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Abstract

Persistence diagrams, the most common de-
scriptors of Topological Data Analysis, en-
code topological properties of data and have
already proved pivotal in many different ap-
plications of data science. However, since the
metric space of persistence diagrams is not
Hilbert, they end up being difficult inputs for
most Machine Learning techniques. To ad-
dress this concern, several vectorization meth-
ods have been put forward that embed persis-
tence diagrams into either finite-dimensional
Fuclidean space or implicit infinite dimen-
sional Hilbert space with kernels.

In this work, we focus on persistence diagrams
built on top of graphs. Relying on extended
persistence theory and the so-called heat ker-
nel signature, we show how graphs can be
encoded by (extended) persistence diagrams
in a provably stable way. We then propose a
general and versatile framework for learning
vectorizations of persistence diagrams, which
encompasses most of the vectorization tech-
niques used in the literature. We finally show-
case the experimental strength of our setup by
achieving competitive scores on classification
tasks on real-life graph datasets.

1 INTRODUCTION

Topological Data Analysis (TDA) is a field of data
science whose goal is to detect and encode topological
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features (such as connected components, loops, cavi-
ties...) that are present in datasets in order to improve
inference and prediction. Its main descriptor is the so-
called persistence diagram, which takes the form of a
set of points in the Euclidean plane R2, each point cor-
responding to a topological feature of the data, with its
coordinates encoding the feature size. This descriptor
has been successfully used in many different applica-
tions of data science, such as signal analysis (Perea &
Harer}, 2015]), material science (Buchet et all 2018]),
cellular data (Camaray, 2017]), or shape recognition (Li
et al.l [2014) to name a few. This wide range of ap-
plications is mainly due to the fact that persistence
diagrams encode information based on topology, and
as such this information is very often complementary
to the one retrieved by more classical descriptors.

However, the space of persistence diagrams heavily
lacks structure: different persistence diagrams may
have different number of points, and several basic op-
erations are not well-defined, such as addition and
scalar multiplication, which unfortunately dramatically
impedes their use in machine learning applications.
To handle this issue, a lot of attention has been de-
voted to wvectorizations of persistence diagrams through
the construction of either finite-dimensional embed-
dings (Adams et al., 2017 |Carriere et al, 2015} |Chazal
et al.l 2015; Kalisnik, [2018]), i.e., embeddings turning
persistence diagrams into vectors in Euclidean space
R?, or kernels (Bubenik, [2015; |Carriere et al., [2017;
Kusano et al. 2016; [Le & Yamada, 2018} Reining/
haus et al.l |2015), i.e., generalized scalar products that
implicitly turn persistence diagrams into elements of
infinite-dimensional Hilbert spaces.

Even though these methods improved the use of per-
sistence diagrams in machine learning tremendously,
several issues remain. For instance, most of these vec-
torizations only have a few trainable parameters, which
may prevent them from fitting well to specific appli-
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cations. As a consequence, it may be very difficult to
determine which vectorization is going to work best
for a given task. Furthermore, kernel methods (which
are generally efficient in practice) require to compute
and store the kernel evaluations for each pair of per-
sistence diagrams. Since all available kernels have a
complexity that is at least linear, and often quadratic
in the number of persistence diagram points for a sin-
gle matrix entry computation, kernel methods quickly
become very expensive in terms of running time and
memory usage on large sets or for large diagrams.

In this work, we show how to use neural networks for
handling persistence diagrams. Contrary to static vec-
torization methods proposed in the literature, we actu-
ally learn the vectorization with respect to the learning
task that is being solved. Moreover, our framework is
general enough so that most of the common vectoriza-
tions of the literature (Adams et al., 2017; Bubenik),
2015; |Chazal et all |2015) can be retrieved from our
method by specifying its parameters accordingly.

1.1  Owur contributions

The contribution of this paper is two-fold.

First, we introduce in Section [2] a new family of topo-
logical signatures on graphs: the extended persistence
diagrams built from the Heat Kernel Signatures (HKS)
of the graph. These signatures depend on a diffusion
parameter ¢ > 0. Although HKS are well-known sig-
natures, they have never been used in the context of
persistent homology to encode topological information
for graphs. We prove that the resulting diagrams are
stable with respect to both the input graph and the
parameter t. The use of extended persistence, by op-
position to the commonly used ordinary persistence, is
introduced in order to handle “essential” components,
see Section below. To our knowledge, it is the
first use of extended persistence in a machine learning
context. We also experimentally showcase its strength
over ordinary persistence on several applications.

Second, building on the recent introduction of Deep
Sets from (Zaheer et all [2017), we apply and extend
that framework for persistence diagrams, implementing
PERSLAY: a simple, highly versatile, automatically dif-
ferentiable layer for neural network architectures that
can process topological information encoded in persis-
tence diagrams computed from all sorts of datasets.
Our framework encompasses most of the common vec-
torizations that exist in the literature, and we give a
necessary and sufficient condition for the learned vec-
torization to be continuous, improving on the analysis
of (Hofer et al.l [2019). Using a large-scale dataset com-
ing from dynamical systems which is commonly used
in the TDA literature, we give in Section [3.2]a proof-of-

concept of the scalability and efficiency of this neural
network approach over standard methods in TDA. The
implementation of PERSLAY is publicly availableﬂ as a
plug-and-play Python package based on tensorflow,
as well as a module of the Gudhiﬂ library.

We finally combine these two contributions in Section
by performing real-graph classification application with
benchmark datasets coming various fields of science,
such as biology, chemistry and social sciences.

1.2 Related work

Various techniques have been proposed to encode the
topological information that is contained in the struc-
ture of a given graph, see for instance (Archambault
et all 2007; |Li et al.| [2012; [Ferrara & Fiumaral 2012)).
In this work, we focus on topological features com-
puted with persistent homology (see Sectionbelow).
This requires to define a real-valued function f on the
nodes of the graph. A first simple choice—made in
(Hofer et all [2017)—is to map each node to its de-
gree. In another recent work (Zhao & Wang), 2019)),
authors proposed to use the Jaccard index and the
Ricci curvature. In (Tran et all 2018), authors adopt
a slightly different approach: given a graph with N
nodes indexed by {1... N} and an integer parameter
7, they compute an N x N matrix (p-(i|j)):; where
p-(i]7) is the probability that a random walk starting
at node j ends at node ¢ after 7 steps. This matrix
can be thought of as a finite metric space, i.e., a set
of N points embedded in RY, on which topological
descriptors can also be computed (Chazal et al., [2014).
Here, 7 acts as a scale parameter: small values of 7
will encode local information while large values will
catch large-scale features. Our approach, presented in
Section [2] shares the same scale-parametric idea, with
the notable difference that we compute our topological
descriptors on the graphs directly.

The first approach to feed a neural network architec-
ture with a persistence diagram was presented in (Hofer
et al.l 2017)). It amounts to evaluating the points of the
persistence diagram against one (or more) Gaussian
distributions with parameters (i, o) that are learned
during the training process (see Section [3| for more
details). Such a transformation is oblivious to any
ordering of the diagram points, which is a suitable
property, and is a particular case of permutation in-
variant transformations. These general transformations
are studied in (Zaheer et al., [2017), and used to define
neural networks on sets. These networks are referred
to as Deep Sets. In particular, the authors in (Zaheer
et al.l [2017)) observed that any permutation invariant

"https://github.com/MathieuCarriere/perslay
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Figure 1: Illustration of sublevel and superlevel graphs. (a) Input graph (V, E) along with the values of a function
f:V — R (blue). (b,c,d) Sublevel graphs for o = 1,2, 3 respectively. (e, f, g) Superlevel graphs for o = 3,2, 1 respectively.

function L defined on point clouds supported on RP
with exactly n points can be written of the form:

Lz ...zn})=p (Z ¢($Z)> ) (1)
i=1

for some ¢ : R? — RY and p : R? — R?. Obviously,
the converse is true: any function defined by isa
permutation invariant function. Hofer et al. make use
of this idea in (Hofer et al. 2019), where they suggest
three possible functions ¢ : R? — R, which roughly cor-
respond to Gaussian, spike and cone functions centered
on the diagram points. Our framework builds on the
same idea, but substantially generalize theirs, as we
are able to generate many more possible vectorizations
and ways to combine them (for instance by using a
maximum instead of a sum in Equation . We deepen
the analysis by observing how common vectorizations
of the TDA literature can be obtained again as specific
instances of our architecture (Section . Moreover, we
allow for more general weight functions that provide
additional interpretability, as shown in Supplementary
Material, Section [C]

1.3 Background on ordinary persistence

In this section, we briefly recall the basics of ordi-
nary persistence theory. We refer the interested reader
to (Cohen-Steiner et al., 2009; |[Edelsbrunner & Harer,
2010; |Oudot,, [2015) for a thorough description.

Let X be a topological space, and f: X — R be a
real-valued continuous function. The a-sublevel set
of X is then defined as: X, = {z € X : f(z) < a}.
Making « increase from —oo to 400 gives an increasing
sequence of sublevel sets, called the filtration induced
by f. It starts with the empty set and ends with the
whole space X (see (b—d) in Figure [l|for an illustration
on a graph). Ordinary persistence keeps track of the
times of appearance and disappearance of topological
features (connected components, loops, cavities, etc.)
in this sequence. For instance, one can store the value
ayp, called the birth time, for which a new connected
component appears in X,,. This connected component
eventually gets merged with another one for some value

ag > ap, which is stored as well and called the death
time. Moreover, one says that the component persists
on the corresponding interval [ap, ag]. Similarly, we
save the [ap, ag] values of each loop, cavity, etc. that
appears in a specific sublevel set X,, and disappears
(get “filled”) in X,,. This family of intervals is called
the barcode, or persistence diagram, of (X, f), and can
be represented as a multiset of points (i.e., point cloud
where points are counted with multiplicity) supported
on R? with coordinates {(ay, aq)}.

The space of persistence diagrams can be equipped
with a parametrized metric ds, 1 < s < oo, whose
proper definition is not required in this work and is
given in Supplementary Material, Appendix [A] for the
sake of completeness. In the particular case s = oo,
this metric will be refered to as the bottleneck distance
between persistence diagrams.

2 EXTENDED PERSISTENCE
DIAGRAMS

2.1 Extended persistence

In general ordinary persistence does not fully encode
the topology of X. For instance, consider a graph
G = (V, E), with vertices V' and (non-oriented) edges
E. Let f: V — R be a function defined on its ver-
tices, and consider the sublevel graphs G, = (Vu, Eq)
where « € R, V, = {v € V : f(v) < a} , and
E, = {(vi,v2) € E : v1,v9 € V,,}, see (b —d) in
Figure In this sequence (G, )q, the loops persist
forever since they never disappear from the sequence of
sublevel graphs (they never get “filled”), and the same
applies for whole connected components of G. More-
over, branches pointing upwards (with respect to the
orientation given by f, see Figure [2)) are missed (while
those pointing downward are detected), since they do
not create connected components when they appear
in the sublevel graphs, making ordinary persistence
unable to detect them.

To handle this issue, extended persistence refines the
analysis by also looking at the so-called superlevel set
X*={zr € X : f(z) > a}. Similarly to ordinary
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Figure 2: Extended persistence diagram computed on a graph: topological features of the graph are detected in the
sequence of sublevel and superlevel graphs shown on the left of the figure. The corresponding intervals are displayed under
the sequence: the black interval represents the connected component of the graph, the red one represents its downward
branch, the blue one represents its upward branch, and the green one represents its loop. The extended persistence diagram

given by the intervals is shown on the right.

persistence on sublevel sets, making a decrease from
+00 to —oo produces a sequence of increasing subsets,
for which structural changes can be recorded.

Although extended persistence can be defined for gen-
eral metric spaces (see the references given above), we
restrict ourselves to the case where X = G is a graph.
The sequence of increasing superlevel graphs G¢ is
illustrated in Figure |1| (e — g). In particular, death
times can be defined for loops and whole connected
components by picking the superlevel graphs for which
the feature appears again, and using the corresponding
« value as the death time for these features. In this
case, branches pointing upwards can be detected in this
sequence of superlevel graphs, in the exact same way
that downwards branches were in the sublevel graphs.
See Figure 2] for an illustration.

Finally, the family of intervals of the form [ap, ag] is
turned into a multiset of points in the Euclidean plane
R? by using the interval endpoints as coordinates. This
multiset is called the extended persistence diagram of
f and is denoted by Dg(G, f) C R2.

Since graphs have four types of topological features
(see Figure , namely upwards branches, downwards
branches, loops and connected components, the corre-
sponding points in extended persistence diagrams can
be of four different types. These types are denoted as
Ordy, Rely, Exta' and Ext; for downwards branches,
upwards branches, connected components and loops
respectively.

While it encodes more information than ordinary per-
sistence, extended persistence ensures that points have
finite coordinates. In comparison, methods relying on
ordinary persistence have to design specific tools to
handle points with infinite coordinates (Hofer et al.l
2017}, 2019)), or simply ignore them (Carriere et al.l
2017)), losing information in the process. Therefore
extended persistence allows the use of generic architec-
tures regardless of the homology dimension. Empirical
performances show substantial improvement over using
ordinary persistence only (see Supplementary Material,

Table . In practice, computing extended persistence
diagrams can be efficiently done with the C++/Python
Gudhi library (The GUDHI Project, 2015). Persistence
diagrams are usually compared with the so-called bot-
tleneck distance dg—whose proper definition is not
required for this work and is recalled in Supplemen-
tary Material, Section [A] However, the resulting metric
space is not Hilbert and as such, incorporating dia-
grams in a learning pipeline requires to design specific
tools, which we do in Section

We recall that extended persistence diagrams can be
computed only after having defined a real-valued func-
tion on the nodes of the graphs. In the next section,
we define a family of such functions from the so-called
Heat Kernel Signatures (HKS) for graphs, and show
that these signatures enjoy stability properties. More-
over, Section [] will further demonstrate that they lead
to competitive results for graph classification.

2.2 Heat kernel signatures

HKS is an example of spectral family of signatures,
that is, functions derived from the spectral decompo-
sition of graph Laplacians, which provide informative
features for graph analysis. We start this section with
a few basic definitions. The adjacency matrix A of
a graph G with vertex set V' = {vy,...,v,} is the
matrix A := (1, ,)er)ij- The degree matrix D is
the diagonal matrix defined by D;; = Zj A; ;. The
normalized graph Laplacian L,, = L,,(G) is the linear
operator acting on the space of functions defined on
the vertices of (G, and is represented by the matrix
Ly=1-— D~3AD~%. Tt admits an orthonormal basis
of eigenfunctions ¥ = {4, ...,1¢,} and its eigenvalues
satisfy 0 < A1 < --- < A, < 2. As the orthonormal
eigenbasis W is not uniquely defined, the eigenfunctions
1; cannot be used as such to compare graphs. Instead
we consider the Heat Kernel Signatures (HKS):

Definition 2.1 ((Hu et al., 2014; Sun et al.l 2009)).
Given a graph G and t > 0, the Heat Kernel Sig-
nature with diffusion parameter t is the function
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hksg + defined on the vertices of G by hksgi: v —
Sy exp(—tAg) g (v)?.

The HKS have already been used as signatures to ad-
dress graph matching problems (Hu et al., 2014} or to
define spectral descriptors to compare graphs (Tsitsulin
et al. [2018)). These signatures rely on the distributions
of values taken by the HKS but not on their global
topological structures, which are encoded in their ex-
tended persistence diagrams. For the sake of concision,
we denote by Dg(G,t) the extended persistence dia-
gram obtained from a graph G using the filtration
induced by the HKS with diffusion parameter ¢, that
is Dg(G, hksg,t). The following theorem shows these
diagrams to be stable with respect to the bottleneck
distance dp between persistence diagrams. The proof
can be found in Supplementary Material, Section [A]

Theorem 2.2. Stability w.r.t. graph perturba-
tions. Lett > 0 and let Ly, be the Laplacian matrix of
a graph G with n vertices. Let G’ be another graph with
n vertices and Laplacian matriz Ly, = Ly, + W . Then
there exists a constant C(G,t) > 0 only depending on
t and the spectrum of L., such that, for small enough
IW ||, where || - ||F denotes the Frobenius norm:

dp(Dg(G, 1), Dg(G, 1)) < C(G, 1) [[W]lr.  (2)

On the influence of diffusion parameter ¢t.
Building an extended persistence diagram on top of a
graph G with the Heat Kernel Signatures requires to
pick a specific value of t. In particular, understanding
the influence and thus the choice of the diffusion pa-
rameter ¢ is an important question for statistical and
learning applications. First, we state that the map
t — Dg(G,t) is Lipschitz-continuous. The proof is
found in Supplementary Material, Section [A]

Theorem 2.3. Stability w.r.t. parameter ¢t. Let
G be a graph. The map t — Dg(G,t) is 2-Lipschitz
continuous, that is for t,t' € R,

dB (Dg(G7 t)v Dg(G7 tl)) < 2“ - t/| (3)

It follows from Theorem [2.3] that persistence diagrams
are robust to the choice of t. An empirical illustration
is shown in the supplementary material, Figures [7] and
le)

3 NEURAL NETWORK LEARNING
WITH PERSLAY

In this section, we introduce PERSLAY: a general and
versatile neural network layer for learning persistence
diagram vectorizations.

3.1 PersLay

In order to define a layer for persistence diagrams,
we modify the Deep Set architecture (Zaheer et al.
2017) by defining and implementing a series of new
permutation invariant layers, so as to be able to recover
and generalize standard vectorization methods used in
Topological Data Analysis. To that end we define our
generic neural network layer for persistence diagrams,
that we call PERSLAY, through the following equation:

PERSLAY(Dg) := op {w(p) - #(p)}pene), (4)

where op is any permutation invariant operation (such
as minimum, maximum, sum, kth largest value...),
w : R? — R is a weight function for the persistence
diagram points, and ¢ : R? — RY is a representation
function that we call point transformation, mapping
each point (ay, ag) of a persistence diagram to a vector.

In practice, w and ¢ are of the form wy,, ¢g, Where
the gradients of 6; — wp, and 02 — ¢y, are known
and implemented so that back-propagation can be per-
formed, and the parameters 61,65 can be optimized
during the training process. We emphasize that any
neural network architecture p can be composed with
PERSLAY to generate a neural network architecture for
persistence diagrams. Let us now introduce three point
transformation functions that we use and implement
for parameter ¢ in Equation .

e The triangle point transformation ¢n : R? —
R, p = [Ap(t1), Ap(ta), ..., Ap(tq)]T where the tri-
angle function A, associated to a point p = (z,y) €
R? is A,: t — max{0,y — |t — z|}, with ¢ € N and
t17...7tq eR.

e The Gaussian point transformation ¢r : R% —
R%p — [Ty(t1),Tplta),. .., Tp(ty)]", where the
Gaussian function I', associated to a point p =
(z,y) € R? is Ty,: t — exp (—|lp —t[|3/(20%)) for
agiven o >0, g € Nand ty,...,t, € R%

o The line point transformation ¢r: R? — R, p —
[LA1 (), La,(p); -+, La, (p)]T, where the line func-
tion L associated to a line A with direction vector
ea € R? and bias bp € Ris La : p = (p,ea) + ba,
with ¢ € Nand Aq,..., A, are ¢ lines in the plane.

Formulation is very general: despite its simplicity,
it allows to remarkably encode most of classical persis-
tence diagram vectorizations with a very small set of
point transformation functions ¢, allowing to consider
the choice of ¢ as a hyperparameter of sort. Let us
show how it connects to most of the popular vectoriza-
tions and kernel methods for persistence diagrams in
the literature.
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Dataset PSS-K PWG-K SW-K PF-K PERSLAY
ORBITSK | 72.38(£2.4) 76.63(£0.7) 83.6(£0.9) 85.9(+0.8) || 87.7(+£1.0)
ORBIT100K — — — — 89.2(+0.3)

Table 1: Performance table. PSS-K, PWG-K, SW-K, PF-K stand for Persistence Scale Space Kernel (Reininghaus et al.
2015|), Persistence Weighted Gaussian Kernel (Kusano et al., 2016)), Sliced Wasserstein Kernel (Carriére et al., [2017) and
Persistence Fisher Kernel (Le & Yamadal |2018]) respectively. We report the scores given in (Le & Yamadal 2018]) for
competitors on ORBITSK, and the one we obtained using PERSLAY for both the ORBIT5K and ORBIT100K datasets.

e Using: ¢ = ¢ with samples t1,...,%; € R, op = kth
largest value, w = 1 (a constant weight function),
amounts to evaluating the kth persistence land-
scape (Bubenik, 2015) on ¢1,...,t; € R.

o Using ¢ = ¢ with samples ¢q,...,%, € R, op = sum,
arbitrary weight function w, amounts to evaluating
the persistence silhouette weighted by w (Chazal
et all [2015) on t1,...,t; € R.

e Using ¢ = ¢r with samples t1,...,t, € R? op =
sum, arbitrary weight function w, amounts to evalu-
ating the persistence surface weighted by w (Adams
et all [2017) on ¢q,...,t, € R2. Moreover, character-
izing points of persistence diagrams with Gaussian
functions is also the approach advocated in several
kernel methods for persistence diagrams (Kusano
et al.| 2016} |Le & Yamadal 2018; Reininghaus et al.|
2015)).

e Using ¢ = ¢ where I is a modification of the Gaus-
sian point transformation defined with: fp =1TI; for
any p = (z,y) € R?, where p = p if y < v for some
v > 0, and (:U,I/+log (%)) otherwise, op = sum,
weight function w = 1, is the approach presented
in (Hofer et al.| [2017).

e Using ¢ = ¢, with lines Aq,...,A, € R? op = kth
largest value, weight function w = 1, is similar to the
approach advocated in (Carriere et al., 2017), where
the sorted projections of the points onto the lines are
then compared with the ||-||; norm and exponentiated
to build the so-called Sliced Wasserstein kernel for
persistence diagrams.

Stability of PersLay. The question of the continuity
and stability of persistence diagram vectorizations is
of importance for TDA practitioners. In (Hofer et al.)
2019, Remark 8), authors observed that the operation
defined in —with op=sum—is not continuous in gen-
eral (with respect to the common persistence diagram
metrics). Actually, (Divol & Lacombel 2019} Prop. 5.1)
showed that for all s > 1 the map (Dg+— 3 p, ¢(p))
is continuous with respect to the metric dy if and only
if ¢ is of the form ¢(p) = ¢ (p)llp — A[[*, where ||p— Al
denotes the distance from a point p € R? to the diag-
onal A = {(z,z), x € R} and ¢ is a continuous and
bounded function. Furthermore, when s = 1 and ¢ is
1-Lipschitz continuous, one can show that the map is

actually stable ((Hofer et al. [2019, Thm. 12), (Divol
& Lacombe, 2019, Prop. 5.2)), in the following sense:

> o) - D @)

pE€Dg; p’€Dg,

< di(Dg;,Dgy).

In particular, this means that requiring continuity for
the learned vectorization, as done in (Hofer et al.,[2019)),
implies constraining the weight function to take small
values for points close to the diagonal. However, in
general there is no specific reason to consider that
points close to the diagonal are less important than
others, given a learning task.

3.2 A proof of concept: classification on
large scale dynamical system dataset

Our first application is on a synthetic dataset used as a
benchmark in Topological Data Analysis (Adams et al.|
2017} |Carriere et al., 2017} |[Le & Yamadal [2018). It
consists in sequences of points generated by different
dynamical systems, see (Hertzsch et al. 2007). Given
some initial position (zo,yo) € [0,1]* and a parame-
ter r > 0, we generate a point cloud (2., Yn)n=1,... N
following:

mod 1

Tog1 = Zn + 7Yn(l — yn) (5)
mod 1

Ynt1 = Yn +7Znp1(1 — Tny1)

The orbits of this dynamical system heavily depend
on parameter r. More precisely, for some values of r,
voids might form in these orbits (see Supplementary
Material, Figure {)), and as such, persistence diagrams
are likely to perform well at attempting to classify
orbits with respect to the value of r generating them.
As in previous works (Adams et al.; 2017 |Carriere
et al., |2017; |[Le & Yamadal |2018), we use the five
different parameters r = 2.5,3.5,4.0,4.1 and 4.3 to
simulate the different classes of orbits, with random
initialization of (zg, yo) and N = 1,000 points in each
simulated orbit. These point clouds are then turned
into persistence diagrams using a standard geometric
filtration (Chazal et al.,2014)), called the AlphaComplex
ﬁltratiorﬁ in dimensions 0 and 1. We generate two
datasets: The first is ORBIT5K, where for each value of

3http://gudhi.gforge.inria.fr/python/latest/
alpha_complex_ref.html
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r, we generate 1,000 orbits, ending up with a dataset
of 5,000 point clouds. This dataset is the same as
the one used in (Le & Yamada) 2018). The second
is ORBIT100K, which contains 20,000 orbits per class,
resulting in a dataset of 100,000 point clouds—a scale
that kernel methods cannot handle. This dataset aims
to show the edge of our neural-network based approach
over kernels methods when dealing with very large
datasets of large diagrams, since all the previous works
dealing with this data (Adams et all [2017; |Carriere
et al, 2017; |Le & Yamadal [2018) use kernel methods.

Results are displayed in Table [l Not only do we im-
prove on previous results for ORBIT5K, we also show
with ORBIT100K that classification accuracy is further
increased as more observations are made available. For
consistency we use the same accuracy metric as (Le
& Yamaday, [2018), that is, we split observations in
70%-30% training-test sets and report the average test
accuracy over 100 runs. The parameters used are sum-
marized in Supplementary Material, Section [C}

4 APPLICATION TO GRAPH
CLASSIFICATION

In order to truly showcase the contribution of PERSLAY,
we use a very simple network architecture, namely a
two-layer network. The first layer is PERSLAY, which
processes persistence diagrams. The resulting vector
is normalized and fed to the second and final layer, a
fully-connected layer whose output is used for predic-
tions. See Figure [3|for an illustration. We emphasize
that this simplistic two-layer architecture is designed so
as to produce knowledge and understanding (see Sup-
plementary Material, Section , rather than achieving
the best possible performances.

Choice of hyperparameters. In our experiments,
we set w : p — w; j1,c0, ;, where C; ; denote the (7, j)-
th cell in a N x N grid discretization of the unit square,
and all (w; ;)1< j<n are trainable parameters. N is
typically set to 10 or 20. For aggregation operator op we
use the sum. Further details are given in Supplementary
Material, see Table 5| for reporting of the chosen hyper-
parameters and Table [6] for a study of the influence of
the grid size or the choice of ¢.

Point transformations ¢ are chosen among the three
choices {¢x, ¢r, ¢} introduced in Section Empir-
ically no representation is uniformly better than the
others. The choice of the best point transformation
¢ for a given task could also be selected through a
cross-validation scheme, or by learning a linear interpo-
lation between these point transformations: by setting
¢ = aprpp + aror + arpor, where ap, ar, a, are train-
able non-negative weights that sum to 1. Thorough
exploration of these alternatives is left for future work.

As mentioned in Section [2] the diagrams we produce
are stable with respect to the choice of the HKS dif-
fusion parameter ¢ (Thm. and [2.3). As such, we
generally use ¢ = 0.1 and ¢ = 10 in our experiments.
We also refer to Supplementary Material where Fig-
ure [7] illustrates the evolution of a persistence diagram
w.r.t. t and Figure [§| provides the classification accu-
racy through varying values of ¢. In practice, it is thus
sufficient to sample few values of ¢ using a log-scale, as
suggested for example in (Sun et al., 2009} §5).

A subsequent natural question is: given a learning task,
can t itself be optimized? The question of optimizing
over a family of filtrations induced by parametric func-
tions {fo }oco the map 6 — Dg(G, fy) has been studied
both theoretically and practically in very recent works
(Briel-Gabrielsson et al., [2019; [Leygonie et al., 2019)).
Hence, we also apply this approach for the filtrations
induced by the HKS, optimizing the parameter ¢ during
the learning process. Note that the running time of
the experiments is greatly increased since one has to
recompute all persistence diagrams for each epoch, that
is, each time t is updated. Moreover, we noticed after
preliminary numerical investigations (see Supplemen-
tary Material, Section [C]) that classification accuracies
were not improved by a large margin and remained
comparable with results obtained without optimizing
t, so we did not include this optimization step in our
results.

Table 5| gives a detailed summary report of the different
hyper-parameters chosen for each experiment.

Experimental settings. We evaluate our archi-
tecture on a series of different graph datasets com-
monly used as a baseline in graph classification prob-
lems. REDDITSK, REDDIT12K, COLLAB (Yanardag &
Vishwanathan| 2015, IMDB-B, IMDB-M (Tran et al.
2018|) are composed of social graphs. C0X2, DHFR,
MUTAG, PROTEINS, NCI1, NCI109 are graphs coming
from medical or biological frameworks (also from (Tran
et al.l[2018)). A quantitative summary of these datasets
is found in Supplementary Material, Table [4]

We compare performances with five other top graph
classification methods. Scale-variant topo (Tran et al.l
2018]|) leverages a kernel for ordinary persistence dia-
grams computed on point cloud used to encode the
graphs. RetGK (Zhang et al., 2018) is a kernel method
for graphs that leverages eventual attributes on the
graph vertices and edges. FGSD (Verma & Zhang)
2017) is a finite-dimensional graph embedding that
does not leverage attributes. Finally, GCNN (Xinyi &
Chen, [2019) and GIN (Xu et al., [2019) are two graph
neural network approaches that reach top-tier results.
One could also compare our results on the REDDIT
datasets to the ones of [Hofer et al.| (2017)), where au-
thors also use persistence diagrams to feed a network
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Figure 3: Network architecture illustrated in the case of
our graph classification experiments (Section . Each
graph is encoded as a set of persistence diagrams, then
processed by an independent instance of PERSLAY. Each
instance embeds diagrams in some vector space using two
functions w, ¢ that are optimized during training and a
fixed permutation-invariant operator op.

(using as first channel a particular case of PERSLAY,
see Section [3)), achieving 54.5% and 44.5% of accuracy
on REDDITSK and REDDIT12K respectively.

Topological features were extracted using the graph
signatures introduced in Section 2] We combine these
diagrams with more traditional graph features formed
by the eigenvalues of the normalized graph Laplacian
along with the deciles of the computed HKS (right-side
channel in Figure |3). The impact of the topological
features in this learning process is evaluated via an
ablation study, see Table [7| (Supplementary Material).

For each dataset, we perform 10 ten-fold evaluations
and report the average and best ten-fold results. For a
ten-fold evaluation, we split the data in 10 equally-sized
folds, and record the classification accuracy obtained
on the i-th fold (test) after training on the 9 remaining
others. Here, i is cycled from 1 to 10. The mean of
those 10 ten-fold experiments is naturally more robust
for evaluation purposes, and we report it in the col-
umn “PERSLAY - Mean”. This is consistent with the
evaluation procedure from (Zhang et al., [2018)). Si-
multaneously, we also report the best single 10-fold
accuracy obtained, reported in the column “PERSLAY
- Max”, which is comparable to the results reported by
all the other competitors.

In most cases, our approach is comparable with state-of-

Dataset SV RetGK*? FGSD?® GCNN7? GIN® PERSLAY
Mean Max
REDDITBK — 56.1 47.8 52.9 57.0 55.6  56.5
REDDIT12K — 48.7 — 46.6 — 47.7 49.1
COLLAB 81.0 80.0 79.6 80.1 76.4  78.0
IMDB-B 72.9 71.9 73.6 73.1 74.3 71.2 726
IMDB-M 50.3 47.7 52.4 50.3 52.1 48.8 522
COx2* 78.4 80.1 — — — 80.9  81.6
DHFR* 78.4 81.5 — — — 80.3  80.9
MUTAG* 88.3 90.3 92.1 86.7 89.0 89.8 915
PROTEINS* | 72.6 75.8 73.4 76.3 75.9 74.8 759
NCI1* 71.6 84.5 79.8 78.4 82.7 73.5  74.0
NCI109* 70.5 — 78.8 — — 69.5 70.1

Table 2: Classification accuracy over benchmark graph
datasets. Our results (PersLay, right hand side) are
recorded from ten runs of a 10-fold classification evalu-
ation (see Section |Z_| for details). “Mean” is consistent with
(Zhang et al., [2018)?, while “Max” should be compared to
(Tran et al) [2018)", (Verma & Zhang| [2017)%, (Xinyi &
Chenl, [2019)* and (Xu et al.|[2019)°, as it corresponds to
the mean accuracy over a single 10-fold. The * indicates
datasets that contain attributes (labels) on graph nodes and
symmetrically the methods that leverage such attributes
for classification purposes.

the-art results, despite using a very simple neural net-
work architecture. Interestingly, both topology-based
methods (SV and PERSLAY) have mediocre perfor-
mances on the NCI datasets, suggesting that topology
is not discriminative for these datasets. Additional
experimental results, including ablation studies and
variations of hyper-parameters (weight grid size N,
diffusion parameter t) are provided in Supplementary
Material, Section [C]

5 CONCLUSION

In this article, we introduced a new family of topological
signatures on graphs, that are both stable and well-
formed for learning purposes. In parallel we defined a
powerful and versatile neural network layer to process
persistence diagrams called PERSLAY, which general-
izes most of the techniques used to vectorize persistence
diagrams that can be found in the literature—while
optimizing them task-wise.

We showrcase the efficiency of our approach by achieving
state-of-the-art results on synthetic orbit classification
coming from dynamical systems and being competitive
on several graph classification problems from real-life
data, while working at larger scales than kernel meth-
ods developed for persistence diagrams and remaining
simpler than most of its neural network competitors.
We believe that PERSLAY has the potential to become
a central tool to incorporate topological descriptors in
a wide variety of complex machine learning tasks based
on neural networks. Our code is freely available publicly
at https://github.com/MathieuCarriere/perslay
and is part of the GudhiE| library.

‘http://gudhi.gforge.inria.fr/python/latest/
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