
Supplementary Material to:
Approximate Inference in Discrete Distributions with

Monte Carlo Tree Search and Value Functions

Lars Buesing, Theophane Weber, Nicolas Heess

A Details for TREESAMPLE algorithm
The complete pseudo code for TREESAMPLE is given in algorithm 1. We define a search tree T in the following
way. Nodes in T at depth n ∈ {0, 1, . . . , N} are indexed by the (partial) state x ∈ {1, . . . ,K}n, and the root is
denoted by ∅. Each node x at depth n = len(x) keeps track of the corresponding reward evaluation Rn(x) and
the following quantities for all its children:

1. visit counts ηn+1(·|x) = (ηn+1(1|x), . . . , ηn+1(K|x)) ∈ NK over the children,

2. state-action values Qn+1(·|x) ∈ RK ,

3. prior state-action values Qφn+1(·|x) ∈ RK , and

4. a boolean vector Cn+1(·|x) ∈ {0, 1}K if its children are complete (i.e. fully expanded, see below).

Standard MCTS with (P)UCT-style tree traversals applied to the inference problem can in general visit any
state-action pair multiple times; this is desirable behavior in general MDPs with stochastic rewards, where
reliable reward estimates require multiple samples. However, the reward R in our MDP is deterministic as
defined in eqn. 2, and therefore there is no benefit in re-visiting fully-expanded sub-trees. To prevent the
TREESAMPLE algorithm from doing so, we explicitly keep track at each node if the sub-tree rooted in it is
fully-expanded; such a node is called complete. Initially no internal node is complete, only leaf nodes at depth
N are tagged as complete. In the backup stage of the tree-traversal, we tag a visited node as complete if it is
a node of depth N (corresponding to a completed sample) or if all its children are complete. We modify the
action selection eqn. 5 such that the arg max is only taken over actions not leading to completed sub-trees.

B Proofs

B.1 Observation 2
Proof. This observation has been proven previously in the literature, but we will give a short proof here for
completeness. We show the statement by determining the optimal policy and value function by backwards
dynamic programming (DP). We anchor the DP induction by defining the optimal value function at step N + 1
as zero, i.e. V ∗N+1(x≤N) = 0. Using the law of iterated expectations, we can decompose the optimal value

1

function in the following way for any n = N, . . . , 1:

V ∗n (x<n) = max
πn,...,πN

EPπ
X≥n|x<n

[
N∑

n′=n

Rn′ − log πn′

]

= max
πn

EPπ
Xn|x<n

max
πn+1,...,πN

EPπ
X>n|xn◦Xn

[
N∑

n′=n

Rn′ − log πn′

]

= max
πn

EPπ
Xn|x<n

[
Rn − log πn + max

πn+1,...,πN
EPπ

X>n|xn◦Xn

[
N∑

n′=n+1

Rn′ − log πn′

]]
= max

πn
EPπ

Xn|x<n

[
Rn − log πn + V ∗n+1

]
.

Therefore, assuming by induction that V ∗n+1 has been computed, we can find the optimal policy π∗n and value
V ∗n at step n by solving:

arg max
f :{1...,K}→[0,1]

K∑
a=1

f(a) ·
(
Rn(x<n ◦ a)− log f(a) + V ∗n+1(x<n ◦ a)

)
(1a)

subject to
K∑
a=1

f(a) = 1,

f(a) ≥ 0, ∀a ∈ {1, . . . ,K}.

The solution to this optimization problem can be found by the calculus of variations (omitted here) and is given
by:

log π∗(xn|x<n) ∝ Rn(x≤n) + V ∗n+1(x≤n) = Q∗n(xn|x<n),

where we used the definition of the optimal state-action value function. Furthermore, at the optimum, the
objective eqn. 1a assumes the value:

V ∗n (x<n) = log

K∑
xn=1

expQ∗n(xn|x<n).

This expression, together with the definition of Q∗ establishes the soft-Bellman equation. The optimal value
V ∗n+1 is also exactly the log-normalizer for π∗n. Therefore, we can write:

log π∗n(xn|x<n) = Q∗n(xn|x<n)− V ∗n+1(x≤n).

B.2 Proof of Lemma 1
Proof. We will show this statement by induction over the depth d := N − n of the sub-tree Tx≤n with
root x≤n. For d = 0, i.e. n = N , the state-action values QN+1(·|x≤N) := − logK are defined such that
VN+1(x≤N) = 0, which is the correct value. Consider now the general case 1 ≤ d ≤ N . Let T ′x≤n be the
sub-tree before the last tree traversal that expanded the last missing node x≤N , ie Tx≤n = T ′x≤n ∪ x≤N ; for
an illustration see fig. 1. The soft-Bellman backups of the last completing tree-traversal on the path leading
to x≤N are by construction all of the following form: For any node x≤m on the path, all children except for
one correspond to already completed sub-trees (before the last traversal). The sub-tree of the one remaining
child is completed by the last traversal. All complete sub-trees on the backup path are of depth smaller than d
and therefore by induction their roots have the correct values V ∗m+1(x≤m). Hence evaluating the soft-Bellman
backup eqn. 4 (with the true noiseless reward R) yields the correct value for x≤n.

2

C Details for Experiments

C.1 Baseline Inference Methods
C.1.1 SIS and SMC

For each experiment we determined the number of SIS and SMC particles I such that the entire budget B was
used. We implemented SMC with an resampling threshold t ∈ [0, 1], i.e. a resampling step was executed when
the effective sample size (ESS) was smaller than tI . The threshold t was treated as a hyperparameter; SMC
with t = 0 was used as SIS results.

C.1.2 BP

We used the algorithm outline on p. 301 from Mezard et al. [2009]. For generating a single approximate
sample from the target, the following procedure was executed. Messages from variable to factor nodes were
initialized as uniform; then Nmessage message-passing steps, each consisting of updating factor-variable and
variable-factor messages were performed. X1 was then sampled form the resulting approximate marginal, and
the messages from X1 to its neighboring factors were set to the corresponding atom. This was repeated until all
variables Xn were sampled, generating one approximate sample from the joint P ∗X .

In total, we generated multiple samples with the above algorithm such that the budget B was exhausted.
The number Nmessage of message-passing steps before sampling each variable Xn|X<n was treated as a
hyperparameter.

C.1.3 GIBBS

We implemented standard Gibbs sampling. All variables were initially drawn uniformly from {1, . . . ,K} , and
NGibbs iterations, each consisting of updating all variables in the fixed order X1 to XN , were executed. This
generated a single approximate sample. We repeated this procedure to generate multiple samples such that the
budget B was exhausted. We treated NGibbs as a hyperparameter.

C.2 Hyperparameters optimization
For each inference method (except for SIS) we optimized one hyperparameter on a initial set of experiments.
For TREESAMPLE, we fixed ε = 0.1 and optimized c from eqn. 4. Different hyperparameter values were used
for different families of distributions. Hyperparameters were chosen such as to yield lowest ∆DKL.

C.3 Details for Synthetic Distributions
C.3.1 Chains

The unary potentials ψn(xn) for n = 1, . . . , N for the chain factor graphs where randomly generated in the
following way. The values of ψn(xn = k) for n = 1, . . . , N and k = 1, . . . ,K where jointly drawn from a
GP over the two dimensional domain {1, . . . , N} × {1, . . . ,K} with an RBF kernel with bandwidth 1 and
scale 0.5. Binary potentials ψn,n+1(xn, xn+1) were set to 2.5 · d(xn, xn+1), where d(xn, xn+1) is the distance
between xn and xn+1 on the 1-d torus generated by constraining 1 and K to be neighbors.

C.3.2 PermutedChains

We first uniformly drew random permutations σ : {1, . . . , N} → {1, . . . , N}. We then randomly generated
conditional probability tables for P ∗Xσ(n)|xσ(n−1)

by draws from a symmetric Dirichlet with concentration
parameter α = 1. These were then used as binary factors.

3

C.3.3 FactorGraphs1

We generated factor graphs for this family in the following way. First, we constructed Erdős-Rényi random
graphs with N nodes with edge probability p = 2 log(N)/N ; graphs with more than one connected component
were rejected. For each clique in this graph we inserted a random factor and connected it to all nodes in the
clique; graphs with cliques of size > 4 where rejected.

For applying the sequential inference algorithms TREESAMPLE, SIS and SMC, variables in the graph were
ordered by a simple heuristic. While iterating over factors in order of descending degree, all variables in the
current factor were were added to the ordering until all were accounted for.

C.3.4 FactorGraphs2

We generated factor graphs for this family over binary random variables K = 2 in the following way. Variables
X2n+1 and X2(n+1) for n = 0, . . . , N/2 − 1 were connected with a NOT factor, which carries out the
computation XOR(X2n+1, X2(n+1)). We then constructed Erdős-Rényi random graphs of size N/2 over
all pairs of nodes (X2n+1, X2(n+1)) with edge probability p = 3 log(N/2)/N ; graphs with more than one
connected component were rejected. For each clique in this intermediate graph we inserted a MAJORITY factor
and connected it to either to X2n+1 or X2(n+1); graphs with cliques of size > 4 where rejected. MAJORITY
factors return a value of 1.0 if half or more nodes in its neighborhood are 2 and return 0 otherwise. The output
values of all factors were also scaled by 2.0; otherwise the resulting distributions were found to be very close to
uniform.

C.4 Details For Experiments w/ Value Functions
All neural networks were trained with the ADAM optimizer Kingma and Ba [2014] with a learning rate of
3 · 10−4 and mini-batches of size 128. The replay buffer size was set to 104.

The MLP value function used for the experiment consisted of 4 hidden layers with 256 units each with
RELU activation functions. Increasing the number of units or layers did not improve results.

The GNN value function Qφ(·|x≤n) was designed as follows. Each variable node in the factor graph was
given a (16 +K)-dimensional feature vector, and each edge node a 16-dimensional feature vector. The input
prefix x≤n was encoded in a one-hot manner in the first K components of the variable feature vectors for
variables up to n; for variables > n the first K components were set to 0. All edge features were initialized
to 0. All node and edge block networks where chosen to be MLPs with 3 hidden layers and 16 units each
with RELU activations. Results did not improve with deeper or wider networks. The resulting GNN was
iterated 4 times; interestingly more iterations actually reduced final performance somewhat. The output feature
vector of the GNN at variable node xn was then passed to a linear layer with K outputs yielding the vector
(Qφ(xn+1 = 1|x≤n), . . . , Qφ(xn+1 = K|x≤n)).

References
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Marc Mezard, Marc Mezard, and Andrea Montanari. Information, physics, and computation. Oxford University
Press, 2009.

4

x≤n

↙↓↘. . . ↙↓↘. . .

↙↓↘. . . ↙↓↘. . .

x≤m

leaf x≤N

Figure 1: Completing a sub-tree yields the exact Q-value. Assume the tree traversal shown in blue completes
the sub-tree Tx≤n rooted in x≤n. Then, by construction, the soft-Bellmann backups along this path, at every
intermediate node x≤m for m > n, take as input the values of all children. By construction, all but one children
correspond to complete sub-trees of a smaller depth; these have the correct values by induction. The other
remaining child corresponds to a sub-tree that was completed by the last traversal and therefore has also the
correct value.

Figure 2: Approximation error for inference in chain graphs as a function of varying chain length N ; the
number K of states per variable was abjusted such that the total domain size N logK stayed roughly constant.
TREESAMPLE (red) performed worse than SMC (turquoise) for short and wide chains, but performs better
everywhere else.

5

Algorithm 1 TREESAMPLE procedures
1: globals reward function R, prior state-action value function Qφ

2: procedure TREESAMPLE(budget B)
3: initialize empty tree T ← ∅
4: available budget b← B
5: while b > M do
6: T ,∆b ← TREETRAVSERSAL (T)
7: b← b−∆b
8: end while
9: return tree T

10: end procedure

11: procedure TREETRAVERSAL(tree T)
// traversal

12: x← ∅
13: while x ∈ T do
14: n← len(x)
15: a← Q-UCT(ηn+1(·|x), Qn+1(·|x), Qφn+1(·|x), Cn+1(·|x))
16: x← x ◦ a
17: end while

// expansion
18: if x 6∈ T then
19: T ← T ∪ EXPAND(x)
20: used budget ∆b← |Mn| // see eqn. 2
21: end if

// backup
22: for n = len(x), . . . , 1, 0 do
23: Vn+1(x≤n) = log

∑K
a′=1 expQn+1(a′|x≤n)

24: Qn(xn|x<n)← Rn(xn|x<n) + Vn+1(x≤n)
25: Cn(xn|x<n)← mina′ Cn+1(a′|x≤n)
26: ηn(xn|x<n)← ηn(xn|x<n) + 1
27: end for
28: return T , ∆b
29: end procedure

30: procedure Q-UCT(ηn+1(·|x), Qn+1(·|x), Qφn+1(·|x), Cn+1(·|x))
31: return arg max of eqn. 5 over in-complete children {a|Cn+1(a|x) = 0}
32: end procedure

33: procedure EXPAND(state x)
34: n← len(x)
35: evaluate reward function Rn(xn|x<n)
36: initialize ηn+1(·|x)← (0, . . . , 0)
37: if n = N then // x is leaf
38: initialize Qn+1(a · |x)← − logK for all a ∈ {1, . . . ,K}
39: initialize Cn+1(·|x)← (1, . . . , 1)
40: else
41: evaluate prior Qφn+1(·|x)

42: initialize Qn+1(·|x)← Qφn+1(·|x)
43: initialize Cn+1(·|x)← (0, . . . , 0)
44: end if
45: return node x with ηn+1(·|x), Qn+1(·|x), Qφn+1(·|x), Cn+1(·|x), Rn(xn|x<n)

46: end procedure

6

	Details for TreeSample algorithm
	Proofs
	Observation 2
	Proof of Lemma 1

	Details for Experiments
	Baseline Inference Methods
	SIS and SMC
	BP
	GIBBS

	Hyperparameters optimization
	Details for Synthetic Distributions
	Chains
	PermutedChains
	FactorGraphs1
	FactorGraphs2

	Details For Experiments w/ Value Functions

