack of strict positive definite-
ness. Yet it appears as a crucial building block in the
class of strictly positive definite kernels that we intro-
duce here. The first step is to consider the “canonical
distance” on Sfin(X ) induced by the kernel k0, namely

dE(S, S
′) =

√
k0(S, S) + k0(S′, S′)− 2k0(S, S′). (3)

Coming now to the proposed class of Deep Embedding
kernels per se, these are obtained by composing what
can be called a radial kernel on Hilbert space (See
(Bachoc et al., 2018) for a reminder) with dE above.
We hence obtain DE kernels on Sfin(X ) by writing

kDE(S, S′) = kH ◦ dE(S, S′), (4)

with kH : [0,∞) → R being such that (h, h′) ∈ H2 →
kH(||h−h′||H) is positive definite for any Hilbert space
(H, 〈·, ·, 〉H). We establish next the positive definite-
ness of such kernels (See (Berg et al., 1984; Christ-
mann and Steinwart, 2010) for similar constructions)
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and further provide sufficient conditions for their strict
positive definiteness on Sfin(X ), a feature that k0 is
lacking, as we show too, which may lead to invertibility
issues for finite X , e.g. in combinatorial optimization.

2.3 Main Theoretical Results

Proposition 1. Let X be a set, kX be a positive def-
inite kernel on X with associated reproducing kernel
Hilbert space HkX , and Sfin(X ) be the set of non-empty
finite subsets of X . Let E : S ∈ Sfin(X ) 7→ HkX , k0 :
Sfin(X )×Sfin(X ) 7→ R, dE : Sfin(X )×Sfin(X ) 7→ [0,∞)
be defined by Equations 1,2,3, respectively. Then,

a) k0(S, S′) = 〈E(S), E(S′)〉HkX
for any S, S′ ∈

Sfin(X ), and k0 is positive definite on Sfin(X )
while dE is a pseudometric on Sfin(X ).

Let us furthermore introduce for n ≥ 2 the sets

An =

{( (n1−`) times︷ ︸︸ ︷
1

n1

, . . . ,
1

n1

,

` times︷ ︸︸ ︷
n2 − n1

n1n2

, . . . ,
n2 − n1

n1n2

,

(n2−`) times︷ ︸︸ ︷
−1

n2

, . . . ,
−1

n2

)
,

n1, n2 ≥ 1, ` ≥ 0 : n1 + n2 + ` = n

}
⊂ Rn

(n ≥ 2).

b) Then, the following assertions are equivalent:

i) kX satisfies
∑n
i=1

∑n
j=1 aiajkX (xi,xj) > 0 for

all n ≥ 2, pairwise distinct x1, . . . ,xn ∈ X ,
and (a1, . . . , an) ∈ An.

ii) E is injective.

iii) dE is a metric on Sfin(X ).

In particular, if kX is strictly positive definite on X ,
then all three conditions above are fulfilled.

Proposition 2 (Non-strict positive definiteness of
double sum kernels). Let us keep the notation of
Proposition 1 and denote furthermore in the case of
a finite set X with cardinality c ≥ 1 and elements
Xc = (x1, . . . ,xc) by u : S ∈ Sfin(X ) → u(S) =

1
#S (1xi∈S)1≤i≤c ∈ Rc the mapping returning for any

nonempty subset of X a vector with components 1
#S

or 0 depending whether xi ∈ S or not. Then we have:

a) For X finite, for any S, S′ ∈ Sfin(X ),

k0(S, S′) = u(S)T kX (Xc)u(S′). (5)

Consequently, for q ≥ 1 and S = (S1, . . . , Sq) ∈
Sq, the covariance matrix k0(S) associated with
kX and S can be compactly written as

k0(S) = U(S)T kX (Xc)U(S), (6)

with the notation U(S) = [u(S1), . . . , u(Sq)].

b) For arbitrary X , the two following assertions are
mutually exclusive

i) #X = 1 and kX is non-zero.

ii) k0 is not strictly positive definite on Sfin(X ).

Proposition 3 ((Strict) positive definiteness of kDE).
Let us consider here again the notation of Proposi-
tion 1 and consider furthermore the class of kernels
kDE : (S, S′) ∈ Sfin(X ) → kH ◦ dE(S, S′) of Eq. 4,
where kH : [0,∞) → R is chosen such that (h, h′) ∈
H2 → kH(||h−h′||H) is positive definite for any Hilbert
space (H, 〈·, ·, 〉H). Then,

a) kDE is positive definite on Sfin(X ).

b) If furthermore kX satisfies i) of condition b) in
Proposition 1, and kH : [0,∞) → R is chosen
such that (h, h′) ∈ H2 → kH(||h−h′||H) is strictly
positive definite for any Hilbert space (H, 〈·, ·, 〉H),
then kDE is strictly positive definite on Sfin(X ).

Remark 1. As mentioned in Bachoc et al. (2018),
continuous functions inducing strictly positive definite
functions on any Hilbert space can be characterized fol-
lowing Schoenberg’s works both in terms of completely
monotone functions and of infinite mixtures of squared
exponential kernels (See, e.g., Wendland (2005)).

2.4 Practicalities

In what follows and as in many practical situations,
we consider “inner” (i.e., on X ) kernels of the form
kX (x,x′) = σ2

X rX (x,x′), where σ2
X > 0 and rX is a

(strictly) positive definite kernel on X taking the value
1 on the diagonal and parametrized by some (vector-
valued or other) hyperparameter ψX . In such a case,
denoting ErX (S) = 1

#S

∑
x∈S rX (x, ·) and dErX the as-

sociated canonical distance, we immediately have that
E = σ2

XErX and dE = σXdErX . As a consequence, if

kH(·) writes σ2
HrH( ·θH ) for σ2

H , θH > 0 and rH(·) defin-
ing a radial (strictly) positive definite kernel on any
Hilbert space (possibly depending on some other hy-
perparameters ignored for simplicity) with rH(0) = 1,

kDE(S, S′) = σ2
HrH

(
σX
θH

dErX (S, S′)

)
,

and it clearly appears that having both σX and θH
results in overparametrization of kDE. For this reason,
we adopt the convention that σX = 1, hence remaining
with the hyperparameters σ2

H , θH and ψX to be fitted,
possibly along with others such as trend and/or noise
parameters. In our experiments, where noiseless set-
tings and a constant trend are assumed, we appeal to
Maximum Likelihood Estimation with concentration
on the σ2

H parameter and a genetic algorithm with
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derivatives (Mebane Jr et al., 2011), in the flavour of
the solution implemented in the DiceKriging R pack-
age (Roustant et al., 2012).

In the numerical experiments presented next, the base
set X is assumed to be of the form [0, 1]d (in our ex-
amples d = 2), and we choose for rX an isotropic
Gaussian correlation kernel solely parametrized by a
“range” θX . As for rH , while any kernel admissible in
Hilbert space such as those of the Matérn family would
be suitable, we also choose here a Gaussian for simplic-
ity, hence ending up with a triplet of covariance hy-
perparameters, namely (σH , θH , θX ) ∈ (0,+∞)3. As
σ2
H is taken care of by concentration (i.e. its opti-

mal value for any given value of θH , θX can be ana-
lytically derived as a function of θH and θX ), there
remains to maximize the corresponding concentrated
(a.k.a. profile) log-likelihood function with respect to
θH and θX . For this purpose the analytical gradient
of the concentrated log-likelihood with respect to these
parameters has been calculated and implemented. Be-
sides, parameter bounds need to be specified to the
chosen optimization algorithm (i.e. genoud, here) and
while it seems natural to choose bounds in terms of√
d, the diameter of the unit d-dimensional hypercube,

for θH the adequate diameter is slightly less straight-
forward and calls for some analysis with respect to
the range of variation of dErX and how it depends on
θX . The next proposition establishes simple yet prac-
tically quite useful results regarding the diameter of
Sr (r > 0) with respect to dErX and its maximal value
when letting θX vary.

Proposition 4. Let rX be an isotropic positive def-
inite kernel on X = [0, 1]d assumed to be monoton-
ically decreasing to 0 with respect to the Euclidean
distance between elements of X , with range param-
eter θX > 0. Then the dErX -diameter of Sp(X )
(p ≥ 1), i.e. supS,S′∈Sp dErX (S, S′), is reached with
arguments {0d, . . . ,0d} and {1d, . . . ,1d}, where 0d =
(0, . . . , 0),1d = (1, . . . , 1) ∈ X . Furthermore, the
supremum of this diameter with respect to θX ∈
(0,+∞) is given by

√
2.

3 Applications

We now demonstrate the applicability of the class of
DE kernels for both prediction and optimization pur-
poses, with comparisons when applicable to similar
methods based on DS kernels, and also to random
search in the optimization case. In all examples, both
inner and outer kernels (resp. kX and kH) are assumed
Gaussian. The three hyperparameters (σH , θH , θX )
are estimated by Maximum Likelihood with concen-
tration on σ2

H , as detailed in Section 2.4. Three syn-
thetic test functions and two application test cases

are considered, respectively in mechanical engineering
(CASTEM) and in hydrogeology (Contaminant source
localization), all presented below. In the CASTEM
case, the available data set consists of a fixed num-
ber (404) of (set input)-output instances, while in the
other test cases one may boil down to a similar sit-
uation by restricting the scope to finitely many such
instances. Yet, the hydrogeology test case is the only
one where X is structurally restricted to remain finite,
here a set of 25 possible well locations, hence leading
to a combinatorial optimization problem.

3.1 Presentation of Test Functions and Cases

3.1.1 Synthetic Functions

Our three synthetic test functions consist of extensions
of the Branin-Hoo test function (See, e.g., Roustant
et al., 2012), denoted below by g, for set-valued inputs.
These extensions are based respectively on the max-
imum (MAX), minimum (MIN), and mean (MEAN)
of g values associated with each of p = 10 evaluation
points in X = [0, 1]2, leading to

f(S) = max
x∈S

g(x) (7)

f(S) = min
x∈S

g(x) (8)

f(S) =
1

#S

∑
x∈S

g(x), (9)

where S ∈ Sp = ([0, 1]2)10. Let us remark that by de-
sign, the f of Eq. 9 is well-suited to be approximated
using the double sum kernel of Eq. 2. Indeed, if g is as-
sumed to be a draw of a GP with kernel kX , then f is a
draw of a GP with kernel 1

#S
1

#S′

∑
x∈S,x∈S′ kX (x,x′),

as numerical results of Sections 3.2 and 3.3 do reflect.

3.1.2 CASTEM Simulations

The CASTEM dataset, inherited from (Ginsbourger
et al., 2016), was originally generated from mechan-
ical simulations performed using the Cast3m code
(Castem, 2016) to compute equivalent stress values
on biphasic material subjected to uni-axial traction.
The unit-square represents a matrix material con-
taining 10 circular inclusions with identical radius of
R = 0.056419. The dataset consists of 404 point-sets
along with their corresponding stress levels. Fig. 1
illustrates two (set input)-output instances from it.
While the goal pursued in (Ginsbourger et al., 2016)
was rather in uncertainty propagation, we consider this
data set here also from an optimization perspective.
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Figure 1: Two CASTEM (set input)-output instances

3.1.3 Selection of Monitoring Wells for
Contaminant Source Localization

This test case relies on a benchmark generator of
groundwater contaminant source localization problems
from (Pirot et al., 2019). The original problems con-
sisted in finding among given candidate source local-
izations xi ∈ R2 (1 ≤ i ≤ 2601) which globally mini-
mizes some measures of misfit between “reference” (or
“observed”) and “simulated” contaminant concentra-
tions at fixed times and monitoring wells such as

g(x, S) =

(∑
i∈S

T∑
t=1

|cobs(i, t)− csim(x, i, t)|2
) 1

2

, (10)

where cobs(i, t) is the reference concentration at well i
and time step t, csim(x, i, t) is the corresponding sim-
ulated concentration when the source of contaminant
is at x, and S ⊂ Sfull := X = {1, 2, . . . , 25} is a given
subset from 25 fixed monitoring wells.

Here, instead of fixing the subset of well locations S
and looking for the optimal x, we consider instead the
maps of score discrepancies g(·, Sfull)−g(·, S) as a func-
tion of S. From there, the considered combinatorial
optimization problem consists in minimizing

f(S) =

2601∑
i=1

(g(xi, Sfull)− g(xi, S))2 (11)

over the set Sp(X ) of subsets of p < 25 wells from X .
In the numerical experiments, we fix p = 5, and hence
the cardinality of the considered set of subsets S5(X )
is
(

25
5

)
= 53, 130. To test the efficiency of our approach

on this application, the two contaminant source loca-
tions (A and B) and two geological geometries of (Pirot
et al., 2019) are considered, leading to four cases (de-
noted (Src A, Geo 1), (Src A, Geo 2), (Src B, Geo 1),
(Src B, Geo 2), respectively).

Since the base set X = {1, 2, . . . , 25} is itself finite
here, it follows from Prop. 2 that resulting double sum

kernels are not strictly positive definite so that BO
with those kernels fails after few iterations, as found
in numerical experiments. Two subsets of five well lo-
cations are plotted in Fig. 2 along with contours of cor-
responding score discrepancy maps g(·, Sfull) − g(·, S)
and values of objective function f derived from them.

The first combination (left subfigure) better represents
the misfit function g(·, Sfull) overall with a lower f
value. This subset is in fact the optimal one, obtained
by exhaustive search over all 53, 130 candidates. Our
goal is precisely to efficiently locate by BO these op-
timal well locations whose contributions minimize the
spatial sum of score discrepancies. The reader is re-
ferred to (Pirot et al., 2019) for further details and
visualization of the misfit function, location of the con-
taminant source, and coordinates of well locations.

3.2 Prediction: Settings and Results

To assess the predictive ability of the considered GP
models under the considered settings of data sets split
into learning and test parts, we appeal to the so-called
Q2 or “predictive coefficient” (Marrel et al., 2008),

Q2 = 1−
∑ntest

i=1 (f(S
(test)
i )−mn(S

(test)
i ))2∑ntest

i=1 (f(S
(test)
i )− f̄)2

, (12)

where ntest is the number of test point-sets, f(S
(test)
i )

and mn(S
(test)
i ) are the actual response and the mean

values predicted by the GP model, respectively. f̄ is

the mean of f(S
(test)
i )’s. The closer to 1 the value of

Q2, the more efficient the predictor is. In addition,
we also look at visual diagnostics based on the com-
parison of standardized residuals (i.e. divided by GP
prediction standard deviations) with the normal dis-
tribution, both in cross- and external validation.

As a result of Prop. 2, the DS kernel is not readily
applicable for the contaminant source localization test
case, due to singularity issues with covariance matri-
ces. One way around this is to add a small positive jit-
ter to their diagonal (inspired by Ranjan et al., 2011).
This approach will be referred to hereafter as DS+j
whenever it is used in place of the original DS. More
detail on the procedure used for jitter tuning and addi-
tional results can be found in supplementary material.

The total size of datasets used to assess prediction
performances for the three synthetic test problems,
CASTEM, and the contamination applications are
1000, 404, and 200, respectively. Each dataset is fur-
ther partitioned into training and testing sub-datasets
with percentages (80:20), (50:50) and (20:80). Average
Q2 values over 20 replications are provided in Table 1.
First, we observe that Q2 tends to increase with the
proportion of the full data set used for training, except
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Figure 2: Score discrepancy map: location of selected wells (input S), score discrepancy landscape, and the
spatial sum of score discrepancy objective function value f(S).

in one case with CASTEM. We see that the proposed
approach with the DE kernel gives higher value of Q2

than that with the DS kernel on all problems except
for the MEAN function. We hypothesize the latter to
be due to the adequacy between the MEAN function’s
nature and the DS kernel, as remarked earlier.

Finally, Fig. 3 shows leave-one-out (left panel) and out-
of-sample diagnostics (right panel) for the source local-
ization application (Src A, Geo 1) with DE kernel. The
results show relatively moderate departures from the
normality assumptions. Complete residual analysis for
all scenarios as well as for DS kernels (with jitter) can
be found in supplementary material.

3.3 Optimization: Settings and Results

In this section, the efficiency of DE versus DS ker-
nels (possibly with jitter) are evaluated within the
BO framework, using the Expected Improvement (EI)
(Mockus et al., 1978) as infill sampling criterion. To
assess optimization performances, the same datasets
as those used in previous section are used for the
three synthetic problems and CASTEM. As for the
contaminant source application, the whole dataset of
size 53, 130 is employed. Optimization performances
are assessed on 50 repetitions of EI algorithms with
10 initial design point-sets. For each repetition, all al-
gorithms start with the same initial design, and are
allocated 40 additional objective function evaluations.
The hyperparameters are iteratively re-determined in
every iteration using MLE (See Section 2.4 and sup-
plementary material).

Concerning EI maximization, EI values are computed
at all point-sets and the one attaining the highest value
is selected (no ties occurred). The performance is mea-

sured by (1) counting the number of trials (out of 50)
for which the algorithm could find the best point from
the considered dataset; and (2) monitoring the dis-
tribution of best found responses over iterations. A
random sampling method is used as baseline. Table 2
summarizes the number of trials that the minimum is
found and Fig. 4 represents progress curves in terms
of median and 95th percentile values of current best
objective function values over 50 trials.

EI algorithms with any of the two considered kernel
classes clearly appear here superior to random sam-
pling. Experiments on synthetic problems show that
within the two considered EI algorithm settings, DE
kernels outperform DS ones on the MAX problem both
in terms of the number of trials that the true minimum
is found and of the final best responses. On the MEAN
problem, though, while both approaches lead to locate
the minimum for all 50 replications, DS kernels lead
to a fewer number of iterations as anticipated due to
adequacy between this kernel class and the test func-
tion. EI algorithms with both kernels did not perform
well on the MIN problem which may be explained by
the fact that the underlying Branin-Hoo function has
the large portion of the search space being quite flat.
For the CASTEM dataset, EI-kDE and EI-k0 methods
could locate the minimum for 28 and 10 trials, respec-
tively, against 5 for random sampling.

As for the source localization application, the obtained
EI-k0 results are all involving the use of a jitter. Over-
all, EI algorithms coupled with either of the two ker-
nel classes appeared by far better than random sam-
pling. Comparing performances between the two EI
algorithms, EI-kDE method could locate the global op-
timum more frequently (as indicated in Table 2). In
particular, with the DE kernel, the EI algorithm found
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Table 1: Q2 values for GP predictions on all test cases with DE versus DS kernels (kDE versus k0(+j))

Problem
kDE k0

20:80 50:50 80:20 20:80 50:50 80:20
(a) MAX 0.6926 0.8011 0.8559 0.5644 0.7429 0.7725
(b) MEAN 0.9996 0.9999 ∼1 ∼1 ∼1 ∼1
(c) MIN 0.3309 0.4582 0.4929 0.1080 0.2245 0.2749
(d) CASTEM 0.5799 0.6641 0.6543 0.5067 0.5410 0.5056

Problem
kDE k0+j

20:80 50:50 80:20 20:80 50:50 80:20
(e) (Src A, Geo 1) 0.7607 0.9133 0.9352 0.7437 0.8445 0.8804
(f) (Src A, Geo 2) 0.7239 0.8855 0.9240 0.7130 0.8485 0.8729
(g) (Src B, Geo 1) 0.7977 0.9190 0.9447 0.7901 0.8746 0.8904
(h) ()Src B, Geo 2) 0.8486 0.9151 0.9439 0.8389 0.8944 0.9252

Figure 3: GP prediction residual analysis on the contaminant source localization problem (Src A, Geo 1) with
kernel kDE and ratio (20:80). (a) Internal errors (left); (b) External errors (right).

Table 2: Numbers of trials (out of 50) for which the minimum is found for EI algorithms based on GP models
with DE versus DS kernels, as well as for Random Sampling.

Problem EI-kDE EI-k0 RANDOM
(a) MAX 36 8 6
(b) MEAN 50 50 4
(c) MIN 9 8 3
(d) CASTEM 28 10 5
Problem EI-kDE EI-k0+j RANDOM
(e) (Src A, Geo 1) 50 48 0
(f) (Src A, Geo 2) 34 25 0
(g) (Src B, Geo 1) 50 47 0
(h) (Src B, Geo 2) 43 44 0

the global optimum in every trial run on two scenarios
of contaminant source localization problems (i.e. (Src
A, Geo 1) and (Src B, Geo 1)).

The median progress curves (bottom panel of Fig.

4) illustrate on the other hand that the DS kernel
seem quite well-suited for the contaminant problems,
as highlighted in particular by the fast initial decrease
in best response value. The 95% quantile curves sug-
gest however that in the worst situations, EI-kDE per-
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Figure 4: BO progress curves showing the median (solid lines) and 95th percentile (dotted lines) values of the
current best response of problems (a) MAX, (b) MEAN, (c) MIN, (d) CASTEM, and contaminant problems (e)
(Src A, Geo 1), (f) (Src A, Geo 2), (g) (Src B, Geo 1) and (h) (Src B, Geo 2).

forms relatively better and seems to be more robust
especially toward the end of the course when the jitter
was needed to make EI-k0 work. It is worth noting
that determining an appropriate jitter level to add to
the DS kernel is not a straightforward task. While one
would want to add a smallest possible value of jitter,
oftentimes, a too small jitter is not enough to fix condi-
tioning issues. Additional results, with a large number
of trials, revealing the effect of a poor choice of jitter
level on DS kernel model’s accuracy as well as opti-
mization results are given in supplementary material.
Overall, the strict positive definiteness of considered
DE kernels (and the fact that no jitter is required)
make them appear as a relatively robust option to
efficiently address expensive combinatorial optimiza-
tion problems in a “black-box” Bayesian Optimization
framework (i.e., without requiring much prior knowl-
edge about the problem structure).

4 Discussion

Experimental results obtained on the analytical ob-
jective functions and application test cases confirm
the added value of the considered approaches for set-
function prediction and (combinatorial) optimization.

Yet a number of challenges and potential extensions
remain to be addressed in future work. This includes
computational difficulties that will arise when working
with larger numbers of subsets and/or subset cardinal-

ities, not only to handle bigger matrices but also to
tackle the optimization of infill criteria. These criteria
include the Expected Improvement as well as adap-
tations of further families of BO acquisition functions
from frameworks such as Predictive Entropy Search
(Hernández-Lobato et al., 2014), Knowledge Gradient
(Frazier, 2018), and others.

From the test case perspective, future work may also
include tackling further prediction and subset selec-
tion problems (be it in continuous or combinatorial
settings, with problem structures of various levels of
complexity), not only for optimization purposes but
also with more general goals around uncertainty quan-
tification and reduction (Bect et al., 2019). Besides
this, a nice feature of the considered approaches is that
they would naturally extend to cases with varying sub-
set cardinalities and also with “marked” point sets (in
the vein of (Cuturi et al., 2005)’s molecular measures),
hence accommodating applications such as CASTEM
but with varying inclusion numbers and radii. Further-
more, the conceptual approach of chaining an embed-
ding and a kernel in Hilbert space (also in the flavour
of (Christmann and Steinwart, 2010)) could apply to
a variety of other input types provided that relevant
mappings to Hilbert space can be found, opening the
door to numerous non-conventional extensions of GP-
based prediction, BO, and related kernel methods.
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