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In this document we present additional material which complements the main article. The section numbers
in this document are aligned with the sections in the main article, for the ease of referencing.

Notation: For the sake of compactness in our derivations, the following expressions are used:

p(Z) =

∫ ∫
p(Z | ϕ) p(ϕ) dϕ

p(Z, Y )θ =

∫ ∫
p(Z | ϕ) p(Y | ϕ, θ) p(ϕ, θ) dϕ dθ

p(Z, Yη)θ̃ =

∫ ∫
p(Z | ϕ) p(Y | ϕ, θ̃)η p(ϕ, θ̃) dϕ dθ̃

p(Yη)θ̃ =

∫ ∫
p(Y | ϕ, θ̃)η p(ϕ, θ̃) dϕ dθ̃

p(Y, ϕ)θ =

∫
p(Y | ϕ, θ) p(ϕ, θ) dθ

p(Y | ϕ)θ =
1

p(ϕ)
p(Y, ϕ)θ

All the figures and numerical results presented in the main text and this supplementcan be replicated using
our R package, aistats2020smi, available in Github.

> # devtools::install_github("christianu7/aistats2020smi")
> library(aistats2020smi)

1 Introduction

Here are a few remarks on model misspecification. Classically, misspecification is identified in goodness-of-fit
checks as poor posterior predictive performance on held out data. In this paper, a model is relatively more
misspecified if it has relatively worse performance in posterior predictive checks. Notice that this may be
caused by a misspecified observation model, as in the HPV example in the main text, but unrepresentative
prior assumptions may also lead to mispecification. This is illustrated in Section 5.1. The example in
Section 5.2 arguably suffers from both forms of mispecification.

The SMI procedure can alternatively be thought of as measuring misspecification. We can measure a model’s
goodness of fit using the η∗-values of its modules. Using the degree of influence as a measure of misfit has
the advantage that it is defined on a standard scale [0, 1] with η∗ = 1 corresponding to no evidence for misfit
and η∗ = 0 indicating the module should be removed entirely when we estimate parameters in the other
modules, and indicating substantial misspecification.



2 Background methods

2.1 Modular Inference: cut model

Explicit formulae for cut posterior

The graphical model analysed in the main text is shown in Figure 1.

Z Y

ϕ θ

Module 1 Module 2

Figure 1: Graphical representation of a simple multi-modular model.

The conventional (full) posterior for this model is:

p(ϕ, θ | Z, Y ) = p(ϕ | Z, Y ) p(θ | Y, ϕ)

= p(Z, Y, ϕ, θ)
1

p(Z, Y )θ

= p(Z | ϕ) p(Y | ϕ, θ) p(ϕ, θ) 1

p(Z, Y )θ
(1)

The cut posterior for this model is defined (Plummer, 2015) as:

pcut(ϕ, θ | Z, Y ) = p(ϕ | Z) p(θ | Y, ϕ)

=
p(Z | ϕ)p(ϕ)

p(Z)

p(Y | ϕ, θ) p(ϕ, θ)
p(Y, ϕ)θ

= p(Z | ϕ) p(Y | ϕ, θ) 1

p(Z)

1

p(Y | ϕ)θ
p(ϕ, θ) (2)

Note the relation between the cut posterior and the conventional posterior

pcut(ϕ, θ | Z, Y ) = p(Z, Y, ϕ, θ)
1

p(Z) p(Y | ϕ)θ

= p(ϕ, θ | Z, Y )
p(Z, Y )

p(Z) p(Y | ϕ)θ

3 Semi-Modular Inference

3.1 SMI distributions

Explicit formulae for SMI posterior

The η-smi posterior is defined as

psmi,η(ϕ, θ, θ̃ | Z, Y ) = ppow,η(ϕ, θ̃ | Z, Y ) p(θ | Y, ϕ)

=
p(Z | ϕ) p(Y | ϕ, θ̃)η p(ϕ, θ̃)

p(Z, Y )θ̃

p(Y | ϕ, θ) p(ϕ, θ)
p(Y, ϕ)θ

= p(Z | ϕ) p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Z, Yη)θ̃ p(Y | ϕ)θ
p(ϕ, θ, θ̃) (3)

∝ p(Z | ϕ) p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Y | ϕ)θ
p(ϕ, θ, θ̃)
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In the penultimate step, we assume that θ and θ̃ are conditionally independent given ϕ in the prior, so
p(ϕ, θ, θ̃) = p(θ | ϕ)p(θ̃ | ϕ)p(ϕ) = p(ϕ, θ) p(ϕ, θ̃) 1

p(ϕ) .

From here is easy to see two particular cases of the η-smi posterior: taking marginals over θ̃ in SMI, the cut
model psmi,η(ϕ, θ | Z, Y ) = pcut(ϕ, θ | Z, Y ) when η = 0; and the conventional posterior psmi,η(ϕ, θ | Z, Y ) =
p(ϕ, θ | Z, Y ) when η = 1.

4 Analysis with (Semi-)Modular Inference

4.1 Coherence of (Semi-)Modular Inference

4.1.1 Coherent update of beliefs

In Bissiri et al. (2016), the conventional update of beliefs provided by Bayes theorem is expanded, providing a
generalised framework in which alternative inferential options are justified beyond the conventional posterior.

Let’s use single-module notation in this Subsection 4.1.1, so we are aligned with Bissiri et al. (2016). Denote
newly observe data as Y and the parameter of interest θ.

The framework established by Bissiri et al. (2016) relies on the idea that an update of beliefs must exist.
This update of beliefs is performed, under a decision theory framework, by a function ψ, which turns the
prior into posterior beliefs by incorporating new observed data y via a loss function l(θ; y). that is:

p(θ | y) = ψ{l(θ; y), p(θ)}

Such update ψ is Coherent if it ensures that we preserve the posterior regardless of the order in which the
data was observed. In other words, the posterior is the same whether we update our beliefs by observing all
data simultaneously or by observing the data sequentially,

ψ{l(θ;x2), ψ{l(θ;x1), p(θ)}} = ψ{l(θ;x1) + l(θ;x2), p(θ)}

The authors show that an optimal, valid and coherent update of beliefs is of the form

p(θ | y) = ψ{l(θ; y), p(θ)} =
exp{−l(θ; y)} p(θ)∫
exp{−l(θ; y)} p(θ) dθ

4.1.2 Coherence of the SMI posterior

Back in our multi-modular setting, the flexibility of the framework allows us to analyse the SMI posterior
and the cut model posterior as valid schemes for the update of beliefs, which differ from the traditional
fully-Bayesian update.

In the proofs which follow we work with SMI at an arbitrary fixed η. Since this means the results hold at
η = 0, they hold for modular inference/cut models/Bayesian multiple imputation, at least for imputation in
the modular setting we consider.

From Eq. 2 we can see that the loss function underlying the update of beliefs in the cut model is

lcut((ϕ, θ); (Z, Y )) = − log p(Z | ϕ)− log p(Y | ϕ, θ) + log p(Y | ϕ). (4)

Similarly, from Eq. 3 we can derive the loss function underlying the update of beliefs in SMI the posterior,

lsmi,η((ϕ, θ, θ̃); (Z, Y )) = − log p(Z | ϕ)− η log p(Y | ϕ, θ̃)− log p(Y | ϕ, θ) + log p(Y | ϕ). (5)

Here we prove that the SMI posterior preserves multi-modular coherence. In multi-modular settings, coher-
ence must hold in two ways: 1) by observing responses from different modules one after the other (i.e. first
Z, and then Y ); and 2) by observing sequential fragments within the same module (e.g. first Z1, and then
Z2, with Z = (Z1, Z2)).

The SMI posterior in Eq. 3 updates the belief distribution by observing the two datasets simultaneously.
Under coherent inference, we can also update by observing data only from one module at a time, and still
preserve the loss function in eq.5.
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Say our current distribution of beliefs about (ϕ, θ, θ̃) is p(ϕ, θ, θ̃). Our updated belief by observing only Z
would be

psmi,η(ϕ, θ, θ̃ | Z) = ψ{l((ϕ, θ, θ̃);Z), p(ϕ, θ, θ̃)}

= p(Z | ϕ)
1

p(Z)
p(ϕ, θ, θ̃) (6)

= p(Z | ϕ)
1∫

p(Z | ϕ) p(ϕ) dϕ
p(ϕ, θ, θ̃)

similarly, if we observe only Y our updated beliefs are

psmi,η(ϕ, θ, θ̃ | Y ) = ψ{l((ϕ, θ, θ̃);Y ), p(ϕ, θ, θ̃)}

= p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Yη)θ̃ p(Y | ϕ)θ
p(ϕ, θ, θ̃) (7)

= p(Y | ϕ, θ̃)η p(Y | ϕ, θ) 1∫ ∫
p(Y | ϕ, θ̃)η p(ϕ, θ̃) dϕ dθ̃

p(ϕ)∫
p(Y | ϕ, θ) p(ϕ, θ) dθ

p(ϕ, θ, θ̃)

Coherence when observing data for different modules sequentially.

First, we show that the update from prior to posterior, is equivalent to updating sequentially first Z and
then Y . This is (a)=(b)+(c) in the following diagram:

p(ϕ, θ, θ̃) psmi,η(ϕ, θ, θ̃ | Z) psmi,η(ϕ, θ, θ̃ | Z, Y )

(a)

(b) (c)

The update (a) is Eq. 3, updating beliefs by only observing both Z and Y

p(a)(ϕ, θ, θ̃ | Z, Y ) = psmi,η(ϕ, θ, θ̃ | Z, Y )

The update (b) is similar to Eq. 6, updating beliefs only with data Z.

p(b)(ϕ, θ, θ̃ | Z) = psmi,η(ϕ, θ, θ̃ | Z) (8)

= p(Z | ϕ)
1

p(Z)
p(ϕ, θ, θ̃)

= p(Z | ϕ)
1∫

p(Z | ϕ) p(ϕ) dϕ
p(ϕ, θ, θ̃). (9)

The update (c) is equivalent to Eq. 7 substituting the current beliefs with psmi,η(ϕ, θ, θ̃ | Z), and updating
beliefs only with data Y .

p(b)+(c)(ϕ, θ, θ̃ | Z, Y ) ∝ p(Y | ϕ, θ̃)ηp(Y | ϕ, θ)
p(b)(ϕ | Z)∫

p(Y | ϕ, θ) p(b)(ϕ, θ | Z) dθ
p(b)(ϕ, θ, θ̃ | Z)

∝ p(Z | ϕ)p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

P (Y | ϕ)θ
p(ϕ, θ, θ̃).

The equivalence p(b)+(c)(ϕ, θ, θ̃ | Z, Y ) = psmi,η(ϕ, θ, θ̃ | Z, Y ) is clear by comparing the last formula with
smi posterior in Eq. 3. For the last line, we used the following identity

p(b)(ϕ | Z)∫
p(Y | ϕ, θ) p(b)(ϕ, θ | Z) dθ

=

∫ ∫
p(b)(ϕ, θ, θ̃ | Z)dθdθ̃∫ ∫

p(Y | ϕ, θ) p(b)(ϕ, θ, θ̃ | Z) dθdθ̃

=

∫ ∫
p(Z | ϕ) 1∫

p(Z|ϕ) p(ϕ) dϕp(ϕ, θ, θ̃)dθdθ̃∫ ∫
p(Y | ϕ, θ) p(Z | ϕ) 1∫

p(Z|ϕ) p(ϕ) dϕp(ϕ, θ, θ̃) dθdθ̃

=
p(ϕ)∫

p(Y | ϕ, θ) p(ϕ, θ) dθ

=
1

p(Y | ϕ)θ
.
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Now, we want a similar result by first observing Y and then Z, i.e. (a)=(d)+(e) in the following diagram

p(ϕ, θ, θ̃) psmi,η(ϕ, θ, θ̃ | Y ) psmi,η(ϕ, θ, θ̃ | Z, Y )

(a)

(d) (e)

The update (a) is again given by Equation 3.

The update (d) is Eq. 7

p(d)(ϕ, θ, θ̃ | Y ) ∝ p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Y | ϕ)θ
p(ϕ, θ, θ̃). (10)

The update (d)+(e) is equivalent to Eq. 6 substituting the current beliefs with p(d)(ϕ, θ, θ̃ | Y )

p(d)+(e)(ϕ, θ, θ̃ | Z, Y ) ∝ p(Z | ϕ) p(d)(ϕ, θ, θ̃ | Y )

= p(Z | ϕ) p(Y | ϕ, θ̃)η p(Y | ϕ, θ) 1

p(Y | ϕ)θ
p(ϕ, θ, θ̃).

The equivalence p(d)+(e)(ϕ, θ, θ̃ | Z, Y ) = psmi,η(ϕ, θ, θ̃ | Z, Y ) is direct from comparing the last formula with
Eq. 3.

Coherence when observing data partitioned from the same module.

We now verify that the SMI posterior is coherent when observing a sequential portions of the same module.
Define the partitions Z = (Z1, Z2) and Y = (Y1, Y2).

First, we verify coherence for the partition of data Z. We want to check (b)=(b1)+(b2) in the following

diagram. p(ϕ, θ, θ̃) psmi,η(ϕ, θ, θ̃ | Z1) psmi,η(ϕ, θ, θ̃ | Z)

(b)

(b1) (b2)

Update (b) is the same as defined above in Equation 8

Updates (b1) and (b2) are similar to Eq. 6, substituting the corresponding Z and current state of beliefs

p(b1)(ϕ, θ, θ̃ | Z1) = p(Z1 | ϕ)
1∫

p(Z1 | ϕ) p(ϕ) dϕ
p(ϕ, θ, θ̃),

p(b1)+(b2)(ϕ, θ, θ̃ | Z1, Z2) = p(Z2 | ϕ)
1∫

p(b1)(Z2 | ϕ) p(b1)(ϕ | Z1) dϕ
p(b1)(ϕ, θ, θ̃ | Z1)

∝ p(Z1 | ϕ) p(Z2 | ϕ) p(ϕ, θ, θ̃)

= p(Z | ϕ) p(ϕ, θ, θ̃),

clearly p(b1)+(b2)(ϕ, θ, θ̃ | Z1, Z2) = p(b)(ϕ, θ, θ̃ | Z).

Lastly, we verify coherence for the partition of data Y . We want to check (d)=(d1)+(d2) in the following
diagram.

p(ϕ, θ, θ̃) psmi,η(ϕ, θ, θ̃ | Y1) psmi,η(ϕ, θ, θ̃ | Y )

(d)

(d1) (d2)

Update (d) is the same as defined above in Equation 10
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Updates (d1) and (d2) are similar to Eq. 7, substituting the corresponding Y and current state of beliefs

p(d1)(ϕ, θ, θ̃ | Y1) =p(Y1 | ϕ, θ̃)ηp(Y1 | ϕ, θ)
1

p(Y1,η)θ̃ p(Y1 | ϕ)θ
p(ϕ, θ, θ̃)

∝p(Y1 | ϕ, θ̃)ηp(Y1 | ϕ, θ)
1

p(Y1 | ϕ)θ
p(ϕ, θ, θ̃)

=p(Y1 | ϕ, θ̃)η p(Y1 | ϕ, θ)
p(ϕ)∫

p(Y1 | ϕ, θ) p(ϕ, θ) dθ
p(ϕ, θ, θ̃)

p(d1)+(d2)(ϕ, θ, θ̃ | Y1, Y2) ∝p(Y2 | ϕ, θ̃)η p(Y2 | ϕ, θ)
p(d1)(ϕ)∫

p(Y2 | ϕ, θ) p(d1)(ϕ, θ) dθ
p(d1)(ϕ, θ, θ̃)

∝
(
p(Y1 | ϕ, θ̃) p(Y2 | ϕ, θ̃)

)η
(p(Y1 | ϕ, θ) p(Y2 | ϕ, θ)) ·

·
p(d1)(ϕ)∫

p(Y2 | ϕ, θ) p(d1)(ϕ, θ) dθ
1

p(Y1 | ϕ)θ
p(ϕ, θ, θ̃)

∝p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Y | ϕ)θ
p(ϕ, θ, θ̃).

from here is clear that p(d1)+(d2)(ϕ, θ, θ̃ | Y1, Y2) = p(d)(ϕ, θ, θ̃ | Y ). In the last step, we used the following
identity

p(d1)(ϕ)∫
p(Y2 | ϕ, θ) p(d1)(ϕ, θ) dθ

=

∫ ∫
p(d1)(ϕ, θ, θ̃)dθdθ̃∫ ∫

p(Y2 | ϕ, θ) p(d1)(ϕ, θ, θ̃) dθdθ̃

∝

∫ ∫
p(Y1 | ϕ, θ̃)η p(Y1 | ϕ, θ) 1

p(Y1|ϕ)θ p(ϕ, θ, θ̃)dθdθ̃∫ ∫
p(Y2 | ϕ, θ) p(Y1 | ϕ, θ̃)η p(Y1 | ϕ, θ) 1

p(Y1|ϕ)θ p(ϕ, θ, θ̃) dθdθ̃

=

1
p(ϕ)

(∫
p(Y1 | ϕ, θ̃)ηp(ϕ, θ̃)dθ̃

) (∫
p(Y1 | ϕ, θ)p(ϕ, θ)dθ

)
1

p(ϕ)

(∫
p(Y1 | ϕ, θ̃)ηp(ϕ, θ̃) dθ̃

) (∫
p(Y1 | ϕ, θ)p(Y2 | ϕ, θ) p(ϕ, θ) dθ

)
=
p(Y1 | ϕ)θ
p(Y | ϕ)θ

here again, we assumed that θ and θ̃ are conditionally independent given ϕ in the prior, so p(ϕ, θ, θ̃) =

p(ϕ, θ) p(ϕ, θ̃) 1
p(ϕ) .

4.2 Targeting the modular posterior

4.2.1 Detailed balance of SMI posterior

Here we show that the η-smi posterior (and cut posterior in particular) preserves the detailed balance
condition when we use the transition kernel implied by the two-stage MCMC algorithm proposed in the
main text.

1. Sample (ϕ, θ̃) ∼ ppow,η(ϕ, θ̃ | Z, Y ) = p(Z | ϕ) p(Y | ϕ, θ̃)η 1
p(Z,Yη)θ̃

p(ϕ, θ̃)

2. Sample θ ∼ p(θ | Y, ϕ) = p(Y | ϕ, θ) 1
p(Y |ϕ)θ p(θ)

The first step updates (ϕ, θ̃) using the powered likelihood. It is not difficult to target this posterior using
traditional sampling methods.

The second term updates θ exactly from its conditional posterior given data Y from module 2, and a fixed
value ϕ.

The transition kernel for one iteration in this scheme is given by

K(ϕ′, θ′, θ̃′ | ϕ, θ, θ̃) = K(ϕ′, θ̃′ | ϕ, θ̃)p(θ′ | Y, ϕ′). (11)
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By construction, the first stage of the update (using the powered likelihood) is in detailed balance with the
powered likelihood, i.e. satisfies

ppow,η(ϕ, θ̃ | Z, Y )K(ϕ′, θ̃′ | ϕ, θ̃) = ppow,η(ϕ′, θ̃′ | Z, Y )K(ϕ, θ̃ | ϕ′, θ̃′)

From here we see that the η-smi posterior in Eq. 3 satisfies detailed balance with the transition kernel in eq.
11

psmi,η(ϕ, θ, θ̃ | Z, Y )K(ϕ′, θ′, θ̃′ | ϕ, θ, θ̃)
= [ppow,η(ϕ, θ̃ | Z, Y )p(θ | Y, ϕ)][K(ϕ′, θ̃′ | ϕ, θ̃)p(θ′ | Y, ϕ′)]

= ppow,η(ϕ, θ̃ | Z, Y )p(θ | Y, ϕ)
ppow,η(ϕ′, θ̃′ | Z, Y )K(ϕ, θ̃ | ϕ′, θ̃′)

ppow,η(ϕ, θ̃ | Z, Y )
p(θ′ | Y, ϕ′)

= ppow,η(ϕ′, θ̃′ | Z, Y )p(θ′ | Y, ϕ′)K(ϕ, θ̃ | ϕ′, θ̃′)p(θ | Y, ϕ)

= psmi,η(ϕ′, θ′, θ̃′ | Z, Y )K(ϕ, θ, θ̃ | ϕ′, θ′, θ̃′)

4.2.2 Further details about Nested MCMC for SMI posterior.

Our implementation of MCMC targeting the SMI posterior is a two-stage sampler described in Algorithm 1
in the main article.

This is arguably the simpler approach that has been discussed in literature about MCMC targeting a modular
posterior (e.g. Unbiased MCMC via couplings (Jacob et al., 2017)).

Algorithm 1 does not make specific assumptions about the class of MCMC sampler that is used at each stage.
The only requirement is to check convergence in both stages. For the first step, sampling φ, we proceed as
any traditional implementation of MCMC, running the chains until we have satisfied classical convergence
test. The second step, sampling θ, we only need to guarantee that the last sample in every sub-chain are
taken after we reached the equilibrium distribution.

Our examples in Section 5 use standard MCMC at each step. For the agricultural data in Sec.5.2 we
use random walk Metropolis-Hastings in both stages. For the epidemiological data, the samplers for both
stages are implemented in Stan (Carpenter et al., 2017), using Hamiltonian Monte Carlo. In both cases we
performed convergence analysis for the main Chain (step 1), and experimented with various lengths for the
sub-chain, in the end, we choose 500 iterations as a conservative length that guaranteed the last iteration was
sampled from the equilibrium distribution. The detailed implementation can be found in the accompanying
R package aistats2020smi available in GitHub 1.

4.4 Computational cost of SMI

Our baseline is standard Bayes-MCMC on the original full model. We suppose for simplicity this was
implemented using separate updates for θ|ϕ and ϕ|θ, though these need not be Gibbs updates. Let τϕ,θ be
the Integrated Autocorrelation Time (IACT) of Bayes-MCMC. If the Effective Sample Size (ESS) of the full
Bayes-MCMC output is N then we must have done T = Nτϕ,θ MCMC steps. If one Bayes-MCMC step
updating both θ and ϕ has unit cost then the overall cost is Wbm = T [time]. This doesn’t parallelise.

The SMI posterior is
pη−smi(ϕ, θ̃, θ|Y,Z) = ppow,η(ϕ, θ̃|Y,Z)p(θ|Y, ϕ).

If we use the same Bayes-MCMC updates to sample ppow,η(ϕ, θ̃|Y,Z) then the work sampling (ϕ, θ̃) at one
η-value is WBayes. Thin the ϕ samples every τϕ,θ steps to get an ESS about N (this is rough, because the
target changes with η, but reasonable if we allow for some tuning of the MCMC with η - we didnt need to
tune in our examples).

We use the Bayes-MCMC update for p(θ|Y, ϕ) in SMI. Let τθ be the IACT. Typically, τθ < τϕ,θ (the target
has lower dimension; illustrative proofs can be given in simple special cases) so take τθ = τϕ,θ (conservative,
and note that these “side-chains” targeting p(θ|Y, ϕ) can be started close to equilibrium using the θ-value
output from sampling at the previous step). We run the θ-sampler to equilibrium (initialise θ(t)-run with
θ(t−1)). Suppose this takes Kτθ steps (K ≈ 5 is reasonable).

1https://github.com/christianu7/aistats2020smi
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In the following we assume simulation at different η-values is parallelized over machines, while simulation of
θ|φ is parallelized over threads on a machine. Suppose we have Mt threads on each of Mp machines. The
θ-sampling parallelizes with a small communication overhead if the time to do Kτϕ,θ of the θ|ϕ-updates is
significantly larger than the communication time. The cost of the θ-update in the second stage of SMI is
no more than the cost of one update in the original Bayes-MCMC where both θ and ϕ were updated, so a
runtime cost for θ-updates equal one unit is conservative. It follows that (θ̃, ϕ, θ)-sampling at one η-value
costs about

Wη = Wbm(1 +K/Mt).

We have to repeat this J times, sampling pη−smi(ϕ, θ̃, θ|Y,Z) for each of J different η-values spaced between
η = 0 and η = 1 (J ≈ 20 should be enough) using Mp machines. This larger task parallelises essentially
perfectly. The total cost is

Wsmi = Wbm(1 +K/Mt)× J/Mp.
For eg if we assign resources as Mp = J and Mt = 1 (just parallelise over η) the SMI cost is not worse than
about 10 times the cost of doing Bayes-MCMC. This reflects our experience.

Finally, we compute and smooth the WAIC across the J runs at different η-values. This part is fast output-
analysis. The ESS must be big enough to get stable WAIC estimates, but WAIC is ”nice” to estimate. Very
roughly,

Wsmi ' 10Wbm

should be achievable without a great deal of work on top of the cost of implementing and running standard
Bayes-MCMC.

5 Data Analyses

5.1 Simulation study: Biased data

Model:

Z | ϕ ∼ N(ϕ, σ2
z)

Y | ϕ, θ ∼ N(ϕ+ θ, σ2
y)

with σ2
z and σ2

y (and other σ’s) known.

Priors:

ϕ ∼ N(0, σ2
ϕ)

θ ∼ N(0, σ2
θ)

θ̃ ∼ N(0, σ̃2
θ)

In our example on the main text, we know the generative parameters: (ϕ∗, θ∗, θ̃∗). We compare these true
values with the estimates arising from the η-smi posterior, for different values of η ∈ [0, 1].

5.1.1 SMI posterior

First, derive p(Y | ϕ)θ as a function of ϕ

p(Y | ϕ)θ =
1

p(ϕ)

∫
p(Y | ϕ, θ) p(ϕ, θ) dθ

∝ exp{−1

2
[ϕ2(

m

mσ2
θ + σ2

y

)− 2ϕ(Ȳ
m

mσ2
θ + σ2

y

)]}

Now we can obtain the η-smi posterior

psmi,η(ϕ, θ, θ̃ | Z, Y ) = p(Z | ϕ) p(Y | ϕ, θ̃)ηp(Y | ϕ, θ) 1

p(Z, Yη)θ̃ p(Y | ϕ)θ
p(ϕ, θ, θ̃)

∝ exp{−1

2
[ϕ2(

n

σ2
z

+
m

σ2
y

(1 + η) +
1

σ2
ϕ

− m

σ2
y +mσ2

θ

)− 2ϕ(
n

σ2
z

+
m

σ2
y

(1 + η)− Ȳ m

σ2
y +mσ2

θ

)+

θ2(
m

σ2
y

+
1

σ2
θ

)− 2θ(Ȳ
m

σ2
y

)+

θ̃2(η
m

σ2
y

+
1

σ̃2
θ

)− 2θ̃(ηȲ
m

σ2
y

)+

+ 2ϕθ(
m

σ2
y

) + 2ϕθ̃(η
m

σ2
y

)]}
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From here we see that the joint posterior distribution for (ϕ, θ, θ̃) is a multivariate normal distribution defined
as:

psmi,η(ϕ, θ, θ̃ | Z, Y ) = Normal(µ,Σ), (12)

with

Σ =


n
σ2
z

+ m
σ2
y
(1 + η)− m

σ2
y+mσ

2
θ

+ 1
σ2
ϕ

m
σ2
y

η mσ2
y

m
σ2
y

m
σ2
y

+ 1
σ2
θ

0

η mσ2
y

0 η mσ2
y

+ 1
σ̃2
θ


−1

, and µ = Σ


n
σ2
z

+ m
σ2
y
(1 + η)− Ȳ m

σ2
y+mσ

2
θ

Ȳ m
σ2
y

ηȲ m
σ2
y

 .
The generative parameters described in the main text are as follows

> n=25 # Sample size for Z
> m=50 # Sample size for Y
> phi = 0
> theta = 1 # bias
> sigma_z = 2 # variance for Z
> sigma_y = 1 # variance for Y

The true bias is θ = 1. Assume we have an over-optimistic view of the bias, with prior distribution centered
in 0 and relatively small prior variance.

In Figure 2 we show posterior distributions (mean ± std. dev.) for a randomly generated dataset (Z̄ =-
0.0667; Ȳ =1.0562) using the generative parameters described in the main text. Note that the conventional
bayes (η = 1) is the worst estimation for the true parameters ϕ accross all posible candidates η ∈ [0, 1].

> # Posterior for conventional bayes eta=1
> posterior = SMI_post_biased_data( Z=Z, Y=Y,
+ sigma_z=sigma_z, sigma_y=sigma_y,
+ sigma_phi=sigma_phi,
+ sigma_theta=sigma_theta, sigma_theta_tilde=sigma_theta,
+ eta=1 )
> posterior = mapply('rownames<-', posterior, MoreArgs=list(value=param_names))
> # posterior mean
> posterior$mean

[,1]
phi 0.3511440
theta 0.6528197
theta_tilde 0.6528197

5.1.2 Mean Square Error (MSE)

From Equation 3, we can compute the Posterior Squared Error (SE) of estimates arising from the SMI

posterior ϕ, θ and , θ̃,

SE(ϕ) = Σ[1,1] + (µ[1] − ϕ∗)2

SE(θ) = Σ[2,2] + (µ[2] − θ∗)2

SE(θ̃) = Σ[3,3] + (µ[3] − θ∗)2

In the first simulation study of the main text we display the Mean Squared Error (MSE) for ϕ and θ, which
is the result of averaging the posterior SE across datasets. We show that we can reach smaller MSE with
values of η other than 0 and 1. To generate these plots, we produced 1000 synthetic datasets, computed
MSE using Eq. 3 on each one, with a grid of values of η ∈ [0, 1]. The MSE lines displayed correspond to the
average MSE across datasets, for each value of η.

Here we also show a comparison between θ and θ̃. Figure 4 shows that θ̃ is dominated by θ in MSE. The
comparison emphasises the convenience of SMI over power likelihood discussed in section 4.4 of the main
text.
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Figure 2: Posterior distribution of ϕ, θ and θ̃ for a single dataset (Z,Y ). A black horizontal line shows the
true generative value. The posterior mean is the solid red line and we show intervals with ± one posterior
std. dev. using dotted blue lines.

5.1.3 Expected log pointwise predictive density (elpd)

The elpd is

elpd =

∫ ∫
p∗(z, y) log psmi,η(z, y | Z, Y )dzdy

where p∗ is the distribution representing the true data-generating process and

psmi,η(z, y | Z, Y ) =

∫ ∫
p(z, y | ϕ, θ) psmi,η(ϕ, θ | Y, Z) dϕ dθ

is a candidate posterior predictive distribution, indexed by η.

Let

[
a b
b c

]
= Cov(ϕ, θ | Z, Y )−1 be the inverse of the posterior covariance matrix of (ϕ, θ), and

[
d
e

]
=

E(ϕ, θ | Z, Y ) the posterior means.

10



0.27

0.28

0.29

0.30

0.31

0.00 0.25 0.50 0.75 1.00
eta

M
S

E
( 

ph
i )

0.27

0.28

0.29

0.30

0.31

0.00 0.25 0.50 0.75 1.00
eta

M
S

E
( 

th
et

a 
)

Figure 3: Mean Squared Error of the two main parameters under SMI posterior.
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Figure 4: Comparison of the bias estimation under SMI (theta) vs powered likelihood (theta tilde)

Following straightforward Gaussian completion we can show that the joint posterior distribution for ϕ, θ,
and new data z0 and y0 is:

psmi,η(z0, y0, ϕ, θ|Z, Y ) ∝ p(z0, y0|ϕ, θ) psmi,η(ϕ, θ|Z, Y )

∝ exp{−1

2
[z20(

1

σ2
z

) + y20(
1

σ2
y

) + ϕ2(a+
1

σ2
z

+
1

σ2
y

) + θ2(c+
1

σ2
y

)+

− 2z0ϕ(
1

σ2
z

)− 2y0ϕ(
1

σ2
y

)− 2y0θ(
1

σ2
y

) + 2ϕθ(b+
1

σ2
y

)

− 2ϕ(ad+ be)− 2θ(bd+ ce)]}
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So we have

psmi,η(z0, y0, ϕ, θ | Z, Y ) = Normal(µ,Σ), (13)

with

Σ =


1
σ2
z

0 − 1
σ2
z

0

0 1
σ2
y

− 1
σ2
y

− 1
σ2
y

− 1
σ2
z
− 1
σ2
y

a+ 1
σ2
z

+ 1
σ2
y

b+ 1
σ2
y

0 − 1
σ2
y

b+ 1
σ2
y

c+ 1
σ2
y


−1

, and µ = Σ

 0
0

ad+ be
bd+ ce

 .

We know the true generative values ϕ∗ and θ∗, so we can compute elpd using Monte Carlo samples from the
true generative distribution p∗ and evaluate this values in the log-density of the bivariate normal (z0, y0|Z, Y )
from Equation 13.

In Figure 5 we show the Monte Carlo estimation of the elpd. We select the optimal η as the value that
maximise the elpd. To generate this plot, we produced 1000 synthetic datasets, computed elpd on each one
(using Monte Carlo), with a grid of values of η ∈ [0, 1]. The elpd line correspond to the average elpd across
datasets, for each value of η.
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Figure 5: ELPD under SMI posterior.

5.2 Agricultural data

The aim of the study, described in detail in Styring et al. (2017), is to provide statistical evidence about a
specific agricultural practice of the first urban centres in northern Mesopotamia.

The hypothesis is that increased agricultural production to support growing urban populations was achieved
by cultivation of larger areas of land, entailing lower manure/midden inputs per unit area. This practice is
known as extensification.

Our contribution goes into extending the methods used to perform Bayesian analysis in this adverse scenario
of model misspecification and big missing data.

5.2.1 Data

The data consists of measurements of nitrogen and carbon isotopes for a collection of crop remains. There
are two datasets: archaeological and modern, which we will denote by A and M, respectively. First, the
Archaeological dataset A, consists of data gathered from excavations of antique crop sites in the region of
Mesopotamia. Second, the Modern dataset, M, was gathered in a controlled experimental setting in recent
years. Further characteristics and description of variables on each dataset can be found in the statistical
supplement to Styring et al. (2017).
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5.2.2 The model

We preserved the model stated in Styring et al. (2017). See Figure 6. The main goal of that study is to test
the hypothesis of extensification in the ancient urban sites. This hypothesis can be condensed in analysing
the strength of the effect of the site size Si on the corresponding manure level Mi for the records in the
archaeological data, {i ∈ A}. The more negative the estimated effect, the stronger the evidence supporting
the extensification hypothesis.

However, there is no available information about the Manuring levels in the ancient dataset. This is addressed
by using a Data augmentation perspective, and consider that all the corresponding values of the manure
level in the Archaeological data are missing.

The model consists of a two-module model, which integrates archaeological and calibration data so the
missing manuring levels can be inferred. The first module is a Proportional Odds model (PO), with the
missing Manure Levels in the archaeological data as the ordinal response (Mi; i ∈ A). The second module
consists of a linear Gaussian model (HM), applicable to both datasets, with the Nitrogen level of the crops
(Z) as the response, and Manure levels as one of the predcitors. The graphical representation of the model
is depicted in Figure 6

Mi

γαξsσξ

s ∈ SA

Si

Pi

i ∈ A

Ci Pi

Ri

Zi

i ∈ A

β

σ

v

ζs σζ

s ∈ SA∪M

Mj Cj Pj

Rj

Zj

j ∈ M

PO module

HM module

Figure 6: Graphical representation of the model for the agricultural data. Squares denote observable
variables and circles denote unknown quantities (parameters and missing data).The main interest of the
study is on the parameter γ (red circle), effect of size Si (blue square) on Manure level Mi. The dashed line
indicates the cut where SMI is applied for the imputation of missing manure.

The model can be studied from a multi-modular perspective. Indeed, the supplement of Styring et al. (2017)
performs Bayesian Multiple Imputation (BMI) to impute the missing manure levels with parameters learnt
from the HM module, and therefore cutting the influence from the PO module into this imputation. The
parameters of the PO module are then inferred conditional on the imputed values and other information in
the archaeological data.

In Figure 7 we draw a simplified version of the complete model to clarify how the SMI framework can be
applied in this setting. The mapping of variables between the complete and simplified graphs is as follows:
the missing manure levels will take the role of φ; the observed data in the HM module is Z, the parameters
in the PO module will be θ, and the rest of archaeological data in the PO module is Y .
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Figure 7: Simplified representation of the model for the agricultural data.

The simplified version resembles our graphical model in Figure 1. From here it is clear how the Bayesian
imputation approach taken by Styring et al. (2017) is equivalent to a cut model: first learn φ/manure-level
from the HM module, and then learning θ (ie γ) conditional on φ and Y . This scheme yields our known cut
posterior from Eq. 2.

Pcut(ϕ, θ | Z, Y ) = P (ϕ | Z) P (θ | Y, ϕ)

We extend the Bayesian imputation approach in Styring et al. (2017) and apply Semi-Modular Inference to
their setting.

Psmi,η(ϕ, θ | Z, Y ) =

∫
Ppow,η(ϕ, θ̃ | Z, Y ) P (θ | Y, ϕ)dθ̃

SMI allows us to expand the space of candidate posteriors in a way that we can control smoothly, rather
that eliminating the influence of the PO module in the imputation of the missing Manure Levels.

gamma_po_1

In Figure 8 we display the collection of candidate distributions spanned by SMI by considering a grid of
values for η ∈ [0, 1]. The distribution at η =0 is comparable to the Bayesian Imputation approach in Styring
et al. (2017).
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Figure 8: SMI posterior distribution for the parameter of interest in the agricultural model.

To choose the optimal value η = η∗ say, we maximise the Expected Log Predictive Density or ELPD (Vehtari
et al., 2017) to predict a new value of the response in the HM module (Zi; i ∈ A in the diagram). In Figure 9
we show the negative ELPD as a function of η. The optimal value is reached at η∗ =0.82.

The ELDP changes dramatically over the range 0 ≤ η ≤ 1 and η∗ is clearly distinguished from 0 or 1. This
impacts downstream inference: the Bayes factor of interest changes from BFsmi,0(γ ≤ 0) =5.54 in the cut
model, to BFsmi,0.82(γ ≤ 0) =117.11 in the optimal SMI posterior with η =0.82, a substantial shift in the
strength of the evidence for the extensification hypothesis. In Figure 10 we show the comparison of Bayes
Factors across values of η ∈ [0, 1] for the hypothesis γ ≤ 0.
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Figure 9: Choosing the best SMI posterior candidate by choosing the η-value maximizing the ELPD.
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Figure 10: Bayes Factor for the hypothesis γ ≤ 0 across all values of η.
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Jacob, P. E., O’Leary, J., and Atchadé, Y. F. (2017). Unbiased Markov chain Monte Carlo with couplings.

Plummer, M. (2015). Cuts in Bayesian graphical models. Statistics and Computing, 25(1):37–43.

Styring, A. K., Charles, M., Fantone, F., Hald, M. M., McMahon, A., Meadow, R. H., Nicholls, G. K., Patel,
A. K., Pitre, M. C., Smith, A., So?tysiak, A., Stein, G., Weber, J. A., Weiss, H., and Bogaard, A. (2017).
Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. Nature Plants,
3(6).

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432.

16


	Introduction
	Background methods
	Modular Inference: cut model

	Semi-Modular Inference
	SMI distributions

	Analysis with (Semi-)Modular Inference
	Coherence of (Semi-)Modular Inference
	Coherent update of beliefs
	Coherence of the SMI posterior

	Targeting the modular posterior
	Detailed balance of SMI posterior
	Further details about Nested MCMC for SMI posterior.

	Computational cost of SMI

	Data Analyses
	Simulation study: Biased data
	SMI posterior
	Mean Square Error (MSE)
	Expected log pointwise predictive density (elpd)

	Agricultural data
	 Data 
	 The model 



