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Abstract

The CUR matrix decomposition is an impor-
tant tool for low-rank matrix approximation.
It approximates a data matrix though select-
ing a small number of columns and rows of
the matrix. Those CUR algorithms with gap-
dependent approximation bounds can obtain
high approximation quality for matrices with
good singular value spectrum decay, but they
have impractically high time complexities. In
this paper, we propose a novel CUR algorithm
based on truncated LU factorization with an
efficient variant of complete pivoting. Our
algorithm has gap-dependent approximation
bounds on both spectral and Frobenius norms
while maintaining high efficiency. Numerical
experiments demonstrate the effectiveness of
our algorithm and verify our theoretical guar-
antees.

1 Introduction

CUR matrix decomposition is a well known method
for low-rank approximation (Mahoney and Drineas,
2009; Drineas et al., 2008). It approximates the data
matrix A as the product of three matrices: A ≈ CUR,
where C and R are composed of sampled columns and
sampled rows of matrix A respectively. Compared
with other low-rank approximation methods such as
truncated Singular Value Decomposition (SVD), CUR
decomposition can better preserve the sparsity of the
input matrix and facilitate the interpretation of the
computed results. Because of these advantages, CUR
decomposition is more attractive than SVD in text
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mining, collaborative filtering, bioinformatics, image
and video processing (Drineas et al., 2008; Xu et al.,
2015; Wang and Zhang, 2012, 2013; Mahoney et al.,
2008; Mackey et al., 2011).

In recent years, many variants of the CUR decom-
position have been developed (Drineas et al., 2008;
Wang and Zhang, 2012, 2013; Boutsidis and Woodruff,
2017; Bien et al., 2010; Anderson et al., 2015; Drineas
et al., 2006; Wang et al., 2016; Song et al., 2019).
Many randomized CUR algorithms adopt random sam-
pling on columns and rows of data matrices. They
aim to achieve 1+ε relative error bounds on Frobe-
nius norm with a failure probability δ (Drineas et al.,
2008; Wang and Zhang, 2013; Boutsidis and Woodruff,
2017), i.e., ‖A−CUR‖2F ≤ (1+ε)‖A−Ak‖2F , where
k is the target rank of approximation. These bounds
are tight theoretically, but are less useful in practi-
cal applications because they require O(k/ε) columns
and rows. For example, Algorithm 3 of (Boutsidis and
Woodruff, 2017) requires to select 4k+4820k/ε columns
and rows, but only gets a success probability of 0.16. If
we choose k = 10 and ε = 0.5 (very common setting),
the number of selected columns and rows is close to
106. For real-world data sets, it is impractical to select
so many columns and rows. Anderson et al. (2015)
proposed a deterministic column selection method for
CUR decomposition with gap-dependent approxima-
tion bounds. These bounds allow their method only to
choose ` = k+O(1) columns and rows when the given
matrix has a rapidly decaying spectrum. However,
their algorithm is highly time-consuming and requires
O(`mn(m+n)) time, where ` is the number of selected
columns and rows.

A natural question now arises: can we develop an effi-
cient CUR algorithm which is as efficient as previous
randomized CUR algorithms while maintaining gap-
dependent approximation bounds? In this paper, we
address this question via presenting a novel CUR al-
gorithm, namely Spectrum-Revealing CUR (SRCUR)
decomposition. Our method borrows the idea from a
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classic numerical linear algebra method, i.e., pivoted
LU factorization (Trefethen and Bau III, 1997). Unlike
existing CUR algorithms which sample columns and
rows separately (Drineas et al., 2008; Wang and Zhang,
2013; Boutsidis and Woodruff, 2017; Anderson et al.,
2015), the pivoting procedure of LU factorization se-
lects columns and rows simultaneously and considers
the inter-connectivity of selected columns and rows.
However, the vanilla pivoting procedure is costly and
does not bound the relative error. To make use of the
advantages and bypass the disadvantages of pivoted
LU, we propose Fast Spectrum-Revealing LU (FSRLU)
factorization, which is efficient and has theoretical guar-
antees. Our SRCUR algorithm first adopts FSRLU to
select columns and rows and then computes the inter-
section matrix. The main contributions of this paper
are summarized as follows:

• We propose FSRLU algorithm which can efficiently
compute truncated LU factorization with complete
pivoting. We also analyze the stability and time
complexity of FSRLU.

• We propose SRCUR algorithm based on FSRLU.
We provide error analysis for SRCUR algorithm
in both spectral and Frobenius norms. The proofs
show that our method has gap dependency error
bounds with regard to the quadratic of the spec-
tral gap σk+1/σp+1. These error bounds indicate
that our method only needs to select ` = k+O(1)
columns and rows for data matrices with rapidly
decaying singular values.

• SRCUR is much faster than existing gap-
dependent CUR algorithms. The time complexity
of our method is O(nnz(A) log n)+Õ(`2(m+n)),
which is comparable to the state-of-the-art ran-
domized CUR algorithms.

• We validate our method with numerical experi-
ments on four real-world datasets, which demon-
strate that our algorithms are substantially faster
than existing CUR algorithms while maintaining
good performance.

The remainder of the paper is organized as follows. In
Section 2, we describe notation and preliminaries used
in this paper. In Section 3 we introduce related work.
Then we present our algorithms in Section 4 and show
theoretical analysis in Section 5. Experimental results
are given in Section 6. Conclusions and discussions are
provided in Section 7.

2 Notation and Preliminaries

We use Im to denote m × m identity matrix, and 0
to denote a zero vector or matrix of appropriate size.

For a vector x = (x1, . . . , xn)>, let ‖x‖2 =
√∑

i x
2
i

be the `2-norm of x. For a matrix A = [aij ] ∈ Rm×n,
let ‖A‖2 denote the spectral norm and ‖A‖F denote
the Frobenius norm. We use nnz(A) to denote the
number of nonzero elements of A. Let det(A) be the
determinant of A and adj(A) be the adjugate matrix
of A. We use Õ to hide logarithmic factors.

Let ρ be the rank of matrix A. The reduced SVD of
A is defined as

A = UΣV> =

ρ∑
i=1

σiuiv
>
i ,

where σi are positive singular values in the descend-
ing order. That is, σi(A) is the i-th largest singular

value of A. Let Ak =
∑k
i=1 σiuiv

>
i denote the best

rank-k approximation of A and A† = VΣ−1U> de-
note the Moore-Penrose pseudo-inverse of A. κ(A) =
σmax/σmin to denote the condition number of matrix
A. Here σmax is the maximum singular value and σmin

is the minimum non-zero singular value of A.of A when
A is square.

We use the Matlab colon notation for a block ma-
trix. Let Ai,: be the i-th row of A and A:,j

be the j-th column of A. We use Ai:j,: to de-

note
[
A>i,:,A

>
i+1,:, . . . ,A

>
j,:

]>
and A:,p:q to denote

[A:,p,A:,p+1, . . . ,A:,q]. Let Ai:j,p:q denote the block

matrix

aip . . . aiq
...

. . .
...

ajp . . . ajq

 .

Johnson-Lindenstrauss (JL) transform (Johnson and
Lindenstrauss, 1984) is a powerful tool for dimension-
ality reduction. It has been proved to preserve the
vector norm within an ε-error ball. We present the
Johnson-Lindenstrauss Lemma as follows:

Lemma 1. For any vector x ∈ Rd, 0 < ε, δ < 1/2,
there exists a JL transform matrix S ∈ Rp×d, with
p = Θ(log(1/δ)ε−2), for which satisfies

(1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22,

with probability 1− δ.

3 Related Work

In Section 3.1, we review some representative methods
of CUR matrix decomposition. In Section 3.2, we
introduce truncated LU factorization with complete
pivoting.

3.1 CUR Matrix Decomposition

CUR decomposition approximates the data matrix with
actual columns and rows. Given a matrix A ∈ Rm×n,
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CUR decomposition selects a subset of columns C ∈
Rm×c and a subset of rows R ∈ Rr×n and computes an
intersection matrix U = C†AR†. Then, Â = CUR is
a low-rank approximation of matrix A. Some works
try to compute an approximation Âk with exact rank
k (Boutsidis and Woodruff, 2017; Anderson et al., 2015).
The rank-constrained approximation is more compara-
ble to the truncated SVD decomposition.

The essential of CUR decomposition is how to select
columns and rows effectively and efficiently. The tra-
ditional approaches select columns according to de-
terministic pivoting rules (Stewart, 1999; Chan, 1987;
Gu and Eisenstat, 1996; Berry et al., 2005), but these
methods do not have good approximation errors. Re-
cently, randomized algorithms for CUR decomposition
aims to obtain 1 + ε relative error bounds in Frobenius
norm (Mahoney and Drineas, 2009; Drineas et al., 2008;
Wang and Zhang, 2013; Boutsidis and Woodruff, 2017;
Mahoney et al., 2011):

‖A−CUR‖2F ≤ (1 + ε)‖A−Ak‖2F .

Drineas et al. (2008) randomly sampled columns and
rows according to their leverage scores. They achieve
1 + ε relative error bounds in Frobenius norm. Wang
and Zhang (2013) proposed an adaptive CUR algorithm
with better theoretical results, and their results were
further improved by (Boutsidis and Woodruff, 2017;
Song et al., 2019). However, these methods have to
choose O(k/ε) rows and columns to achieve the 1+ε
error bound, which is usually impractical for real-world
data set.

Anderson et al. (2015) proposed unweighted column se-
lection for CUR decomposition which provides spectral
gap error bounds as the following form:

‖A−CUR‖2ξ ≤ (1 +O(ω2))‖A−CUR‖2ξ ,

for ξ ∈ {2, F}. Here ω is a number that relies on
the rate of spectrum decay of A and the number of
oversampling l−k. Their method only needs to choose
` = k+O(1) columns and rows to obtain a good rank-k
approximation when the data matrix has rapid spec-
trum decay. However, their algorithm is very expensive
and requires O(`mn(m+n)) time to obtain a rank-k
approximation.

There have been several investigations of ways to con-
struct the approximation. Wang et al. (2016) proposed
an efficient method to compute U by matrix sketching.
Anderson et al. (2015) proposed a numerically stable

algorithm to construct Â and Âk. This method avoids
computing the pseudo-inverse of matrices by perform-
ing QR factorization on C and R. We present their
algorithm in Appendix A.

Some other variants of CUR algorithms including tensor
CUR decomposition (Song et al., 2019) and CUR with

`1-norm (Song et al., 2017) are less relevant to our
work.

3.2 LU factorization with Complete Pivoting

LU factorization factors a matrix as a product of a
unit lower triangular matrix and an upper triangular
matrix with row permutation and/or column permu-
tation. Partial pivoting is widely used in numerical
algebra area because it is more efficient. However, it
may fail on rank deficient matrices. The complete
pivoting, even though very expensive, is necessary for
those matrices to guarantee that factorized matrices
are well-defined. Recently, Melgaard and Gu (2015)
proposed a randomized LU factorization with complete
pivoting by leverage random projection.

Rank-revealing LU algorithms (Pan, 2000; Miranian
and Gu, 2003) are good quality approximations. They
guarantee that the approximation capture the rank of
the data matrix within a low polynomial factor in k, m
and n, which could be very large. Spectrum-revealing
LU (Anderson and Gu, 2017) performs extra swaps to
ensure spectral gap error bounds, but it also introduces
extra computational costs.

4 Our Approaches

In this section, we propose our main algorithms. We
first propose the EELM algorithm which quickly esti-
mates the element with largest magnitude of a given
matrix. Then we propose the FSRLU algorithm to
efficiently computes the spectrum-revealing LU factor-
ization. Finally, we propose our SRCUR algorithm
based on the FSRLU.

4.1 Estimating the Element with Largest
Magnitude

Finding the element with largest magnitude in a matrix
has many applications (Higham and Relton, 2016).
Usually computing ‖A‖max ∈ Rm×n from its definition
has O(mn) cost. However, if we can only access matrix
A implicitly, such as through a product A = BC or
an inverse A = B−1, the computational cost can be
prohibitive if we need to calculate all elements of matrix
A. The method in (Higham and Relton, 2016) uses
matrix-vector product to estimate the position of the
element with the largest magnitude. But their method
does not have theoretical guarantees on the estimated
value.

We propose an efficient algorithm to estimate the ele-
ment with the largest magnitude, called EELM. Given
matrix A and projected matrix R = ΩA (Ω ∈ Rp×m
is a JL transform matrix), EELM first finds the col-
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Algorithm 1 Estimating the Element with Largest
Magnitude (EELM)

Input: Input matrix A ∈ Rm×n, R ∈ Rp×n.
Output: row index r, column index c, estimated value
x.

1: c = arg max
i≤j≤n

‖R:,j‖2.

2: Compute the c-th column of A.
3: r = arg max

i≤j≤m
|Aj,c|.

4: x = |Ar,c|.

umn with the maximum `2-norm in the sketched ma-
trix R and then chooses the largest element in the
corresponding column of the original matrix A. We
describe EELM in Algorithm 1. Since JL transform
preserves the vector norm well, the estimated value can
be bounded as the following theorem:

Theorem 1. The estimated value x given by Algorithm

1 satisfies x ≥
√

1−ε
mn(1+ε)‖A‖F with probability 1− δ.

As shown in the next section, ε only affect the time
complexity of our algorithm but have little influence
on the error bounds. Thus, in the rest of our paper,
we assume that ε = 0.5 and δ = 0.01 for convenience.

4.2 Fast Spectrum-Revealing LU
Factorization

In this section, we describe our FSRLU algorithm which
consists of two parts: Fast Pivoting for Truncated LU
factorization (FPTLU) and Fast Spectrum-Revealing
Pivoting (FSRP). FPTLU computes a rough pivoting
for truncated LU, and FSRP performs extra operations
on the result of FPTLU in order to bound the error.

4.2.1 Fast Pivoting for Truncated LU
Factorization

Truncated LU factorization aims to compute Π1AΠ2 =

L̂Û+

(
0 0
0 S

)
, where Π1 and Π2 are permutation ma-

trices, S is the Schur complement. In each iteration, the
vanilla complete pivoting of LU factorization choose
the largest magnitude element in the Schur comple-
ment as the pivot. This procedure is very expensive.
To reduce the computational cost, we adopt EELM
algorithm to estimate pivots of LU. We present FPTLU
in Algorithm 2. Note that line 5-7 of Algorithm 2 is
standard LU update. Note that the sketched matrix
B can be updated efficiently as in (Anderson and Gu,
2017) (see Appendix B).

Algorithm 2 Fast Pivoting for Truncated LU factor-
ization
Input: data matrix A ∈ Rm×n, target number of
columns and rows `.
Output: L̂ ∈ Rm×`, Û ∈ R`×n, Π1, Π2.

1: Generate JL transform matrix Ω ∈
Rp1×m,compute B = ΩA, Π1 = Im, Π2 = In.

2: for i = 1, . . . , ` do
3: [c, r, x] = EELM(A,B).
4: Swap i-th and c-th column of A, update Π2,

Swap i-th and r-th row of A, update Π1.
5: Ai:m,i = Ai:m,i −Ai:m,1:i−1A1:i−1,i, Ai+1:m,i =

Ai+1:m,i/Ai,i.
6: Ai,i+1:n = Ai,i+1:n −Ai,1:i−1A1:i−1,i+1:n,
7: Update B:,i+1:n.
8: end for
9: Let L̂ be the lower triangular part of A:,1:` with

unit diagonal.
10: Let Û be the upper triangular part of A1:`,:.

4.2.2 Fast Spectrum-Revealing Pivoting

Given a truncated LU factorization in the following
form,

Π1AΠ2 =

L11

l>21 1
L31 I

U11 u12 U13

α s>12
s21 S22

 ,

where L̂ =

L11

l21
L31

, Û =
(
U11 u12 U13

)
and S =(

α s>12
s21 S22

)
, FSRP aims to find the element α with

the largest magnitude in S and the largest element

β in matrix |A−>11 | in each iteration. Here A11 =(
L11

l>21 1

)(
U11 u12

α

)
. Since computing S is very

expensive, we use EELM to estimate α and β rather
than compute their accurate value. We present the
FSRP in Algorithm 3. In each iteration, the sketched
matrix R and W only needs a rank-2 update after
each swap. We leverage techniques in (Gondzio, 1992)
to turn L and U back into trapezoidal form after the
swaps are performed. We show details of updating L̂
and Û in Appendix C.

4.3 Spectrum-Revealing CUR Decomposition

The permutation matrices produced by FSRP algo-
rithm indicate which columns and rows we should
choose for CUR decomposition. Namely, we compute
matrix C and R as

C = Π>1 L̂Û:,1:` and R = L̂1:`,:ÛΠ>2 .
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Algorithm 3 Fast Spectrum-revealing Pivoting

Input: Truncated LU factorization Π1AΠ2 ≈ L̂Û
and tolerance f .
Output: L̂ ∈ Rm×`, Û ∈ R`×n, Π1, Π2.

1: Generate JL transform matrix Ω1 ∈ Rp2×(m−`),
Ω2 ∈ Rp3×(`+1).

2: R = Ω1S, [sr, sc, α] = EELM(S,R).
3: Swap the (`+ 1)-th row and the (`+ sr)-th row of

L̂ and update Π1 correspondingly.
4: Swap the (` + 1)-th column and the (` + sc)-th

column of Û and update Π2 correspondingly.

5: W = Ω2A
−>
11 , [ar, ac, β] = EELM(A

−>
11 ,W).

6: while αβ > f do
7: Exchange the ar-th row and the (`+ 1)-th row

of A and update L̂.
8: Exchange the ac-th column and the (` + 1)-th

column of A and update Û.
9: Update Π1, Π2, S, R and perform step 3,4,5.

10: Update W, let [ar, ac, β] = EELM(A
−>
11 ,W).

11: end while

Algorithm 4 Spectrum-Revealing CUR decomposi-
tion
Input: Data matrix A ∈ Rm×n, target rank k, target
column and row number `, f > 1.
Output: Â ∈ Rm×n and Âk ∈ Rm×n.

1: Perform Algorithm 2 to compute a truncated LU
factorization Π1AΠ2 ≈ L̂Û.

2: Perfrom Algorithm 3 to update Π1, Π2, L̂ and Û.
3: Compute C = Π>1 L̂Û:,1:` and R = L̂1:`,:ÛΠ>2 .

4: Perform StableCUR Algorithm to obtain Â and
Âk.

To make our algorithm more stable, we construct the
approximation matrices by StableCUR (Anderson et al.,
2015), which is shown in Appendix A. We show our
SRCUR algorithm in Algorithm 4.

5 Theoretical Analysis

In this section, we analyze time complexity of our
algorithm in Section 5.1 and provide spectral gap error
bounds on singular values, 2-norm and Frobenius norm
in Section 5.2.

5.1 Time complexity

It is obvious that the time cost of EELM is O(m+ pn).
Then we discuss the time complexity of FPTLU. If
we choose Gaussian random projection matrix as the
JL transform matrix, we only require O(p1nnz(A))
to initialize matrix B. In each iteration, FPTLU

require O(p1n) time to update B and O(`2(m+n))
time to perform standard LU update(line 5-7). Since
p1 = O(log n), FPTLU can compute a truncated LU
factorization in O(nnz(A) log n+ `2(m+n)) time.

To analyze the complexity of the FSRP, we first give
the following theorem which shows the upper bound of
number of iterations.

Theorem 2. If the input matrix L̂ and Û are ob-
tained by Algorithm 2, Algorithm 3 performs at most
O(` log(mn)) number of iterations with probability 0.99.

We require O(nnz(A) log n+`(m+n) log n) to ini-
tialize matrix R and O(`2 log `) to initialize ma-
trix W. In each iteration, the FSRP costs
O(pn+`(m+n)+`2 log `). Using Theorem 2, we know
that the time complexity of FSRP is O(nnz(A) log `+
`pn log(mn) + `2(m + n) log(mn) + `3 log(mn) log `).
The StableCUR require O(`2(m+n)) time to construct
the CUR approximation. Therefore, our SRCUR al-
gorithm needs O(nnz(A) log n)+Õ(`2(m+ n)) time in
total.

5.2 Spectral Gap Error Bounds

We present the norm error bounds in Theorem 3 and
the singular value bound in Theorem 4. The detailed
proofs are presented in the supplementary material due
to page limit.

Theorem 3. For γ = O(f`
√
mn), Algorithm 4 satis-

fies:

‖A− Â‖2 ≤ ‖A− Â‖F ≤ γσ`+1(A), (1)

‖A−Âk‖2F ≤

(
1+

2γ2σ2
`+1(A)∑rank(A)

i=k+1 σ2
i (A)

)
‖A−Ak‖2F ,

(2)

‖A− Âk‖22 ≤
(

1 + 2γ2
σ2
`+1(A)

σ2
k+1(A)

)
‖A−Ak‖22, (3)

with probability 0.98.

Theorem 4. For 1 ≤ j ≤ ` and γ = O(f`
√
mn),

Algorithm 4 satisfies:

σj(A) ≥ σj(Â) ≥

√
1− 2γ2

(
σ`+1(A)

σj(A)

)2

σj(A)

with probability 0.98.

5.3 Discussion

We would like to emphasize the differences between our
work and those methods which achieve 1+ε relative
error bounds (Drineas et al., 2008; Wang and Zhang,
2013; Boutsidis and Woodruff, 2017). First, 1+ε rela-
tive error bounds only bound Frobenius norm, while
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we provide bounds on spectral norm, Frobenius norm
and singular values. In addition, our bounds are data
dependent, while 1+ε relative error bounds depend on
the universal constant ε.

Now we compare our bounds with DetUCS algo-
rithm (Anderson et al., 2015). First, both our bounds
and those of DetUCS are related to the quadratic of
the spectral gap σ2

`+1(A)/σ2
k+1(A). Thus, our bounds

have the same order as that of DetUCS. However, De-
tUCS costs O(`mn(m+n)) time, which is much higher
than our costs.

Finally, we discuss the differences between our method
and SRLU (Anderson and Gu, 2017). First, our method
and SRLU are designed for different tasks. The goal
of SRLU is to obtain a high quality LU factorization,
while we aim to compute CUR decomposition. Also,
SRLU does not have time guarantees on the extra swap
procedure. Thus, our FSRLU is faster than SRLU while
maintaining the same theoretical guarantee. Though
SRLU provided bounds on ‖Π1AΠ2− L̂MÛ‖ξ, where

M = L̂†AÛ† and ξ ∈ {2, F}. Their approximation is
not rank-constrained and worse than our result.

6 Experiments

In this section, we empirically evaluate the perfor-
mance of our SRCUR algorithm. We choose Gaus-
sian random projection matrix as the JL transform
matrix in SRCUR. The baseline methods include uni-
form sampling (Williams and Seeger, 2001), subspace
sampling (Drineas et al., 2008), near-optimal sam-
pling (Wang and Zhang, 2013; Boutsidis and Woodruff,
2017) and deterministic unweighted column selec-
tion (Anderson et al., 2015).

In our empirical evaluation, we consider following six
measures: ‖A−Â‖F /‖A−Ak‖F , ‖A−Â‖2/‖A−Ak‖2,

‖A − Âk‖F /‖A − Ak‖F , ‖A − Âk‖2/‖A − Ak‖2,

σk(Â)/σk(A) and running time. We compare CUR al-
gorithms on the following four datasets: The Extended
Yale Face Database B (Georghiades et al., 2001), Dex-
ter (Guyon et al., 2005), Sido1 and Reuters2. We
summarize the information of these data sets in Table
1 and show the singular value distribution in Figure 1.
We choose ` = k+1, 2k, · · · , 10k for all datasets, where
k = dmin(m,n)/200e. We report our results in Figures
2-5. All results of randomized algorithm are averaged
over 5 runs. The experiments are all performed in
Matlab R2017b.

The figures show that our algorithm is much more
efficient than state-of-the-art CUR algorithms. The

1http://www.causality.inf.ethz.ch/data/SIDO.html
2http://www.zjucadcg.cn/dengcai/Data/TextData.html

Table 1: Summary of datasets for CUR matrix decom-
position

Dataset m n %nnz
Extend Yale Face B 2414 1024 97.84

Dexter 2600 20000 4.8
Sido 4932 12678 9.84

Reuters 8293 18933 0.25
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Figure 1: Singular value distribution

main reason is that state-of-the-art CUR algorithms all
require to perform SVD or randomized SVD while SR-
CUR is SVD-free. The randomized SVD, though has
good time complexity Clarkson and Woodruff (2017), is
much less efficient than LU update because the constant
of SVD is extreme large. Furthermore, the approxi-
mation errors of SRCUR algorithm are better than or
comparable with other algorithms. Especially, SRCUR
performs better than other methods when ` is close
to k. This result matches our theoretical analysis in
Section 5.

7 Conclusions

In this paper, we have proposed Spectrum-Revealing
CUR decomposition algorithm. We have built the
bridge between CUR decomposition and LU factoriza-
tion, and leveraged truncated LU factorization to select
columns and rows for CUR decomposition. We have
develop spectral gap error bound on spectral norm and
Frobenius norm and singular values. These bounds
confirm high quality approximations computed by our
methods for matrices with fast enough singular value de-
cay, a property which is typically observed in practical
data matrices. We have also conducted experiments to
empirically demonstrate the effectiveness and reliability
of our algorithms on four machine learning datasets.
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Figure 2: Results of CUR decomposition algorithms com-
parison on Yale Face B data matrix.
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Figure 3: Results of CUR decomposition algorithms com-
parison on Dexter data matrix.
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Figure 4: Results of CUR decomposition algorithms com-
parison on Sido data matrix.
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Figure 5: Results of CUR decomposition algorithms com-
parison on Reuters data matrix.
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A Stable CUR Decomposition

Algorithm 5 StableCUR (Anderson et al., 2015)

Input: A ∈ Rm×n, C ∈ Rm×c, R ∈ Rr×n and target rank k.
Output: Â ∈ Rm×n and Âk ∈ Rm×n.

1: Do QR factorization on R> to obtain a basis of rows of R, R = RrQr;
2: Do QR factorization on C to obtain a basis of columns of C, C = QcRc;
3: E = Q>c AQ>r , Â = QcBQr;
4: Compute rank-k truncated SVD on E to obtain Bk;
5: Âk = QcEkQr.

B Update of B:,i+1:n in Algorithm 2

We can partition B:,i:n as follows:

B:,i:n =
( 1 n − i

B1 B2

)
=
( 1 n − i

Ω1 Ω2

) ( 1 n − i

L11

L21 I

) ( 1 n − i

U11 U12

S

)
,

then we have

B:,i+1:n = Bnew
2 = Ω2S = B2 −

(
Ω1 Ω2

)(L11

L21

)
U12. (4)

C Swapping Algorithms

Let

L =

L11

l>21 1
L31 0

 and U =

(
U11 u12 U13

α s>12

)
,

then we present Row Swap Algorithm and Column Swap Algorithm in Algorithm 6 and Algorithm 7, respectively.

Algorithm 6 Row Swap

1: Move ar-th row to the position `+1 in L and shift rows ar + 1, ar + 2, . . . , ` of one position up.
2: for i = ar to ` do
3: Let x = Li,i, c = Ui,i+1, d = Ui+1,i+1.

4: H1 =

(
x 1
d

cx+d − c
cx+d

)
, H2 =

(
x 1

0
√
x2 + 1

)
.

5: if x = 0 or κ(H1) < κ(H2) then
6: Hi = H1.
7: Exchange the i-th and the (i+ 1)-th column of U.
8: else
9: Hi = H2.

10: end if
Let L:,i:i+1 = L:,i:i+1H

−1
i , Ui:i+1,: = HiUi:i+1,:

11: end for
12: Update permutation matrix Π1 and Π2 according to the row and column exchange.
13: Let L̂ = L:,1:` and Û = U1:`,:.
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Algorithm 7 Column Swap

1: Move ac-th column to the position `+1 in U and shift columns ac+1, ac+2, . . . , ` of one position to the left.
2: for i = ac to ` do
3: Let a = Ui,i, b = Ui+1,i, z = Li+1,i, t = b/a.

4: Let H1 =

(
z 1
b

az+b − a
az+b

)
, H2 =

(
1 0
− b
a 1

)
.

5: if a = 0 or κ(H1) < κ(H2) then
6: Let Hi = H1.
7: Exchange the i-th and the (i+ 1)-th row of L.
8: else
9: Let Hi = H2.

10: end if
Let L:,i:i+1 = L:,i:i+1H

−1
i , Ui:i+1,: = HiUi:i+1,:.

11: end for
12: Update permutation matrix Π1 and Π2 according to the row and column exchange.
13: Let L̂ = L:,1:` and Û = U1:`,:.

Now we analyze the correctness and stability of Algorithm 6 and Algorithm 7. We first analyze Algorithm 6.
After the operation in line 1, the L has been transformed to an Hessenberg matrix with subdiagonal nonzeros at
columns ar + 1, ar + 2, . . . , `+ 1. The rest operations aim to find a matrix H and a permutation matrix P such
that

Lnew = LH−1 and Unew = HUP

In the i-th iteration of Algorithm 6, we have

Li = Li:i+1,i+i+1 =

(
x 1
z v

)
and Ui = Ui:i+1,i+i+1 =

(
a c
0 d

)
We aim to choose Hi and Pi such that LiH

−1
i is a lower triangular matrix and HiUiPi is an upper triangular

matrix. We provide two solutions. The first is H1 =

(
x 1
d

cx+d − c
cx+d

)
with Pi =

(
1 0
0 1

)
. The second is

H2 =

(
x 1

0
√
x2 + 1

)
with Pi = I. Since d 6= 0, at least one of H1 and H2 is well defined and nonsingular. This

result means that Algorithm 6 is stable. Further, if both H1 and H2 are nonsingular, we choose the one with
smaller condition number.

The analysis of Algorithm 7 is similar to that of Algorithm 7. Thus we do not present it in detail.

D Proof of Theorem 1

According to Lemma 1, Ω satisfies (ε, δ/n)-JL property. Thus for each column a in A, we have

Pr

(
(1− ε)‖a‖2 ≤ ‖ 1

√
p
Ωa‖2 ≤ (1 + ε)‖a‖2

)
≥ 1− δ

n
.

Assume that c∗ = arg max
i≤j≤n

‖A:,j‖2. Then we have

‖A:,c‖2 ≥
1√

1 + ε
‖ 1
√
p
R:,c‖2

≥ 1√
1 + ε

‖ 1
√
p
R:,c∗‖2 because the optimality of c

≥
√

1− ε
1 + ε

‖A:,c∗‖2

≥

√
1− ε

n(1 + ε)
||A||F .
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with probability at least
(
1− δ

n

)n
> 1− δ.

Thus, we can get

x = ‖A∗,c‖max ≥
√
m‖A∗,c‖2 ≥

√
1− ε

mn(1 + ε)
‖A‖F .

E Proof of Theorem 2

Let A11 be the top left `× ` matrix of Π1AΠ2, then we have the following lemma:

Lemma 2. Each swap in Algorithm 3 will increase the determinant det(A11) by at least f .

Proof. For each iteration, let A′11 be the top left `× ` matrix of Π1AΠ2 after swap. Then, we have

α =
det(A11)

det(A11)

and

β = (A
−>
11 )ar,ac =

(adj(A11))ar,ac
det(A11)

=
det(A′11)

det(A11)
.

Since the condition that we perform the iteration is αβ > f , we can obtain

det(A′11)

det(A11)
> f.

Then, we prove Theorem 2. After performing k steps of TLURP, we have

Π1AΠ2 =

(
Lk11
Lk21 I

)(
Uk

11 Uk
12

Sk

)

where Lk11 and Uk
11 are k×k matrix and Sk is the Schur complement. Let Ak = Lk11U

k
11, we can get det(Ak+1)

det(Ak)
= γk,

where γk is the pivot chosen in Sk.
The pivot of TLURP is selected by EELM. According to Theorem 1, we can achieve that

γ` ≥

√
1− ε

(m− `)(n− `)(1 + ε)
‖S`‖F ≥

√
1− ε

mn(1 + ε)
‖S`‖F .

Since ‖S`‖F ≥ ‖S`‖2 ≥ σ`+1(A), we can obtain

det(A`) ≥

(√
1− ε

mn(1 + ε)

)` ∏̀
i=1

σi(A).

Assume that A` is the top left `× ` matrix of A after performing Fast SRP. Then we have σi(A`) ≤ σi(A) for

i = 1, . . . , `. So we can get, det(A`) ≤
∏`
i=1 σi(A).

Since each swap increase the determinant det(A`) by at least a factor f , number of swaps is at most

logf
det(A`)

det(A`)
≤ logf

(√
mn(1 + ε)

1− ε

)`
= ` logf

√
mn(1 + ε)

1− ε

with probability 1− δ. Since we assume ε = 1
2 and δ = 0.01, we obtain Theorem 2.
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F Proof of Theorem 3

We first prove the following lemma:

Lemma 3. For γ = O(f`
√
mn), the result of Fast SRP algorithm satisfies

‖S‖F = ‖Π1AΠ2 − L̂Û‖F ≤ γσ`+1(A)

with probability 0.98.

Proof. Since α and β in Algorithm 3 is selected by Algorithm 1, according to Theorem 1, we have

α ≥

√
1− ε

(m− `)(n− `)(1 + ε)
‖S‖F

with probability 1− δ and

β ≥ (`+ 1)

√
1− ε
1 + ε

‖(A11)−>‖F

with probability 1− δ. Then, we have

‖S‖F =
‖S‖F
α

‖A−111 ‖F
β

αβ‖A−111 ‖
−1
F

≤ 1 + ε

1− ε
(`+ 1)

√
(m− `)(n− `)αβ‖A−111 ‖

−1
2

=
1 + ε

1− ε
(`+ 1)

√
(m− `)(n− `)αβσmin(A11)

≤ 1 + ε

1− ε
(`+ 1)

√
(m− `)(n− `)αβσ`+1(A)

with probability 1− 2δ.
The last inequality is from the interlacing property of the singular values.
Since αβ < f , ε = 1

2 , δ = 0.01, we have
||S||F ≤ γσ`+1(A)

with probability at least 0.98.

Let Ã = Π1AΠ2 and M = L̂†ÃÛ†.Then we have

L̂MÛ = Π1CURΠ2. (5)

Assume that Ã = L̃Ũ is the full LU factorization of matrix Ã, where L̃:,1:` = L̂ and Ũ1:`,: = Û.

Perform QR factorization on L̃ and Ũ>, we have L̃ = QLRL =:
(
QL

1 QL
2

)(RL
11 RL

12

RL
22

)
and Ũ = LUQU =:(

LU11
LU21 LU22

)(
QU

1

QU
2

)
.

Then
L̂MÛ = QL

1

(
QL

1

)>
Ã
(
QU

1

)>
QU

1 .

According to Lemma 3 and Theorem 3 of (Anderson and Gu, 2017), we can get

‖A− Â‖2 ≤ ‖A− Â‖F = ‖A−CUR‖F = ‖Π1AΠ2 − L̂MÛ‖F ≤ ‖S‖F ≤ γσ`+1(A).

Then we get formula (1). Let D = Ã− L̂Û. Note that

Ã>QL
2 =

(
L̂Û + C

)>
QL

2

=
(
QL

1 RL
11L

U
11Q

U
1 + C

)>
QL

2

=
(
QU

1

)> (
LU11
)> (

RL
11

)> (
QL

1

)>
QL

2 + D>QL
2

= D>QL
2 . (6)
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Analogously

Ã
(
QU

2

)>
= D

(
QU

2

)>
. (7)

Thus,

‖Ã− (L̂MÛ)k‖2F
= ‖Ã−QL

1

(
(QL

1 )>Ã(QU
1 )>

)
k

QU
1 ‖2F

≤ ‖Ã−QL
1 (QL

1 )>Ãk(QU
1 )>QU

1 ‖2F
= ‖Ã− Ãk + Ãk −QL

1 (QL
1 )>Ãk + QL

1 (QL
1 )>Ãk −QL

1 (QL
1 )>Ãk(QU

1 )>QU
1 ‖2F

= ‖Ã− Ãk + Ãk −QL
1 (QL

1 )>Ãk‖2F + ‖QL
1 (QL

1 )>Ãk −QL
1 (QL

1 )>Ãk(QU
1 )>QU

1 ‖2F
+2tr

(
(Ã− Ãk)>QL

1 (QL
1 )>Ãk(I− (QU

1 )>QU
1 )
)

= ‖Ã− Ãk‖2F + ‖(I−QL
1 (QL

1 )>)Ãk‖2F + ‖QL
1 (QL

1 )>Ãk(I− (QU
1 )>QU

1 )‖2F
+2tr

(
(Ã− Ãk)>QL

1 (QL
1 )>Ãk(I− (QU

1 )>QU
1 )
)

= ‖Ã− Ãk‖2F + ‖QL
2 (QL

2 )>Ãk‖2F + ‖QL
1 (QL

1 )>Ãk(QU
2 )>QU

2 ‖2F
+2tr

(
(Ã− Ãk)>QL

1 (QL
1 )>Ãk(QU

2 )>QU
2

)
= ‖Ã− Ãk‖2F + ‖QL

2 (QL
2 )>Ã‖2F − ‖QL

2 (QL
2 )>(Ã− Ãk)‖2F + ‖Ãk(QU

2 )>QU
2 ‖2F

−‖QL
2 (QL

2 )>Ãk(QU
2 )>QU

2 ‖2F + 2tr
(

(Ã− Ãk)>QL
2 (QL

2 )>QL
2 (QL

2 )>Ãk(QU
2 )>QU

2

)
= ‖Ã− Ãk‖2F + ‖QL

2 (QL
2 )>Ã‖2F + ‖Ãk(QU

2 )>QU
2 ‖2F

−‖QL
2 (QL

2 )>(Ã− Ãk)−QL
2 (QL

2 )>Ãk(QU
2 )>QU

2 ‖2F
≤ ‖Ã− Ãk‖2F + ‖QL

2 (QL
2 )>Ã‖2F + ‖Ãk(QU

2 )>QU
2 ‖2F

≤ ‖Ã− Ãk‖2F + ‖QL
2 (QL

2 )>Ã‖2F + ‖Ã(QU
2 )>QU

2 ‖2F
= ‖Ã− Ãk‖2F + ‖QL

2 (QL
2 )>D‖2F + ‖D(QU

2 )>QU
2 ‖2F

≤ ‖Ã− Ãk‖2F + 2‖D‖2F
= ‖Ã− Ãk‖2F + 2‖S‖2F
= ‖A−Ak‖2F + 2‖S‖2F

≤
rank(A)∑
i=k+1

σ2
i (A) + 2γ2σ2

`+1(A).

The second equation is due to (A−Ak)A>k = 0 and QL
2 (QL

2 )>(I−QL
2 (QL

2 )>)> = 0.
According to Theorem 3.4 in (Gu, 2015), we can get

‖Ã− (L̂MÛ)k‖22 ≤ σ2
k+1(A) + 2γ2σ2

`+1(A).

Using Equation 5, we can get the conclusion of Theorem 3.

G Proof of Theorem 4

According to Equation 5, we have
L̂MÛ = Π1CURΠ2.

Thus, σk(CUR) = σk(L̂MÛ). Using Theorem 7 in (Anderson and Gu, 2017), we can get the conclusion of
Theorem 4.

H Experiments of Improved SRLU

In this section, We compare our Improved SRLU with original SRLU (Anderson and Gu, 2017). Figure 6 shows
that Improved SRLU has almost the same approximation errors as SRLU, but Improved SRLU is more efficient.
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Figure 6: The comparison of Improved SRLU and SRLU on a random 2000 × 2000 matrix.
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