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A. Proof of Theorem 1

Proof. Let λi,t+1 be the ith largest eigenvalue of (ÃJt+1 , B̃Jt+1), ρ̂(t+1) be the same as in Lemma 3. By the
definition of η(2)s , we know that η(2)s ≥ λ2,t+1. Together with ρ(t) > η

(2)
s , we have ρ(t) > λ2,t+1. On the other

hand, using |Jt ∩ supp(v1)| < k, we know that ρ(t) ≤ η(1)s,k−1. Then by Lemma 3, we have

λ1,t+1 − ρ̂(t+1) ≤ (λ1,t+1 − ρ(t))ε2m +O((λ1,t+1 − ρ(t))
3
2 ),

where εm is the same as in Lemma 2. By the definition of ε∗, we know that ε∗ ≥ εm, it follows that

λ1,t+1 − ρ̂(t+1) ≤ (λ1,t+1 − ρ(t))ε2∗ +O((λ1,t+1 − ρ(t))
3
2 ),

Now using Lemma 4, we get the conclusion. �

B. Proof of Theorem 2

Proof. Noticing that | supp(v(t))| ≤ s, using the definition of η(1)s,` , we know that if ρ(t) > η
(1)
s,k−1, then

| supp(v(t)) ∩ supp(v1)| = k = | supp(v1)|.

The conclusion follows immediately. �

C. Proof of Theorem 3

In order to show Theorem 3, we need the following lemmas.

Lemma 6 Suppose (A,B) is a symmetric-definite pair. Let E, F be two symmetric matrices with ε =√
‖E‖22 + ‖F‖22 < c(A,B). Let (λ, x) and (λ̃, x̃) be the leading eigenpairs of (A,B) and (A + E,B + F ),

respectively. Suppose λ̃ is simple, and denote the smallest nonzero singular value of (A+ E)− λ̃(B + F ) by g. If
|λ̃|ε < c(A,B), then

sin θ(x, x̃) ≤ ‖B‖2δ +
√

1 + λ̃2ε

g
,

where

δ =
(1 + λ̃2)ε

c(A,B)− |λ̃|ε
. (1)

Proof. First, since ε < c(A,B), by Lemma 1, (A+ E,B + F ) is a definite pair and

arctan(λ̃)− arctan(ε/c(A,B)) ≤ arctan(λ) ≤ arctan(λ̃) + arctan(ε/c(A,B)). (2)

Using |λ̃|ε < c(A,B), we know that arctan(ε/c(A,B)) < arctan(1/|λ̃|) = π
2 − arctan(|λ̃|), which implies that the

left hand side and righthand side of (2) are larger than −π2 and smaller than π
2 , respectively. Then it follows

from (2) that

λ̃c(A,B)− ε
c(A,B) + λ̃ε

≤ λ ≤ λ̃c(A,B) + ε

c(A,B)− λ̃ε
.

Therefore,

|λ̃− λ| ≤ (1 + λ̃2)ε

c(A,B)− |λ̃|ε
= δ. (3)



Second, without loss of generosity, we set ‖x‖2 = ‖x̃‖2 = 1, let r = [(A+E)− λ̃(B + F )]x. Direct calculations
give rise to

‖r‖2 = ‖(A− λ̃B)x+ (E − λ̃F )x‖2 ≤ ‖(A− λB)x‖2 + |λ̃− λ|‖Bx‖2 + ‖(E − λ̃F )x‖2

≤ ‖B‖2δ + ‖E‖2 + |λ̃|‖F‖2 ≤ ‖B‖2δ +

√
1 + λ̃2ε. (4)

On the other hand, the spectral decomposition of (A + E) − λ̃(B + F ) can be given by (A + E) − λ̃(B +
F ) = V diag(0, γ2, . . . , γp)V

T, where V = [x̃, V2] is orthogonal, 0 > γ2 ≥ · · · ≥ γp are the eigenvalues of
(A+ E)− λ̃(B + F ). Here we used the assumption that λ̃ is simple. Then it follows that

V T
2 r = V T

2 [(A+ E)− λ̃(B + F )]x = Γ2V
T
2 x, (5)

where Γ2 = diag(γ2, . . . , γp). Using (4) and (5), we get

sin θ(x, x̃) = ‖V T
2 x‖2 = ‖Γ−12 V T

2 r‖2 ≤
‖r‖2
|γ2|

≤ ‖B‖2δ +
√

1 + λ̃2ε

g
,

which completes the proof. �

Proof of Theorem 3. Notice that (λ1, (v1)Jt
) and (ρ(t), (v(t))Jt

) are the leading eigenpairs of (AJt
, BJt

)

and (ÃJt
, B̃Jt

), respectively. Then (a) and (b) follow from Lemma 1 and Lemma 6, respectively. This completes
the proof. �


