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A Comparison of Runtimes

Recall that p denotes the number of nodes, d denotes the maximal degree, x denotes the minimum normalized
edge strength, and m denotes the number of samples. The runtimes of some existing algorithms in the literature
for Gaussian graphical model selection (see Section for an overview) are outlined as follows:

e The only algorithms with assumption-free sample complexity bounds depending only on (p, d, k) have a high
runtime of p@@ namely, O(p***!) in [Misra et al., 2017], and O(p?*') in [Kelner et al. 2019, Thm. 11].

e A greedy method in [Kelner et al. 2019, Thm. 7] has runtime O((dlog %)3mp2). The sample complexity
for this algorithm is O(#‘l2 . log% -log n), but this result is restricted to attractive graphical models.

e To our knowledge, ¢1-based methods [Cai et al.| 2011} 2016, |d’Aspremont et al., 2008, [Meinshausen et al.)
2006, [Ravikumar et al. 2011, Wang et al.l |2016, [Yuan and Lin, [2007] such as Graphical Lasso and CLIME
do not have precise time complexities stated, perhaps because this depends strongly on the optimization
algorithm used. We expect that a general-purpose solver would incur O(p?) time, and we note that |[Kelner
et al., [2019, Table 2] indeed suggests that these approaches are slower.

e In practice, we expect BigQUIC [Hsieh et al.l [2013] to be one of the most competitive algorithms in terms
of runtime, but no sample complexity bounds were given for this algorithm.

e Under the local separation condition and a walk-summability assumption, the algorithm of [Anandkumar

et al.,|2012] yields a runtime of O(p**7), where n > 0 is an integer specifying the local separation condition.

Hence, we see that our runtime of O(mp?) is competitive among the existing works — it is faster than other
algorithms for which sample complexity bounds have been established.

B Proof of Lemma 2| (Properties of Multivariate Gaussians)

We restate the lemma for ease of reference.

Lemma 2. Given a zero-mean multivariate Gaussian X = (Xq,...,X,) with inverse covariance matriz © =
[0:;], and given T independent samples (X', ..., XT) with the same distribution as X, we have the following:

1. For any i € [p], we have X; =n; + 32, (- ZL’L )X, where n; is a Gaussian random variable with variance
L " independent of all X forj #i.

0i;’

2. BIXu| X3 =225 (;fzj)Xj =w'- X;, where w' = (Tg(jzj)j#

eR™ (withn=p—1).

, ._ 2pT ~t =\ L 1
3. Let A and vnmax be defined as in and (0)), set B := \/2log %=, and define (Z', ") := m(xt,yt),
where (z*,y") = (X1, X}) for an arbitrary fived coordinate i. Then, with probability at least 1 — 4§, §* and all

entries of Zt (t=1,...,T) have absolute value at most \/%H
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Proof. The first claim is standard in the literature (e.g., see [Zhou et al,, 2011, Eq. (4)]), and the second claim
follows directly from the first.

For the third claim, let N be a Gaussian random variable with mean 0 and variance 1. We make use of the
standard (Chernoff) tail bound

2

P(IN| > z) < 2e7% /2, (41)

By scaling the standard Gaussian distribution, recalling the definition of 1y, in @, and using B = 4/2log %,

it follows that
20T
P(la!] > \/FmB) < P (|N| > /2108 {;) (12)

< 2exp (— log 2§T> (43)
)

< —

<2 (49)

and hence

1 )
P |zf| > < —. 45
(’“’ m) ST (45)

The same high probability bound holds similarly for 4*. By taking the union bound over these p events, and also
over t = 1,...,T, we obtain the desired result. O

C Establishing Lemma 4] (Martingale Concentration Bound)

Here we provide additional details on attaining Lemma [4] from a more general result in [van de Geer} |1995].
While the latter concerns continuous-time martingales, we first state some standard definitions for discrete-time
martingales. Throughout the appendix, we distinguish between discrete time and continuous time by using
notation such as M;, F; for the former, and Mt, F,; for the latter.

Definition 10. Given a discrete-time martingale {M;}1=01,... with respect to a filtration {F;}i=01,.., we define
the following:

1. The compensator of {M;} is defined to be

Vi =Y E[M; — Mj_y | Fja]. (46)

j=1

2. A discrete-time process {Wi}i=1,2.... defined on the same probability space as {M;} is said to be predictable
if Wy is measurable with respect to Fi_1.

3. We say that {M;} is locally square integrable if there exists a sequence of stopping times {11}, with
) — 00 such that E[M2 ] < oo for all k.

In the continuous-time setup of [van de Geer, [1995, Lemma 2.2], the preceding definitions are replaced by
generalized notions, e.g., see [Liptser and Shiryayevl [1989]. Note that the notion of a compensator in the
continuous-time setting is much more technical, in contrast with the explicit formula for discrete time.

The setup of [van de Geerl 1995] is as follows: Let {M;}+>o be a locally square integrable continuous-time
martingale with respect to to a filtration {F;};>0 satisfying right-continuity (F; = Nss¢F,) and completeness
(Fo includes all sets of null probability). For each ¢ > 0, the martingale jump is defined as AM, = M, — Z\Zt,,
where ¢_ represents an infinitesimal time instant prior to ¢. For each integer m > 2, a higher-order variation
process {3, |AM,|™} is considered, and its compensator is denoted by V;, ;. Then, we have the following.
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Lemma 11. [van de Geer} 1995, Lemma 2.2] Under the preceding setup for continuous-time martingales, suppose
that for allt > 0 and some 0 < K < oo, it holds that

. ! _
Vm,t S %K’m72Rta m = 27 3a ey (47)

for some predictable process R;. Then, for any a,b > 0, we have

3 B 2
P(M; > a and R; < b? for some t) < exp (261[?4—()2) : (48)

While Lemma [T] is stated for continuous-time martingales, we obtain the discrete-time version in Lemma [ by
considering the choice Mt = My, where {M; }1=0,1,... is the discrete-time martingale. Due to the floor operation,
the required right-continuity condition on the continuous-time martingale holds. Moreover, the definition of a
compensator in applied to the higher-order variation process with parameter m yields

t
Vi = Y _E[|AM;[™ | Fj_1] (49)
j=1

with AM; = M;—M,_1, in agreement with the statement of Lemma Finally, since we assumed that E[M?] < oo
for all ¢t in Lemma |4} the locally square integrable condition follows by choosing the trivial sequence of stopping
times, 7, = k.

D Proof of Lemma [5 (Concentration of ), 77)

Lemma [3 is restated as follows.

Lemma 5. ‘Z?:l Zi| =0 (\ /T log %) with probability at least 1 — 0.

Proof. Recall that E;_1[-] denotes expectation conditioned on the history up to index ¢ — 1. Using the notation of
Lemma fd} we let M; = 3_ ., Z7, which yields AM; = Z*. The definition of Z* in ensures that E;_1[Z'] =0,
so that M, is a martingale. In addition, we have

t

Vinge = Y Ej[|AM;™] = Y E; | 27", (50)

j=1 j=1

To use Lemma 4 we need to bound 22:1 E;_1[|Z7|™] for some apprqpriate choices of K and R; in ([12). The
conditional moments of |Z7| are the central conditional moments of Q7:

Ej[|Z7"] = Eja[|Q7 — By [Q7]]™] (51)
<Ej-a 2™ (1Q7]™ + 1By -1 [Q7]™)] (52)
< 2MHE; L [|Q7]™M, (53)

where follows from the definition of Z7 in (TF)), uses |a — b| < 2max{]al,|b|}, and follows from
Jensen’s inequality (JE[Q’]|™ < E[|@Q7|™]). Furthermore, we have that

E;—1[|Q7"] = E; [l -7 = §7) () —w/A) - &[] (54)
SEjal[w) - & = )PP PE A0 — /) -3 P, (55)

where uses the definition of @7 in , and follows from the Cauchy-Schwartz inequality. Both of
the averages in contain Gaussian random variables (with p’ fixed due to the conditioning); we proceed by
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establishing an upper bound on the variances. Since (#7,77) = —————(27,97), the definition of V. (see
By/Vmax(A+1)

@) implies that each coordinate has a variance of at most ( 5 \/ﬁf Then, using that >, p{ =1, we have

Var(A\p’ -3/ — /) < (A +1)? max  Var(z) (56)
el hii )
A+1
< o (57)
and similarly, using lef =1 and ||w|| = A (see Footnote ,
, , 4
Vi S —w/AN) ) < —m————. 58

Next, we use the standard fact that if N is a Gaussian random variable with mean 0 and variance o, then

E[N?] = 0 if p is odd (59)
~)oP(p—1)!!  if pis even.

It then follows from and 7 that

B 1[|Z7[™] < 27y (| - & — )P PE (| (0 — w/A) - @ PPV (60)
1/2
A+ 1 2m 4 2m
< gmtt 2m — W [ ———5 2m — 1)!! 1
o (5) o) )
m 4m
=2 HBTm(Qm*U” (62)
m 4m
=2 +1B4m(1~3-...-(2m—1)) (63)
m 4m
m! (16\™ % 210
=32 <B> B (66)
and summing over j = 1,...,t gives
t m—2 510
e m! (16 219
SEalzm<y (5) 5 (67)
J=1
Hence, using the notation of Lemma it suffices to set K = % and R; = %. Plugging everything in, we get
P Zi>a| <exp| ————— . (68)
; < 32a4r + 2logg>

Let a = 210, /T log %. Then, since B = 4/2log —QJET is always greater then 4/log %, we obtain
: / 1y ¢
J 10 - Z
P E Z > 2 Tlog(S §2. (69)

j=1

By replacing Z7 by —Z7 above, we get a symmetric lower bound on Y j Z7, as all the moments used above

remain the same. Applying the union bound, we get that \Zle 71| = O(, /T log %) with probability at least
1-46. O
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E Proof of Lemma (7| (Concentration of Empirical Risk)

Lemma [7l is restated as follows.

Lemma 7. For v >0, p € (0,1], and fized v € R™ satisfying |[v]l1 < A, there is some M = O((A + 1)%)
such that

| M
P Z(v al — 75)75(0) > <p, (32)

Jj=1

where {(a?,b7)}}L, are the normalized samples defined in Algomthm@ and E = E[Var[t/ | a]] E|

Proof. We first derive a simple equality:

El(v-a’ —b)’] =E[E[(v-a’ —¥)?|d]] (70)
=E[(E[v-a’ — ¥ |aj])2 + Var[t? | o] (71)
=E[(v-a’ —w-a’)?] + E[Var[t! | a’]] (72)
=¢e(v)+ &, (73)

where uses Var[Z] = E[Z?] — (E[Z])?, uses the second part of Lemma [2| and uses the definitions
of e(v) and E.

In the following, we recall Bernstein’s inequality.

Lemma 12. [Boucheron et al 2013 Corollary 2.11] Let Z1, ..., Z, be independent real-valued random variables,
and assume that there exist positive numbers ¥ and ¢ such that

ZE[(Zi)i] <9 (74)
ZIE[ ] < 79 172, (75)
where (z); = max{z,0}. Letting S =" | (Z; — E[Z;]), we have for allt >0 that

2
P(S > 1) <exp <2(19t—|—ct)> . (76)

We would like to use Bernstein’s inequality to bound the deviation of

1 L
7 2 (00 0 == c) 7

from its mean value 0. To do so, we need to find constants ¥ and ¢ as described in the statement of Bernstein’s
inequality above.

Recall that vy.x upper bounds the variance of any marginal variable in each unnormalized sample, and that
(a?,b7) are samples normalized by By/Vmax(A + 1) with B = |/2log 2= > 1. Hence, the entries of (a’, b) have

variance at most and since ||v]|; < A, this implies that v - a/ — b7 has variance at most A + 1.

peag
Using the expression for the moments of a Gaussian distribution (see (59))), it follows that
E[(v-a? — V)% <8(A+ 1), (78)

"This quantity is the same for all values of j.



Learning Gaussian Graphical Models via Multiplicative Weights

E[(v-a’ —b)?™] < (2m — DI+ 1)™ (79)
< 2Mml(A+1)™ (80)
_ %!(8(A+1)2)(2(A+1))m—2, (81)

where is established in the same way as . Since (v-a’/ —b7)? is a non-negative random variable, the non-
central moments bound the central moments from above. Hence, it suffices to let ¥ = 8(A+1)? and ¢ = 2(A + 1),
and we obtain from Bernstein’s inequality that

i_pi = — M
P Z( v-al —b) _—5(11)) >yM SeXp(2(8()\+1)2+2()\+1)7M)>' (82)

To simplify the notation, we let My be such that M = (A + 1) My, which yields

1 M j .2 _ _,VQM(%
P M;((v-a — V) —:—s(v)) > | <exp 6120 ) (83)

If vMy > 1, then the right hand 51de is less than or equal to exp ( VMO) Otherwise, if yMy < 1, then the right

). It follows that to have a deviation of v with probability at most p, it suffices

to set My = %ﬂ/p). Recalling that M = (A + 1) My, it follows that with M = 18(\ + 1)%, we attain the
desired target probability p. O

hand side is less than exp (

F Proof of Lemma (8| (Low Risk Implies an /., Bound)

Lemma [§]is restated as follows, and refers to the setup described in Section [4

Lemma 8. Under the preceding setup, if we have £(v) < €, then we also have ||v — W]|oo < V€Omax, Where Omax
s a uniform upper bound on the diagonal entries of ©.

Proof. Recall that e(v) = E[((v — w) - X;)?], where w = (;?T'j)j#
node ¢ under consideration, and X; = (X )j=i- To motivate the proof, note from Lemma [2] I that X; = n; +
> j2i(—0ij/0i:) X, where 7); is an N (0, o L) random variable independent of {X;};;, from which it follows that

Var(X;) > Var(n;) = 1/6;;. In the following, we apply similar ideas to (v — w) - X;.

is the neighborhood weight vector of the

Specifically, for an arbitrary index i* # i, we can lower bound the expected risk €(v) as follows:

E[(v ) - ;)7
= Var((v —w) - X3) (84)

Z(vj —w;)X; (85)

> Var((vse — wgs)n;+) (89)
*Var(n;-), (90)

= "Ui* — W;i*
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where follows since E[X;] = 0, follows from the first part of Lemma applied to node i*, and uses
! < Veei*i* < \/eemax-

the independence of ;- and X. Since Var(n-) = 5=— and £(v) < ¢, this gives |v;- — w;~
Then, since this holds for all * # ¢, we deduce that ||v — W||oo < V/€Omax, as desired. O

i*i*



