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A PROOFS OF STABILITY
THEOREMS

Definition of diagram distances. Recall (see Sec-
tion 1.3) that persistence diagrams are generally rep-
resented as multisets of points (i.e. points counted
with multiplicity) supported on the upper half plane
Ω = {(b, d) ∈ R2, d > b}. Let µ = {x1, . . . , xn} and
ν = {y1, . . . , ym} be two such diagrams and s ≥ 1 be a
parameter. Note in particular that n 6= m in general.
Let ∆ = {(t, t), t ∈ R} denote the diagonal, and let
Π(µ, ν) denote the set of all bijections between µ ∪∆
and ν ∪∆. Then, the s-diagram distance between µ
and ν is defined as:

ds(µ, ν) = inf
π∈Π(µ,ν)

 ∑
x∈µ∪∆

‖x− s(x)‖p
 1

p

. (6)

In particular, if s = ∞, we recover the bottleneck
distance defined as:

dB(µ, ν) = inf
π∈Π(µ,ν)

sup
x∈µ∪∆

‖x− s(x)‖. (7)

Proof of Theorem 2.2 The proof directly follows
from the following two theorems. This first one, proved
in (Hu et al., 2014), is a consequence of classical argu-
ments from matrix perturbation theory.
Theorem A.1 ((Hu et al., 2014), Theorem 1). Let
t ≥ 0 and let Lw be the Laplacian matrix of a graph
G with n vertices. Let λ1 < · · · < λk, k ≤ n be
the distinct eigenvalues of Lw and denote by δ > 0
the smallest distance between two distinct eigenvalues:
δ = minj=1,··· ,k−1 |λj+1− λj |. Let G′ be another graph
with n vertices and Laplacian matrix L̃w = Lw+W with
‖W‖ < δ, where ‖W‖ denotes the Frobenius norm of
W . Then, if k = n, there exists a constant C0(G, t) > 0
such that for any vertex v ∈ G,

|hksG,t(v)− hksG′,t(v)| 6 C0(G, t)‖W‖;

if k < n, there exists two constants C1(G, t), C2(G, t) >
0 such that for any vertex v ∈ G,

|hksG,t(v)−hksG′,t(v)| 6

C1(G, t) ‖W‖
δ − ‖W‖

+ C2(G, t)‖W‖

In particular, if ‖W‖ < δ
2 , there exists a constant

C(G, t) > 0—notice that δ also depends on G—such
that in the two above cases,

|hksG,t(v)− hksG′,t(v)| 6 C(G, t)‖W‖.

Theorem 2.2 then immediately follows from the second
following theorem, which is a special case of general
stability results for persistence diagrams.

Theorem A.2 ((Chazal et al., 2016; Cohen-Steiner
et al., 2009)). Let G = (V,E) be a graph and f, g :
V → R be two functions defined on its vertices. Then:

dB(Dg(G, f),Dg(G, g)) 6 ‖f − g‖∞, (8)

where dB stands for the so-called bottleneck dis-
tance between persistence diagrams and ‖f − g‖∞ =
supv∈G |f(v)− g(v)|. Moreover, this inequality is also
satisfied for each of the subtypes Ord0,Rel1,Ext+

0 and
Ext−1 individually.

Proof of Theorem 2.3 Fix a graph G = (V,E).
With the same notations as in Section 2.2, recall that
the eigenvalues of the normalized graph Laplacian sat-
isfy 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2, and the corresponding
eigenvectors {ψ1, . . . , ψn} define an orthonormal family.
In particular, t 7→ exp(−tλk) is 2-Lipschitz continuous
for t > 0. Let t, t′ be two positive diffusion parameters.
We have, for any v ∈ V :∣∣∣ n∑

k=1
(exp(−tλk)− exp(−t′λk))ψk(v)2

∣∣∣
6 2 · |t′ − t|

n∑
k=1

ψk(v)2

︸ ︷︷ ︸
=1

.

Thus in particular,

sup
v∈V
|hksG,t(v)− hksG,t′(v)| 6 2|t− t′|.

As in the previous proof, we conclude using the stability
of persistence diagrams w.r.t. the bottleneck distance
(see Thm. A.2).

B DATASETS DESCRIPTION

Tables 3 and 4 summarize key information of each
dataset for both our experiments. We also provide in
Figure 4 an illustration of the orbits we generated in
Section 3.2.

C COMPLEMENTARY
EXPERIMENTAL RESULTS

C.1 Weight learning

Figure 5 provides an illustration of the weight grid w
learned after training on the MUTAG dataset. Roughly
speaking, activated cells highlight the areas of the plane
where the presence of points was discriminating in
the classification process. These learned grids thus
emphasize the points of the persistence diagrams that
matter w.r.t. learning task.
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Dataset Nb of orbit observed Number of classes Number of points per orbit
ORBIT5K 5,000 5 1,000
ORBIT100K 100,000 5 1,000

Table 3: Description of the two orbits dataset we generated. The five classes correspond to the five parameter choices for
r ∈ {2.5, 3.5, 4.0, 4.1, 4.3}. In both ORBIT5K and ORBIT100K, classes are balanced.

Dataset Nb graphs Nb classes Av. nodes Av. Edges Av. β0 Av. β1
REDDIT5K 5,000 5 508.5 594.9 3.71 90.1
REDDIT12K 12,000 11 391.4 456.9 2.8 68.29
COLLAB 5,000 3 74.5 2457.5 1.0 2383.7
IMDB-B 1,000 2 19.77 96.53 1.0 77.76
IMDB-M 1,500 3 13.00 65.94 1.0 53.93
COX2 467 2 41.22 43.45 1.0 3.22
DHFR 756 2 42.43 44.54 1.0 3.12
MUTAG 188 2 17.93 19.79 1.0 2.86
PROTEINS 1,113 2 39.06 72.82 1.08 34.84
NCI1 4,110 2 29.87 32.30 1.19 3.62
NCI109 4,127 2 29.68 32.13 1.20 3.64

Table 4: Datasets description. β0 (resp. β1) stands for the 0th-Betti-number (resp. 1st), that is the number of connected
components (resp. cycles) in a graph. In particular, an average β0 = 1.0 means that all graph in the dataset are connected,
and in this case β1 = #{edges} −#{nodes}.

0 1
0

1
r = 2.5

0 1
0

1
r = 3.5

0 1
0

1
r = 4.0

0 1
0

1
r = 4.1

0 1
0

1
r = 4.3

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Figure 4: Some example of orbits generated by the differ-
ent choices of r (three simulations are represented for the
different values of r).

C.2 Selection of HKS diffusion parameter

As stated in Theorem 2.3, for a fixed graph G, the
function t 7→ Dg(G, t) is 2-Lipschitz continuous with
respect to the bottleneck distance between persistence
diagrams. Informally (see Supplementary Material,
Section A for a formal definition), it means that the
points of Dg(G, t) must move smoothly with respect to
t. This is experimentally illustrated in Figure 7, where
we plot the four diagrams built from a graph of the
MUTAG dataset.

As mentioned in Section 2.2, the parameter t can also
be treated as a trainable parameter that is optimized
during the learning. In our experiment, however, it
does not prove to be worth it. Indeed, our diagrams
are not particularly sensitive to the choice of t, and

thus fixing some t sampled in log-scale is enough. Fig-
ure 6 illustrates the evolution of parameter t over 40
epochs when trained on the MUTAG dataset (one epoch
correspond to a stochastic gradient descent performed
on the whole dataset). As one can see, parameter t
converges quickly. More importantly, it remains almost
constant when initialized at t0 = 10.0, suggesting that
this choice is a (locally) optimal one. Fortunately, this
is the parameter we use in our experiment (see Table 5).
On the other hand, each time t is updated (that is, at
each epoch), one must recompute the diagrams for all
the graphs in the training set, significantly increasing
the running time of the algorithm.

C.3 Experimental settings

Input data was fed to the network with mini-batches
of size 128. For each dataset, various parameters are
given (extended persistence diagrams, neural network
architecture, optimizers, etc.) that were used to obtain
the scores from Table 2. In Table 5, we use the following
shortcuts:

• Alphad: persistence diagrams obtained with Gudhi’s
d-dimensional AlphaComplex filtration.

• hkst: extended persistence diagram obtained with
HKS on the graph with parameter t.

• prom(k): preprocessing step selecting the k points
that are the farthest away from the diagonal.

• PersLay channel Im(p, (a, b), q, op) stands for
a function φ obtained by using a Gaussian point
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Figure 5: Weight function w when chosen to be a grid with size 20× 20 before and after training (MUTAG dataset). Here,
Ord0, Rel1, Ext0, and Ext1 denote the extended diagrams corresponding to downwards branches, upwards branches,
connected components and loops respectively (cf Section 2.1).
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Figure 6: Evolution of HKS parameter t when considered as a trainable variable (i.e. differentiating t 7→ Dg(G, t) for all G)
across 40 epochs for three different initializations of t, namely 0.1, 1 and 10, on the MUTAG dataset.

Figure 7: Evolution of t 7→ Dg(G, t)) for one graph from
the MUTAG dataset (t ∈ [0.1, 100], t in log-scale).

transformation φΓ sampled on (p × p) grid on the
unit square followed by a convolution with a filters
of size b× b, for a weight function w optimized on a
(q × q) grid and for an operation op.

• PersLay channel Pm(d1, d2, q, op) stands for a
function φ obtained by using a line point transfor-
mation φL with d1 lines followed by a permutation
equivariant function (Zaheer et al., 2017) in dimen-
sion d2, for a weight function w optimized on a (q×q)
grid and for an operation op.

• adam(λ, d, e) stands for the ADAM opti-
mizer (Kingma & Ba, 2014) with learning
rate λ, using an Exponential Moving Average5 with
decay rate d, and run during e epochs.

C.4 Hyper-parameters influence

As our approach mix our topological features and some
standard graph features, we provide two ablations stud-

5https://www.tensorflow.org/api_docs/python/tf/
train/ExponentialMovingAverage

https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
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Dataset Func. used PD preproc. PersLay Optim.
ORBIT5K Alpha0, Alpha1 prom(500) Pm(25,25,10,top-5) adam(0.01, 0., 300)
ORBIT100K Alpha0, Alpha1 prom(500) Pm(25,25,10,top-5) adam(0.01, 0., 300)
REDDIT5K hks1.0 prom(500) Pm(25,25,10,sum) adam(0.01, 0.99, 500)
REDDIT12K hks1.0 prom(500) Pm(5,5,10,sum) adam(0.01, 0.99, 1000)
COLLAB hks0.1, hks10 prom(500) Pm(5,5,10,sum) adam(0.01, 0.9, 1000)
IMDB-B hks0.1, hks10 prom(500) Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
IMDB-M hks0.1, hks10 prom(500) Im(10,(10,2),10,sum) adam(0.01, 0.9, 500)
COX2 hks0.1, hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
DHFR hks0.1, hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
MUTAG hks10 — Im(20,(10,2),10,sum) adam(0.01, 0.9, 100)
PROTEINS hks10 prom(500) Im(15,(10,2),10,sum) adam(0.01, 0.9, 70)
NCI1 hks0.1, hks10 — Pm(25,25,10,sum) adam(0.01, 0.9, 300)
NCI109 hks0.1, hks10 — Pm(25,25,10,sum) adam(0.01, 0.9, 300)

Table 5: Settings used to generate our experimental results.

Grid size for trainable weights w(p) Point transformation φ Perm op
None 2× 2 5× 5 10× 10 20× 20 50× 50 Gaussian line triangle Sum Max

MUTAG Train/Test acc (%) 92.3/88.9 91.1/88.8 91.7/89.6 92.3/89.9 93.7/88.3 94.1/87.7 92.5/89.7 89.2/84.2 91.5/85.0 92.3/89.5 91.9/87.4
Run time, CPU (s) 2.30 2.77 2.79 2.77 2.77 2.78 2.80 5.91 4.42 2.75 2.82

COLLAB Train/Test acc (%) 76.5/75.3 78.6/75.8 79.0/76.2 80.0/76.5 83.5/73.9 94.0/71.3 79.7/75.3 79.9/76.1 79.4/74.7 80.0/76.4 78.8/75.0
Run time, GPU (s) 26.0 40.4 43.5 43.8 44.1 45.6 45.8 54.0 61.4 44.3 48.1

Table 6: Influence of hyper-parameters and ablation study. When varying a single hyper-parameter (e.g. grid size), all the
others (e.g. perm op) are fixed to the values described in Supplementary Material, Table 5. Accuracies and running times
are averaged over 100 runs (i5-8350U 1.70GHz CPU for the small MUTAG dataset, P100 GPU for the large COLLAB
one). Bold-blue font refers to the experimental setting used in Section 4.

ies. In Table 7, the column “Spectral” reports the
test accuracies obtained by using only these additional
features, while the column “PD alone” records the
accuracies obtained with the extended and ordinary
persistence diagrams alone. As ordinary persistence
only encodes the connectivity properties of graphs, a
gap in performance between extended and ordinary
persistence can be interpreted as 1-dimensional fea-
tures (i.e. loops) being informative for classification
purpose. It also reports the standard deviations, that
were omitted in 2 for the sake of clarity.

Similarly, we give in Table 6 the influence of the grid
size that we choose as weight function w. In particular,
we also perform an ablation study: grid size being None
meaning that we enforce w(p) = 1 for all p. As ex-
pected, increasing the grid size improves train accuracy
but leads to overfitting for too large values. However,
this increase has only a small impact on running times
whereas not using any grid significantly lowers it.

Finally, Figure 8 illustrates the variation of accuracy
for both MUTAG and COLLAB datasets when varying the
HKS parameter t used when generating the extended
persistence diagrams. One can see that the accuracy
reached on MUTAG does not depend on the choice of t,
which could intuitively be explained by the small size of
the graphs in this dataset, making the t parameter not
very relevant. Experiments are performed on a single
10-fold, with 100 epochs. Parameters of PersLay are
set to Im(20,(),20) for this experiment.
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Figure 8: Variation of test accuracy for MUTAG and COLLAB
dataset when varying HKS parameter t between 10−2 and
102 (log-10 scale).

Spectral alone PD alone PersLay
Extended Ordinary

REDDIT5K 49.7(±0.3) 55.0 52.5 55.6(±0.3)
REDDIT12K 39.7(±0.1) 44.2 40.1 47.7(±0.2)
COLLAB 67.8(±0.2) 71.6 69.2 76.4(±0.4)
IMDB-B 67.6(±0.6) 68.8 64.7 71.2(±0.7)
IMDB-M 44.5(±0.4) 48.2 42.0 48.8(±0.6)
COX2 * 78.2(±1.3) 81.5 79.0 80.9(±1.0)
DHFR * 69.5(±1.0) 78.2 71.8 80.3(±0.8)
MUTAG * 85.8(±1.3) 85.1 70.2 89.8(±0.9)
PROTEINS * 73.5(±0.3) 72.2 69.7 74.8(±0.3)
NCI1 * 65.3(±0.2) 72.3 68.9 73.5(±0.3)
NCI109 * 64.9(±0.2) 67.0 66.2 69.5(±0.3)

Table 7: Complementary report of experimental results.


