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A Complete Proofs of Section 4

A.1 Proof of Theorem 1

A.1.1 Highlight

The key idea to proving Theorem 1 is that the gap function ρ(x) := fx(x) − minx′∈X fx(x′) can be used as a
residual function for the above EP/VI/FP in Theorem 1. That is, ρ(x) is non-negative, computable in polynomial
time (it is a convex program), and ρ(x) = 0 if and only if x ∈ X? (because fx(·) is convex ∀x ∈ X ). Therefore,
to show Theorem 1, we only need to prove that solving one of these problems is equivalent to achieving sublinear
dynamic regret.

First, suppose an algorithm generates a sequence {xn ∈ X} such that limn→∞ xn = x?, for some x? ∈ X?. To
show this implies {xn ∈ X} has sublinear dynamic regret, we first show limx→x?∈X? ρ(x) = 0. Then define

ρn = ρ(xn). Because limn→∞ ρn = 0, we have RegretdN =
∑N
n=1 ρn = o(N).

Next, we prove the opposite direction. Suppose an algorithm generates a sequence {xn ∈ X} with sublin-

ear dynamic regret. This implies that ρ̂N := minn ρn ≤ 1
N

∑N
n=1 ρn is in o(1) and non-increasing. Thus,

limN→∞ ρ̂N = 0. As ρ is a proper residual, the algorithm solves the EP/VI/FP problem by returning the
decision associated with ρ̂N .

The proof of PPAD-completeness is based on converting the residual of a Brouwer’s fixed-point problem to a
bifunction, and use the solution along with ρ̂N above as the approximate solution.

Note that the gap function ρ, despite motivated by dynamic regret here, corresponds to a natural gap function
rep(x) := maxx′∈X −F (x, x′) used in the EP literature, showing again a close connection between the dynamic
regret and the EP in Theorem 1. Nonetheless, ρ(x) is not conventional for VIs and FPs. Below we relate ρ(x)
to some standard residuals of VIs and FPs under a stronger assumption on f .

Proposition 11. For ε > 0, consider some xε ∈ X such that ρ(xε) ≤ ε. If fxε(·) is α-strongly convex, then
limε→0 〈∇fxε(xε), x− xε〉 ≥ 0, ∀x ∈ X , and limε→0 ‖xε − T (xε)‖ = 0.

A.1.2 Full proof

Now we give the details of the steps above.

We first show the solutions sets of the EP, the VI, and the FP are identical.

• 2. =⇒ 3.
Let x?VI ∈ X be a solution to VI(X , F ) where F (x) = ∇fx(x). That is, for all x ∈ X , 〈∇fx?VI

(x?VI), x −
x?VI〉 ≥ 0. The sufficient first-order condition for optimality implies that x?VI is optimal for fx?VI

. Therefore,
fx?VI

(x?VI) ≤ fx?VI
(x) for all x ∈ X , meaning that x?VI is also a solution to EP(X ,Φ) where Φ(x, x′) =

fx(x′)− fx(x).

• 3. =⇒ 4.
Let x?EP ∈ X be a solution to EP(X ,Φ). By definition, it satisfies fx?EP

(x?EP) ≤ fx?EP
(x) for all x ∈ X ,

which implies x?EP = arg minx∈X fx?EP
(x) = T (x?EP). Therefore, x?EP is a also solution to FP(X , T ), where

T (x′) = arg minx∈X fx′(x).

• 4. =⇒ 2.
If x?FP is a solution to FP(X , T ), then x?FP = arg minx∈X fx?FP

(x). By the necessary first-order condition for
optimality, we have 〈∇fx?FP

(x?FP)x − x?FP〉 ≥ 0 for all x ∈ X . Therefore x?FP is also a solution to VI(X , F )
where F (x) = ∇fx(x).

Let X? denote their common solution sets. To finish the proof of equivalence in Theorem 1, we only need to
show that converging to X? is equivalent to achieving sublinear dynamic regret.

• Suppose there is an algorithm that generates a sequence {xn ∈ X} such that limn→∞ xn = x?, for some
x? ∈ X?. To show this implies {xn ∈ X} has sublinear dynamic regret, we need a continuity lemma.
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Lemma 1. limx→x?∈X? ρ(x) = 0.

Proof. Let x̄ ∈ T (x). Using convexity, we can derive that

ρ(x) = fx(x)− fx(x̄) ≤ 〈∇fx(x), x− x̄〉
≤ 〈∇fx?(x?), x− x̄〉+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖
≤ 〈∇fx?(x?), x? − x̄〉+ ‖∇fx?(x?)‖∗‖x− x?‖+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖
≤ ‖∇fx?(x?)‖∗‖x− x?‖+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖

where the second and the third inequalities are due to Cauchy-Schwarz inequality, and the last inequality is
due to that x? solves VI(X ,∇f). By continuity of ∇f , the above upper bound vanishes as x→ x?.

For short hand, let us define ρn = ρ(xn); we can then write RegretdN =
∑N
n=1 ρn. By Lemma 1, limn→∞ x =

x? implies that limn→∞ ρn = 0. Finally, we show by contradiction that limn→∞ ρn = 0 implies RegretdN =
o(N). Suppose the dynamic regret is linear. Then c > 0 exists such that there is a subsequence {ρni}
satisfying ρni ≥ c for all ni. However, this contradicts with limn→∞ ρn = 0.

• We can also prove the opposite direction. Suppose an algorithm generates a sequence {xn ∈ X} with sub-

linear dynamic regret. This implies that ρ̂N := minn ρn ≤ 1
N

∑N
n=1 ρn is in o(N) and non-increasing. Thus,

limN→∞ ρ̂N = 0 and the algorithm solves the VI/EP/FP problem because ρ is a residual. Alternatively, we
may view ρ̂ as a Lyapunov-like function. The sequence of minimizers x̂N = arg minxn ρ(xn) are confined to
the level sets of ρ, which converge to the zero-level set. Since X is compact, x̂N converges to this set.

Finally, we show the PPAD-completeness by proving that achieving sublinear dynamic regret with polynomial
dependency on d implies solving a Brouwer’s problem (finding a fixed point of a continuous point-to-point map
on a convex compact set). Because Brouwer’s problem is known to be PPAD-complete Daskalakis et al. (2009),
we can use this algorithm to solve all PPAD problems.

Given a Brouwer’s problem on X with some continuous map T̂ . We can define the bifunction f as fx′(x) =
1
2‖x− T̂ (x′)‖22, where ‖ · ‖2 is Euclidean. Obviously, this f satisfies Definition 1, and its gap function is zero at
x? if and only x? is a solution to the Brouwer’s problem. Suppose we have an algorithm that achieves sublinear
dynamic regret for continuous online learning. We can use the definition ρ̂N in the proof above to return a
solution whose gap function is less than 1

2ε
2, which implies an ε-approximate solution to Brouwer’s problem (i.e.

‖x− T̂ (x)‖ ≤ ε). If the dynamic regret depends polynomially on d, we have such an N in poly(d), which implies
solving any Brouwer’s problem in polynomial time.

A.1.3 Proof of Proposition 11

For the VI problem, let x∗ε = T (xε) and notice that

α

2
‖xε − x∗ε‖2 ≤ fxε(xε)− fxε(x∗ε ) ≤ ε (5)

for some α > 0. Therefore, for any x ∈ X ,

〈∇fxε(xε), x− xε〉 ≥ 〈∇fxε(x∗ε ), x− xε〉 − ‖∇fxε(x∗ε )−∇fxε(xε)‖∗‖x− xε‖
≥ 〈∇fxε(x∗ε ), x− x∗ε 〉 − ‖∇fxε(x∗ε )‖∗‖xε − x∗ε‖ − ‖∇fxε(x∗ε )−∇fxε(xε)‖∗‖x− xε‖
≥ −‖∇fxε(x∗ε )‖∗‖xε − x∗ε‖ − ‖∇fxε(x∗ε )−∇fxε(xε)‖∗‖x− xε‖

Since ‖xε − x∗ε‖2 ≤ 2ε
α , by continuity of ∇fxε , it satisfies that limε→0 〈∇fxε(xε), x− xε〉 ≥ 0, ∀x ∈ X .

For the fixed-point problem, similarly by (5), we see that limε→0 ‖xε − T (xε)‖ = 0

A.2 Proofs of Proposition 4

Proof of Proposition 4. Let x? ∈ X??. It holds that ∀x ∈ X , 0 ≥ Φ(x, x?) = fx(x?)− fx(x) ≥ 〈∇fx(x), x? − x〉,
which implies x? ∈ X?. The condition for the converse case is obvious.
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A.3 Proof of Proposition 5

Because ∇fx is α-strongly monotone, we can derive

〈∇fx(x)−∇fy(y), x− y〉 = 〈∇fx(x)−∇fx(y), x− y〉+ 〈∇fx(y)−∇fy(y), x− y〉
≥ α‖x− y‖2 − ‖∇fx(y)−∇fy(y)‖∗‖x− y‖
≥ (α− β)‖x− y‖2

∀x, y ∈ X , where the last step is due to β-regularity.

A.4 Proof of Proposition 6

The result follows immediately from the following lemma.

Lemma 2. Suppose f is (α, β)-regular with α > 0. Then F in Theorem 1 is point-valued and β
α -Lipschitz.

Proof. Let x∗ = F (x) and y∗ = F (y) for some x, y ∈ X . By strong convexity, x∗ and y∗ are unique, and ∇fx(·)
is α-strongly monotone; therefore it holds that

〈∇fx(y∗), y∗ − x∗〉 ≥ 〈∇fx(x∗), y∗ − x∗〉+ α‖x∗ − y∗‖2

≥ α‖x∗ − y∗‖2

Since y∗ satisfies 〈∇fy(y∗), x∗ − y∗〉 ≥ 0, the above inequality implies that

α‖x∗ − y∗‖2 ≤ 〈∇fx(y∗), y∗ − x∗〉
≤ 〈∇fx(y∗)−∇fy(y∗), y∗ − x∗〉
≤ ‖∇fx(y∗)−∇fy(y∗)‖∗‖y∗ − x∗‖
≤ β‖x− y‖‖y∗ − x∗‖

Rearranging the inequality gives the statement.

B Dual Solution and Strongly Convex Sets

We show when the strong convexity property of X implies the existence of dual solution for VIs. We first recall
the definition of strongly convex sets.

Definition 4. Let αX ≥ 0. A set X is called αX -strongly convex if, for any x, x′ ∈ X and λ ∈ [0, 1], it holds

that, for all unit vector v, λx+ (1− λ)x′ + αXλ(1−λ)
2 ‖x− x′‖2v ∈ X .

When αX = 0, the definition reduces to usual convexity. Also, we see that this definition implies αX ≤ 4
DX

. In
other words, larger sets are less strongly convex. This can also be seen from the lemma below.

Lemma 3. (Journée et al., 2010, Theorem 12) Let f be non-negative, α-strongly convex, and β-smooth on a
Euclidean space. Then the set {x|f(x) ≤ r} is α√

2rβ
-strongly convex.

Here we present the existence result.

Proposition 12. Let x? ∈ X?. If X is αX -strongly convex ∀x ∈ X , it holds that 〈F (x∗), x− x∗〉 ≥ αX
2 ‖x −

x∗‖2‖F (x∗)‖∗. If further F is L-Lipschitz, this implies 〈F (x), x− x∗〉 ≥ (αX2 ‖F (x∗)‖∗ −L)‖x− x∗‖2, i.e. when

αX ≥ 2L
‖F (x∗)‖∗ , x? ∈ X?.

Proof of Proposition 12. Let g = F (x?). Let y = λx + (1 − λ)x? and d = −λ(1 − λ)αX2 ‖x − y‖
2v, for some

λ ∈ [0, 1] and some unit vector v to be decided later. By αX -strongly convexity of X , we have y + d ∈ X . We
can derive

〈g, x− x?〉 = 〈g, x− y − d〉+ 〈g, y + d− x?〉
≥ 〈g, x− y〉 − 〈g, d〉
= (1− λ) 〈g, x− x?〉 − 〈g, d〉

which implies 〈g, x− x?〉 ≥ −〈g,d〉λ = (1− λ)αX2 ‖x− x
?‖2 〈g, v〉. Since we are free to choose λ and v, we can set

λ = 0 and v = arg maxv:‖v‖≤1 〈g, v〉, which yields the inequality in the statement.
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C Complete Proofs of Section 5

In this section, we describe a general strategy to reduce monotone equilibrium problems (EPs) to continuous
online learning (COL) problems. This reduction can be viewed as refinement and generalization of the classic
reduction from convex optimization to adversarial online learning and that from saddle-point problem to two-
player adversarial online learning. In comparison, our reduction

1. results in a single-player online learning problem, which allows for unified algorithm design

2. considers potential continuous relationship of the losses between different rounds through the setup of COL,
which leads to a predictable online problem amenable to acceleration techniques, such as (Rakhlin and
Sridharan, 2013; Juditsky et al., 2011; Cheng et al., 2019a).

3. and extends the concept to general convex problems, namely, monotone EPs, which includes of course convex
optimization and convex-concave saddle-point problems but also fixed-point problems (FPs), variational
inequalities (VIs), etc.

The results here are summarized as Theorem 2 and Theorem 3.

Here we further suppose Φ(x, x) = 0 in the definition of EP. This is not a strong condition. First all the common
source problems in introduced below in Appendix C.1.1 satisfy this condition. Generally, suppose we have some
EP problem with Φ′(x, x) > 0 for some x. We can define Φ(x, x) = Φ′(x, x′) − Φ′(x, x′). Then the solution
of EP(X ,Φ) are subset of the solution EP(X ,Φ′). In other words, allowing Φ(x, x) > 0 only makes problem
easier. We note that the below reduction and discussion can easily be extended to work directly with EPs with
Φ(x, x) > 0 by defining instead fx(x′) = Φ(x, x′)− Φ(x, x), but this will make the presentation less clean.

C.1 Background: Equilibrium Problems (EPs)

Let X be a compact and convex set in a finite dimensional space. Let F : x × x′ 7→ Φ(x, x′) be a bifunction7

that is continuous in the first argument, convex in the second argument, and satisfies Φ(x, x) = 0.8 The problem
EP(X , F ) aims to find x? ∈ X such that

Φ(x?, x) ≥ 0, ∀x ∈ X

Its dual problem DEP(X , F ) finds x?? ∈ X such that

Φ(x, x??) ≤ 0, ∀x ∈ X

Based on the problem’s definition, a natural residual (or gap function) of EP(X , F ) is

rep(x) := − min
x′∈X

Φ(x, x′)

which says the degree that the inequality in the EP definition is violated. A residual for DEP(X , F ) can be
defined similarly as

rdep(x
′) := max

x∈X
Φ(x, x′)

Sometimes EPs are called maxInf (or minSup) problems (Jofré and Wets, 2014), because

x? ∈ arg min
x∈X

rep(x) = arg max
x∈X

min
x′∈X

Φ(x, x′)

In a special case, when Φ(·, x) is concave. It reduces to a saddle-point problem.

We say a bifunction F is monotone if it satisfies

Φ(x, x′) + Φ(x′, x) ≤ 0,

7We impose convexity and continuity to simplify the setup; similar results hold for subdifferentials and Lipschitz
continuity defined based on hemi-continuity.

8As discussed, we concern only EP with Φ(x, x) = 0 here
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and we say F is skew-symmetric if

Φ(x, x′) = −Φ(x, x′),

which implies F is monotone. Finally, we say the problem EP(X , F ) is monotone, if its bifunction F is monotone.

C.1.1 Examples

We review some source problems of EPs. Please refer to e.g. (Jofré and Wets, 2014; Konnov and Schaible, 2000)
for a more complete survey.

Convex Optimization Consider minx∈X h(x) where h is convex. We can simply define

Φ(x, x′) = h(x′)− h(x)

which is a skew-symmetric (and therefore monotone) bifunction.

We can also define (following the VI given by its optimality condition)

Φ(x, x′) = 〈∇h(x), x′ − x〉 .

We can easily verify that this construction is also monotone

Φ(x, x′) + Φ(x′, x) = 〈∇h(x), x′ − x〉+ 〈∇h(x′), x− x′〉 = 〈∇h(x)−∇h(x′), x′ − x〉 ≤ 0.

Suppose h is µ-strongly convex. We can also consider

Φ(x, x′) = 〈∇h(x), x′ − x〉+
µ′

2
‖x′ − x‖2

where µ′ ≤ µ. Such F is still monotone:

Φ(x, x′) + Φ(x′, x) = 〈∇h(x)−∇h(x′), x′ − x〉+ µ′‖x′ − x‖2 ≤ 0.

Saddle-Point Problem Let U and V to convex and compact sets in a finite dimensional space. Consider a
convex-concave saddle point problem

min
u∈U

max
v∈V

φ(u, v) (6)

in which φ is continuous, φ(·, y) is convex, and φ(x, ·) is concave. It is well known that in this case

min
u∈U

max
v∈V

φ(u, v) = max
v∈V

min
u∈U

φ(u, v) =: φ?.

We can define a EP by the bifunction

Φ(x, x′) := −φ(u, v′) + φ(u′, v). (7)

By definition we have the skew symmetry property, which implies monotonicity.

Variational Inequality A VI with a vector-valued map F finds x? ∈ X such that

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X .

To turn that into a EP, we can simply define

Φ(x, x′) = 〈F (x), x′ − x〉 .
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Mixed Variational Inequality (MVI) MVI considers problems that finds x? ∈ X such that

h(x)− h(x?) + 〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X .

Following the previous idea, we can define its equivalent EP through the bifunction

Φ(x, x′) = h(x′)− h(x) + 〈F (x), x′ − x〉

C.2 More insights into residuals of primal and dual EPs

We derive further relationships between primal and dual EPs. These properties will be useful for understanding
the reduction introduced in the next section.

C.2.1 Monotonicity

By the definition of monotonicity, Φ(x, x′) + Φ(x′, x) ≤ 0, we can relate the primal and the dual residuals: for
x̂ ∈ X ,

rdep(x̂) = max
x∈X

Φ(x, x̂) ≤ max
x∈X
−Φ(x̂, x) = rep(x̂)

Let X? and X?? be the solution sets of the EP and DEP, respectively. In other words, for monotone EPs,
X? ⊆ X??.

C.2.2 Continuity

When Φ(·, x) is continuous, it can be shown that X? ⊆ X?? (Konnov and Schaible, 2000) (this can be relaxed to
hemi-continuity). Below we relate the primal and the dual residuals in this case. It implies that the convergence
rate of the primal residual is slower than the dual residual.

Proposition 13. Suppose Φ(·, x) is L-Lipschitz continuous for any x ∈ X and maxx,x′∈X ‖x − x′‖ ≤ D. If

rdep(x) ≤ 2LD, the rep(x) ≤ 2
√

2LD
√
rdep(x).

Suppose in addition Φ(x, ·) is µ-strongly convex with µ > 0. If rdep(x) ≤ L2

µ , we can remove the dependency on

D and show rep(x) ≤ 2.8(L
2

µ )1/3rdep(x)2/3.

Proof. Let y ∈ X be arbitrary. Define z = τx + (1 − τ)y, where τ ∈ [0, 1]. Suppose x is an ε-approximate dual
solution, i.e.,

rdep(x) = max
x′∈X

Φ(x′, x) = ε

By convexity and Φ(z, z) = 0, we can write

ε ≥ Φ(z, x) = Φ(z, x)− Φ(z, z)

≥ Φ(z, x)− τΦ(z, x)− (1− τ)Φ(z, y) = (1− τ)(Φ(z, x)− Φ(z, y))

Using this, we can then show

−Φ(x, y) = −Φ(x, y) + Φ(z, y) + (Φ(z, x)− Φ(z, y))− Φ(z, x) + Φ(x, x)

≤ |Φ(z, y)− Φ(x, y)|+ |Φ(x, x)− Φ(z, x)|+ Φ(z, x)− Φ(z, y)

≤ 2(1− τ)L‖x− y‖+ Φ(z, x)− Φ(z, y) (∵ Lipschitz condition)

≤ 2(1− τ)L‖x− y‖+
ε

1− τ
(∵ The inequality above)

≤ 2(1− τ)LD +
ε

1− τ

Assume ε ≤ 2LD and let (1− τ) =
√

ε
2LD , which satisfies τ ∈ [0, 1]. Then

−Φ(x, y) ≤ 2
√

2LDε



Ching-An Cheng∗, Jonathan Lee∗, Ken Goldberg, Byron Boots

When we have µ-strong convexity, we have a tighter bound

ε ≥ Φ(z, x) = Φ(z, x)− Φ(z, z) ≥ Φ(z, x)− τΦ(z, x)− (1− τ)Φ(z, y) +
µτ(1− τ)

2
‖x− y‖2

= (1− τ)(Φ(z, x)− Φ(z, y)) +
µτ(1− τ)

2
‖x− y‖2

Using this, we can instead show (following similar steps as above)

−Φ(x, y) ≤ 2(1− τ)L‖x− y‖+ Φ(z, x)− Φ(z, y)

≤ 2(1− τ)L‖x− y‖+
ε

1− τ
− µτ

2
‖x− y‖2

≤ ε

1− τ
+

2L2(1− τ)2

µτ

where the last inequality is simply bx− a
2x

2 ≤ b2

2a for a > 0. Assume ε ≤ L2

µ =: K
2 and let (1−τ) = ( εK )1/3 ∈ [0, 1].

We have the following inequality, where the last step uses ε ≤ K
2 .

−Φ(x, y) ≤ ε

1− τ
+

2L2(1− τ)2

µτ
= ε2/3K1/3

(
1 +

1

1− ( εK )1/3

)
≤ 2.2ε2/3K1/3

C.2.3 Equivalence between primal and dual EPs.

An interesting special case of EP is those with skew-symmetric bifunctions, i.e.

Φ(x, x′) = −Φ(x′, x)

In this case, the EP and the DEP become identical

(DEP ) Φ(x, x??) ≤ 0 ⇐⇒ −Φ(x??, x) ≤ 0 ⇐⇒ Φ(x??, x) ≥ 0 (EP )

and we have X? = X?? and naturally matching residuals

rdep(x̂) = rep(x̂).

Recall from the results of the previous two subsections, generally, when Φ(·, x) is Lipschitz and F is monotone
(but not skew-symmetric), we have X? = X?? (as known before) but only (Φ(x, ·) is convex)

rdep(x) ≤ rep(x) ≤
√

2LD
√
rdep(x) (8)

or (Φ(x, ·) is µ-strongly convex)

rdep(x) ≤ rep(x) ≤ 2.8(
L2

µ
)1/3rdep(x)2/3

C.2.4 Relationship with VIs

We can reduce a EP into a VI problem. We observe that if a point x? ∈ X satisfies

Φ(x?, x) ≥ 0, ∀x ∈ X

if only if

∇2Φ(x?, x?)>(x− x?) ≥ 0, ∀x ∈ X
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(i.e. x? is a global minimum of the function Φ(x?, ·)), where ∇2 denotes the partial derivative with respect to
the second argument. Therefore, EP(X ,Φ) is equivalent to VI(X , F )

find x? ∈ X s.t. 〈F (x), x′ − x〉 ≥ 0, ∀x′ ∈ X

if we define F as

F : x ∈ X 7→ F (x) = ∇2Φ(x, x) (9)

In a sense, this VI problem is a linearization of the EP problem. In other words, VIs are EPs whose bifunction
satisfies that Φ(x, ·) is linear.

By the definition in (9), we can show that

rdvi(x̂) ≤ rdep(x̂) and rep(x̂) ≤ rvi(x̂)

And if Φ is monotone, then F = ∇2Φ(x, x) is monotone (though the opposite is not true), because

〈F (x), x′ − x〉 = 〈∇2Φ(x, x), x′ − x〉 ≤ Φ(x, x′) (∵ Convexity)

≤ −Φ(x′, x) (∵ Monotonicity)

≤ 〈∇2Φ(x′, x′), x′ − x〉 = 〈F (x′), x′ − x〉 (∵ Convexity)

Note the converse is not true, unless Φ(x, ·) is linear.

C.3 Reduction from Equilibrium Problems to Continuous Online Learning

Now we present the general reduction strategy. Given a EP (X ,Φ), we propose to define a COL problem by
identifying

fx(x′) = Φ(x, x′)

We can see that this definition is consistent with Theorem 1: due to Φ(x, x) = 0, it satisfies

fx(x′)− fx(x) = Φ(x, x′)− Φ(x, x) = Φ(x, x′)

Therefore, we can say a COL is normalized if fx(x) = 0. In this case, f and Φ are interchangeable.

Below we relate the dynamic regret RegretdN :=
∑N
n=1 fxn(xn)−minx∈X fxn(x) and the static regret RegretsN :=∑N

n=1 fxn(xn) − minx∈X
∑N
n=1 fxn(x) of this problem to the convergence to the EP’s solution; note that the

above definitions use the fact that in COL ln(x) = fxn(x).

C.3.1 Dynamic Regret and Primal Residual

We first observe that each instant term in the dynamic regret of this COL problem is exactly the residual
function:

fxn(xn)−min
x∈X

fxn(x) = −min
x∈X

Φ(xn, x) = rep(xn)

Therefore, the average dynamic regret describes the rate the gap function converges to zero:

N∑
n=1

rep(xn) =

N∑
n=1

fxn(xn)−min
x∈X

fxn(x) = RegretdN

Note that the above relationship holds also for weighted dynamic regret. In general, it means that if the average
dynamic regret converges, then the last iterate must converge to the solution set of the EP (since the residual is
non-negative.)



Ching-An Cheng∗, Jonathan Lee∗, Ken Goldberg, Byron Boots

C.3.2 Static Regret and Dual Residual of Monotone EPs

Next we relate the weighted static regret to the dual residual of the EP. Let {wn} be such that wn > 0. Let

x̂N = 1
x1:N

∑N
n=1 wnxn for some {xn ∈ X}Nn=1, where we define w1:N :=

∑N
n=1 wn. We can derive

rdep(x̂N ) = max
x∈X

Φ(x, x̂N )

≤ max
x∈X

1

w1:N

N∑
n=1

wnΦ(x, xn) (∵ Convexity)

≤ max
x∈X

1

w1:N

N∑
n=1

−wnΦ(xn, x) (∵ Monotonocity)

= −min
x∈X

1

w1:N

N∑
n=1

wnΦ(xn, x)

=
1

w1:N

N∑
n=1

wnΦ(xn, xn)−min
x∈X

1

w1:N

N∑
n=1

wnΦ(xn, x) (∵ Φ(xn, xn) = 0)

=
1

w1:N

(
N∑
n=1

wnfn(xn)−min
x∈X

N∑
n=1

wnfn(x)

)

=:
RegretsN (w)

w1:N

Note that the inequality rdep(x̂N ) ≤ RegretsN (w)
w1:N

holds for any sequence {xn} and {wn}. Interestingly, by (8), we
see that by the definition of regrets and the property of monotonicity and local Lipschitz continuity, it holds that

rep(x̂N )2

2LD
≤ rdep(x̂N ) ≤ RegretsN (w)

w1:N
≤ RegretdN (w)

w1:N
=:

∑N
n=1 wnrep(xn)

w1:N

where L is the Lipschitz constant of Φ(·, x) and D is the size of X .

C.4 Summary

Let us summarize the insights gained from the above discussions.

1. We can reduce EP(X ,Φ) with monotone Φ to the COL problem with ln(x) = Φ(xn, x)

2. In this COL, the convergence in (weighted) average dynamic regret implies the convergence of the last iterate
to the primal solution set. The convergence in (weighted) average static regret implies the convergence of
the (weighted) average decision to the dual solution set.

3. Because any dual solution is a primal solution when Φ(·, x) is continuous, this implies the (weighted) average
solution above also converges to the primal solution set. Particularly, if the problem is Lipschitz, we can
show rep ≤ O(

√
rdep) and therefore we can also quantify the exact quality of x̂N in terms of the primal EP

(though it results in a slower rate).

4. When the problem is skew-symmetric (as in the case of common reductions from optimization and saddle-
point problems), we have exactly rep = rdep. This means the average static regret rate directly implies the
quality of x̂N in terms of the primal residual, without rate degradation.

D Complete Proofs of Section 6

D.1 Proof of Theorem 4

The main idea is based on the decomposition that

RegretdN =
∑N
n=1 fxn(xn)− fxn(x?) +

∑N
n=1 fxn(x?)− fxn(x∗n) (10)
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For the first term,
∑N
n=1 fxn(xn) − fxn(x?) = RegretsN (x?) ≤ RegretsN and fxn(xn) − fxn(x?) ≤

〈∇fxn(xn), xn − x?〉 ≤ G∆n. For the second term, we derive

fxn(x?)− fxn(x∗n)

≤ 〈∇fxn(x?), x? − x∗n〉 −
α

2
‖x? − x∗n‖2

≤ 〈∇fxn(x?)−∇x?f(x?), x? − x∗n〉 −
α

2
‖x? − x∗n‖2

≤ ‖∇fxn(x?)−∇x?f(x?)‖∗‖x? − x∗n‖ −
α

2
‖x? − x∗n‖2

≤ β‖xn − x?‖‖x? − x∗n‖ −
α

2
‖x? − x∗n‖2

≤ min{βDX ‖xn − x?‖,
β2

2α
‖xn − x?‖2}

in which the second inequality is due to that x? ∈ X? and the fourth inequality is due to β-regularity. Combining
the two terms gives the upper bound. For the lower bound, we notice that when x? ∈ X?, we have fxn(xn) −
fxn(x?) ≥ 0. Since by Proposition 1 x? ∈ X? is also true, we can use (10) and the fact that fxn(x?)− fxn(x∗n) ≥
α
2 ‖x? − x

∗
n‖2 to derive the lower bound.

D.2 Proof of Corollary 1

By Proposition 5, ∇f is (α−β)-strongly monotone, implying 〈∇fxn(xn), xn − x?〉 ≥ (α−β)∆2
n, where we recall

that ∆n = ‖xn − x?‖ and x? ∈ X?. Because
∑N
n=1 〈∇fxn(xn), xn − x?〉 = ˜RegretsN (x?) ≤ ˜RegretsN , we have

by Theorem 4 the inequality in the statement.

D.3 Proof of Proposition 7

In this case, by Proposition 6, T is non-expansive. We know that, e.g., Mann iteration (Mann, 1953), i.e., for
ηn ∈ (0, 1) we set

xn+1 = ηnxn + (1− ηn)x∗n, (11)

converges to some x? ∈ X?; in view of (11), the greedy is update is equivalent to Mann iteration with ηn = 1.
As Mann iteration converges in general Hilbert space, by Theorem 1, it has sublinear dynamic regret with some
constant that is polynomial in d.

D.4 Proof of Proposition 8

We first establish a simple lemma related to the smoothness of ∇fx(x) and then a result on the convergence of
the Bregman divergence BR(xn‖x?). The purpose of the second lemma is to establish essentially a contraction
showing that the distance between the equilibrium point x? and xn strictly decreases.

Lemma 4. If, ∀x ∈ X , ∇f·(x) is β-Lipschitz continuous and fx(·) is γ-smooth, then, for any x, y ∈ X ,

‖∇fx(x)−∇fy(y)‖∗ ≤ (γ + β)‖x− y‖.

Proof. For any x, y ∈ X , it holds that

‖∇fx(x)−∇fy(y)‖∗ ≤ ‖∇fx(x)−∇fy(x) +∇fy(x)−∇fy(y)‖∗
≤ ‖∇fx(x)−∇fy(x)‖∗ + ‖∇fy(x)−∇fy(y)‖∗
≤ β‖x− y‖+ γ‖x− y‖.

The last inequality uses β-regularity and γ-smoothness of ∇f·(x) and fy(·), respectively.

Lemma 5. If f is (α, β)-regular, fx(·) is γ-smooth for all x ∈ X , and R is 1-strongly convex and L-smooth,
then for the online mirror descent algorithm it holds that

BR(x?‖xn) ≤
(
1− 2η(α− β)L−1 + η2(γ + β)2

)n−1
BR(x?‖x1).
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Proof. By the mirror descent update rule in (4), 〈η∇fxn(xn) + ∇R(xn+1) − ∇R(xn), x? − xn+1〉 ≥ 0. Since
x? ∈ X?, 〈η∇fx?(x?), xn+1−x?〉 ≥ 0. Combining these inequalities yields η〈∇fxn(xn)−∇fx?(x?), xn+1−x?〉 ≤
〈∇R(xn+1)−∇R(xn), x? − xn+1〉. Then by the three-point equality of the Bregman divergence, we have

BR(x?‖xn+1) ≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − x?〉.

Because of the (α− β)-strong monotonicity of ∇fx(x), the above inequality implies

BR(x?‖xn+1) ≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − xn〉
− η〈∇fxn(xn)−∇fx?(x?), xn − x?〉
≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − xn〉 − η(α− β)‖x? − xn‖2

≤ BR(x?‖xn) +
η2(γ + β)2

2
‖x? − xn‖2 − η(α− β)‖x? − xn‖2

≤
(
1 + η2(γ + β)2 − 2η(α− β)L−1

)
BR(x?‖xn).

The third inequality results from the Cauchy-Scwharz inequality followed by maximizing over ‖xn+1 − xn‖ and
then applying Lemma 4. The last inequality uses the fact that R is 1-strongly convex and L-smooth.

If α > β and η is chosen such that η < 2(α−β)
L(γ+β)2 , we can see that the online mirror descent algorithm guarantees

linear convergence of BR(x?‖xn) to zero with rate (1−2η(α−β)L−1 +η2(γ+β)2) ∈ (0, 1). By strong convexity,
we have,

∆n = ‖x? − xn‖ ≤
√

2BR(x?‖xn)

≤
√

2
(
1 + η2(γ + β)2 − 2η(α− β)L−1

)n−1
2 BR(x?‖x0)1/2.

The proposition follows immediately from combining this result and Theorem 4.

D.5 Proof of Proposition 9

Recall that gn = ∇ln(xn) + εn + ξn. As discussed previously, we assume there exist constants 0 ≤ σ, κ <∞ such
that E

[
‖εn‖2∗

]
≤ σ2 and ‖ξn‖2∗ ≤ κ2 for all n. The mirror descent update rule is given by

xn+1 = arg min
x∈X

〈ηngn, x〉+BR(x‖xn). (12)

We use Corollary 1 along with known results for the static regret to bound the dynamic regret in the stochastic
case. The main idea of the proof is to show the result for the linearized losses. By convexity, this can be used to
bound both terms in Corollary 1.

Let u be any fixed vector in X , chosen independent of the learner’s decisions x1, . . . , xn. The first-order condition
for optimality of (12) yields 〈ηngn, xn+1−u〉 ≤ 〈u−xn+1,∇R(xn+1)−∇R(xn)〉. We use this condition to bound
the linearized losses as in the proof of Proposition 8. We can bound the linearized losses by the magnitude of
the stochastic gradients and Bregman divergences between u and the learner’s decisions:

〈gn, xn − u〉 ≤
1

ηn
〈u− xn+1,∇R(xn+1)−∇R(xn)〉+ 〈gn, xn − xn+1〉

=
1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1)− 1

ηn
BR(xn+1‖xn) + 〈gn, xn − xn+1〉

≤ 1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1)− 1

2ηn
‖xn − xn+1‖2 + ‖gn‖∗‖xn − xn+1‖

≤ 1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1) +

ηn
2
‖gn‖2∗.

The first inequality follows from adding 〈gn, xn − xn+1〉 to both sides of the inequality from the first-order
condition for optimality. The equality uses the three-point equality of the Bregman divergence. The second
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inequality follows from the Cauchy-Schwarz inequality and the fact that 1
2‖xn − xn+1‖2 ≤ BR(xn+1‖xn) due to

the 1-strong convexity of R. The last inequality maximizes over ‖xn − xn+1‖.

Define R = supw1,w2∈X BR(w1‖w2), which is bounded. Note that E
[
‖gn‖2∗

]
≤ 3(G2 + σ2 + κ2). Therefore,

summing from n = 1 to N , it holds for any u ∈ X selected before learning,

E

[
N∑
n=1

〈gn, xn − u〉

]
≤ E

[
N∑
n=1

(
1

ηn
− 1

ηn−1

)
R+

3

2
(G2 + σ2 + κ2)ηn

]
After rearrangement, we have

E

[
N∑
n=1

〈∇ln(xn) + εn, xn − u〉

]
≤ E

[
N∑
n=1

(
1

ηn
− 1

ηn−1

)
R+

3

2
(G2 + σ2 + κ2)ηn +DX ‖ξn‖∗

]
.

Choosing ηn = 1√
n

, ηn = η1, and u = x? (because x? is fixed for a fixed f selected before learning) yields

E
[∑N

n=1〈∇ln(xn) + εn, xn − x?〉
]

= O(
√
N + Ξ). Because of the law of total expectation and that xn does not

depend on εn, we have E[ ˜RegretsN (x?)] = E
[∑N

n=1〈∇ln(xn) + εn, xn − x?〉
]
. Further, by convexity, it follows

E[RegretsN (x?)] ≤ E[ ˜RegretsN (x?)]. Then, we may apply Corollary 1 to obtain the result. Note that there is no
requirement that R is smooth.

E Complete Proofs of Section 7

E.1 Proof of Proposition 10

Because ∇ln(·) is α-strongly monotone, it holds〈
∇ln(x∗n−1), x∗n−1 − x∗n

〉
≥ α‖x∗n−1 − x∗n‖2

Since y∗ satisfies
〈
∇ln−1(x∗n−1), x∗n − x∗n−1

〉
≥ 0, the above inequality implies that

α‖x∗n − x∗n−1‖2 ≤
〈
∇ln(x∗n−1)−∇ln−1(x∗n−1), x∗n−1 − x∗n

〉
≤ (β‖xn − xn−1‖+ an)‖x∗n−1 − x∗n‖

Rearranging the inequality gives the statement.

E.2 Proof of Theorem 5

For convenience, define λ := β
α . Recall that, by the mirror descent update rule, the first-order conditions for

optimality of both xx+1 and x∗n yield, for all x ∈ X ,

〈η∇ln(xn), x− xn+1〉 ≥ 〈∇R(xn)−∇R(xn+1), x− xn+1〉
〈∇ln(x∗n), x− x∗n〉 ≥ 0.

The proof requires many intermediate steps, which we arrange in a series of lemmas that typically follow from
each other in order. Ultimately, we aim to achieve a result that resembles a contraction as done in Proposition 8
but with additional terms due to the adversarial component of the predictable problem. We begin with general
bounds on the Bregman divergence beteween the learner’s decisions and the optimal decisions.

Lemma 6. At round n, for an (α, β)-predictable problem under the mirror descent algorithm, if ln is γ-smooth
and R is 1-strongly convex and L-smooth, then it holds that

BR(x∗n+1‖xn+1) ≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1)

+ λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗

and, in the next round,

BR(x∗n‖xn+1) ≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.



Ching-An Cheng∗, Jonathan Lee∗, Ken Goldberg, Byron Boots

Proof. The first result uses the basic three-point equality of the Bregman divergence followed by the Cauchy-
Schwarz inequality and Proposition 10. Note that this first part of the lemma does not require that xn is
generated from a mirror descent algorithm:

BR(x∗n+1‖xn+1) = BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1) + 〈x∗n+1 − x∗n,∇R(x∗n)−∇R(xn+1)〉
≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1) + ‖x∗n+1 − x∗n‖‖∇R(x∗n)−∇R(xn+1)‖∗
≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1)

+ λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗.

For the second part of the lemma, we require using the first-order conditions of optimality of both xn+1 for the
mirror descent update and x∗n for ln:

BR(x∗n‖xn+1) = BR(x∗n‖xn)−BR(xn+1‖xn) + 〈x∗n − xn+1,∇R(xn)−∇R(xn+1)〉
≤ BR(x∗n‖xn)−B(xn+1‖xn) + η〈∇ln(x∗n)−∇ln(xn), xn − x∗n〉

+ η〈∇ln(x∗n)−∇ln(xn), xn+1 − xn〉
≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.

The first line again applies the three-point equality of the Bregman divergence. The second line combines both
first-order optimality conditions to bound the inner product. The last inequality uses the strong convexity of ln
to bound η〈∇ln(x∗n) −∇ln(xn), xn − x∗n〉 ≤ −αη‖xn − x∗n‖2 and the Cauchy-Schwarz inequality along with the
smoothness of ln to bound the other inner product.

The second result also leads to a natural corollary that will be useful later in the full proof.

Corollary 2. Under the same conditions as Lemma 6, it holds that

BR(x∗n‖xn+1) =
(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn).

Proof. We start with the first inequality of Lemma 6 and then maximize over ‖xn+1−xn‖2. Finally, we applying
the strong convexity and smoothness of R to achieve the result:

BR(x∗n‖xn+1) ≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖

≤ (1− 2αηL−1)BR(x∗n‖xn)− 1

2
‖xn+1 − xn‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖

≤ (1− 2αηL−1)BR(x∗n‖xn) + η2γ2BR(x∗n‖xn) =
(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn).

We can combine both results of Lemma 6 in order to show

BR(x∗n+1‖xn+1) ≤ BR(x∗n+1‖x∗n) + λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗

+BR(x∗n‖xn)−B(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.

Some of the terms in the above inequality can be grouped and bounded above. By L-smoothness of R, we have

BR(x∗n+1‖x∗n) ≤ L
2 ‖x

∗
n+1 − x∗n‖2 ≤ L

2

(
λ‖xn − xn+1‖+ an

α

)2
= L

2

(
λ2‖xn − xn+1‖2 +

a2n
α2 + 2anλ

α ‖xn − xn+1‖
)

.

Because, R is 1-strongly convex, L ≥ 1; therefore, the previous inequality can be bounded from above using L2

instead of L. While this artificially worsens the bound, it will be useful for simplifying the conditions sufficient
for sublinear dynamic regret. 1-strong convexity of R also gives us −BR(xn+1, xn) ≤ − 1

2‖xn+1−xn‖2. Applying
these upper bounds and then aggregating terms yields

BR(x∗n+1‖xn+1) ≤ − (1− L2λ2)

2
‖xn − xn+1‖2 + (λ‖∇R(x∗n)−∇R(xn+1)‖∗ + ηγ‖xn − x∗n‖) ‖xn − xn+1‖

+BR(x∗n‖xn)− αη‖xn − x∗n‖2 +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗ +

a2
nL

2α2
+
anLλ

α
‖xn − xn+1‖

≤ − (1− L2λ2)

2
‖xn − xn+1‖2 + (λ‖∇R(x∗n)−∇R(xn+1)‖∗ + ηγ‖xn − x∗n‖) ‖xn − xn+1‖
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+BR(x∗n‖xn)− αη‖xn − x∗n‖2 +
anL

α
DX +

a2
nL

2α2
+
anLλ

α
DX

≤ λ2‖∇R(x∗n)−∇R(xn+1)‖2∗ + η2γ2‖xn − x∗n‖2

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ λ2L2‖x∗n − xn+1‖2 + η2γ2‖xn − x∗n‖2

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ 2λ2L2BR(x∗n‖xn+1) + 2η2γ2BR(x∗n‖xn)

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn,

where ζn = anLDX
α (1 + λ) +

a2nL
2α2 . The third inequality follows from maximizing over ‖xn − xn+1‖ and then

applying (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. For this operation, we require that L2λ2 < 1. The fourth
inequality uses L-smoothness of R. The last inequality uses the fact that R is 1-strongly convex to bound the
squared normed differences by the Bregman divergence.

We then use Corollary 2 to bound this result on BR(x∗n+1‖xn+1) in terms of only BR(x∗n‖xn) and the appropriate
constants:

BR(x∗n+1‖xn+1) ≤ 2L2λ2BR(x∗n‖xn+1) + 2η2γ2BR(x∗n‖xn)

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ 2L2λ2

1− L2λ2

(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn) +

2η2γ2

1− L2λ2
BR(x∗n‖xn)

+BR(x∗n‖xn)− 2αηL−1BR(x∗n‖xn) + ζn

=

(
1− 2αηL−1 +

2η2γ2

1− L2λ2
+

2L2λ2

1− L2λ2
− 4Lλ2αη

1− L2λ2
+

2L2λ2η2γ2

1− L2λ2

)
BR(x∗n‖xn) + ζn

=

(
1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
BR(x∗n‖xn) + ζn.

Thus, we have arrived at an inequality that resembles a contraction. However, the stepsize η > 0 may be chosen
such that it minimizes the factor in front of the Bregman divergence. This can be achieved, but it requires that
additional constraints are put on the value of λ.

Lemma 7. If λ < α
2L2γ and η = α

2Lγ2 , then(
1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
< 1

Proof. By optimizing over choices of η, it can be seen that

1− 2αηL−1 + 2η2γ2 ≥ 1− α2

2L2γ2
,

where η is chosen to be α
2Lγ2 . Therefore, in order to realize a contraction, we must have

1 >

(
1 + L2λ2

1− L2λ2

)(
1− α2

2L2γ2

)
.

Alternatively,

0 > 2L2λ2 − α2

2L2γ2
− λ2α2

2γ2
.

The quantity on the right hand size of the above inequality is in fact smaller than 2L2λ2 − α2

2L2γ2 , meaning that
it is sufficient to have the condition for a contraction be: α

2L2γ > λ..

Note that α
2L2γ < 1 since L ≥ 1 and γ ≥ α by the definitions of smoothness of R and ln, respectively. Thus, this

condition required to guarantee the contraction is stricter than requiring that λ < 1. If this condition is satisfied
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and if we set η = α
2Lγ2 , then we can further examine the contraction in terms of constants that depend only on

the properties of ln and R:

BR(x∗n+1‖xn+1) ≤
(

1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
BR(x∗n‖xn) + ζn

<

(
1 + α2

4L2γ2

1− α2

4L2γ2

)(
1− α2

2L2γ2

)
BR(x∗n‖xn) + ζn

=

(
1−

α4

8L4γ4

1− α2

4L2γ2

)
BR(x∗n‖xn) + ζn.

It is easily verified that the factor in front of the Bregman divergence on the right side is less than 1 and greater
than 5

6 .

By applying the above inequality recursively, we can derive the inequality below

1

2
‖xn − x∗n‖2 ≤ BR(x∗n‖xn) ≤ ρn−1BR(x∗1‖x1) +

n−1∑
k=1

ρn−k−1ζk,

where ρ =
(

1+L2λ2

1−L2λ2

) (
1− 2αηL−1 + 2η2γ2

)
< 1. Therefore the dynamic regret can be bounded as

RegretdN =

N∑
n=1

fn(xn)− fn(x∗n) ≤ G
N∑
n=1

‖xn − x∗n‖

≤
√

2GBR(x∗1‖x1)1/2
N∑
n=1

ρ
n−1
2 +

√
2G

N∑
n=2

(
n−1∑
k=1

ρn−k−1ζk

)1/2

≤
√

2GBR(x∗1‖x1)1/2
N∑
n=1

ρ
n−1
2 +

√
2G

N∑
n=2

n−1∑
k=1

ρ
n−k−1

2 ζ
1/2
k ,

where both inequalities use the fact that for a, b > 0, a + b ≤ a + b + 2
√
ab = (

√
a +
√
b)2. The left-hand term

is clearly bounded above by a constant since
√
ρ < 1. Analysis of the right-hand term is not as obvious, so we

establish the following lemma independently.

Lemma 8. If ρ < 1 and ζn = anLDX
α (1 + λ) +

a2nL
2α2 , then it holds that

√
2

N∑
n=2

n−1∑
k=1

ρ
n−k−1

2 ζ
1/2
k = O(AN +

√
NAN ).

Proof.

N∑
n=2

n−1∑
k=1

ρ
n−k−1

2 ζ
1/2
k =

N−1∑
n=1

ζ1/2
n

(
1 + ρ

1
2 + . . .+ ρ

N−1−n
2

)
≤ 1

1−√ρ

N−1∑
n=1

√
ζn.

The last inequality upper bounds the finite geometric series with the value of the infinite geometric series since
again

√
ρ < 1 for each k. Recall that ζn was defined as

ζn =
anLDX

α
(1 + λ) +

a2
nL

2α2
.

Therefore, the over the square roots can be bounded:

N−1∑
n=1

√
ζn ≤

√
LDX
α

(1 + λ)

N−1∑
n=1

√
an + α−1

√
L

2

N−1∑
n=1

an.

While the right-hand summation is simply the definition of AN−1, the left-hand summation yields
∑N−1
n=1

√
an ≤√

(N − 1)AN−1.

Then the total dynamic regret has order RegretdN = O(1 +AN +
√
NAN ).
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E.3 Proof of Theorem 6

E.3.1 Euclidean Space with β
α = 1

The proof first requires a result from analysis on the convergence of sequences that are nearly monotonic.

Lemma 9. Let (an)n∈N ⊂ R and (bn)n∈N ⊂ R be two sequences satisfying bn ≥ 0 and
∑n
k=1 ak <∞ ∀n ∈ N. If

bn+1 ≤ bn + an, then the sequence bn converges.

Proof. Define u1 := b1 and un := bn −
∑n−1
k=1 ak. Note that u1 = b1 ≥ b2 − a1 = u2. Recursively, bn − an−1 ≤

bn−1 =⇒ bn −
∑n−1
k=1 ak ≤ bn−1 −

∑n−2
k=1 . Therefore, un ≤ un+1. Note that (un)n∈N) is bounded below because

bn ≥ 0 and
∑n
k=1 ak <∞. This implies that (un)n∈N converges. Because (

∑n
k=1 ak)

n∈N, also converges, (bn)n∈N
must converge.

The majority of the proof follows a similar line of reasoning as a standard result in the field of discrete-time
pursuit-evasion games Alexander et al. (2006). Let ‖ · ‖ denote the Euclidean norm. We aim to show that if
the distance between the learner’s decision xn and the optimal decision x∗n does not converge to zero, then they
travel unbounded in a straight line, which is a contradiction.

Consider the following update rule which essentially amounts to a constrained greedy update:

xn+1 =
xn + x∗n

2

xn+1 is well defined at each round because X is convex. Define cn := ‖xn − x∗n‖. Then we have

0 ≤ cn+1 = ‖xn+1 − x∗n+1‖
≤ ‖xn+1 − x∗n‖+ ‖x∗n+1 − x∗n‖

=
1

2
‖xn − x∗n‖+ ‖x∗n+1 − x∗n‖

≤ 1

2
‖xn − x∗n‖+ ‖xn+1 − xn‖+

an
α

(∵ Proposition 10)

= ‖xn − x∗n‖+
an
α

= cn +
an
α

Because it is assumed that
∑∞
n=1 an < ∞, the sequences (cn)n∈N and (an)n∈N satisfy the sufficient conditions

of Lemma 9. Thus the sequence (cn)n∈N converges, so there exists a limit point C := limn→∞ cn ≥ 0. Towards
a contradiction, consider the case where C > 0. We will prove that this leads the points to follow a straight line
in the following lemma.

Lemma 10. Let θn denote the angle between the vectors from x∗n to x∗n+1 and from x∗n to xn+1. If limn→∞ cn > 0,
then limn→∞ cos θn = −1.

Proof. At round n+1 we can write the distance between the learner’s decision and the optimal decision in terms
of the previous round:

C2 = lim
n→∞

‖xn+1 − x∗n+1‖2

= lim
n→∞

(
‖xn+1 − x∗n‖2 + ‖x∗n+1 − x∗n‖2 − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)
≤ lim
n→∞

(
1

4
‖xn − x∗n‖2 + ‖xn − xn+1‖2 +

a2
n

α2
+

2an
α
‖xn − xn+1‖ − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)
= lim
n→∞

(
1

2
‖xn − x∗n‖2 +

a2
n

α2
+

2an
α
‖xn − xn+1‖ − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)
= lim
n→∞

1

2
‖xn − x∗n‖2 − 2 lim

n→∞
‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

=
1

2
C2 − 2 lim

n→∞
‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn
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The first inequality follows because ‖xn+1 − x∗n‖ = 1
2‖xn − x∗n‖ and ‖x∗n+1 − x∗n‖ ≤ ‖xn+1 − xn‖ + an

α due
to Proposition 10. The next equality again uses ‖xn+1−x∗n‖ = 1

2‖xn−x
∗
n‖. The second to last line follows from

passing the limit through the sum, where we have limn→∞ an = 0 because A∞ < ∞. That is, the inequality
above implies

2 lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn = −C
2

2
< 0

which in turn implies limn→∞ cos θn < 0. This leads to an upper bound

−2 lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn =
(
−2 lim

n→∞
cos θn

)
lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖

≤
(
−2 lim

n→∞
cos θn

)
lim
n→∞

1

2
‖xn − x∗n‖

(
‖xn+1 − xn‖+

an
α

)
=
−C2

2
lim
n→∞

cos θn

Combining these two inequalities, we can then conclude C2 ≤ C2

2 −
C2

2 cos θ ≤ C2. A necessary condition in
order for the bounds to be satisfied is cos θ = −1.

When C > 0, Lemma 10 therefore implies the points xn, xn+1, x
∗
n, x
∗
n+1 are colinear in the limit. Thus, ‖xn −

xn+m‖ grows unbounded in m, which contradicts the compactness of X . The alternative case must then be true:
C = limn→∞ ‖xn − x∗n‖ = 0. The dynamic regret can then be bounded as:

RegretdN =

N∑
n=1

ln(xn)− ln(x∗n) ≤ G
N∑
n=1

‖xn − x∗n‖

Since ‖xN − x∗N‖ → 0, we know limN→∞
1
N

∑N
n=1 ‖xn − x∗n‖ = 0. Therefore, the dynamic regret is sublinear.

Note that this result does not reveal a rate of convergence, only that ‖xn − x∗n‖ converges to zero, which is
enough for sublinear dynamic regret.

E.3.2 One-dimensional Space with arbitrary β
α

In the case where d = 1, we aim to prove sublinear dynamic regret regardless of α and β by showing that xn
essentially traps x∗n by taking conservative steps as before. Rather than the constraint being |xn − xn+1| ≤
1
2 |xn − x

∗
n|, we choose xn+1 in the direction of x∗n subject to |xn − xn+1| ≤ 1

1+λ |xn − x
∗
n|. Specifically, we will

use the following update rule:

xn+1 =
λxn + x∗n

1 + λ
(13)

Recall that sublinear dynamic regret is implied by cn := |xn − x∗n| converging to zero as n → ∞. Therefore,
below we will prove the above update rule results in limn→∞ cn = 0. Like our discussions above, this implies
achieving sublinear dynamic regret but not directly its rate.

Suppose at any time |xn − x∗n| = 0. Then we are done since the learner can repeated play the same decision
without x∗n changing. Below we consider the case |xn−x∗n| 6= 0. We prove this by contradiction. First we observe
that the update in (13) makes sure that, at any round, x∗n+1 cannot switch to the opposite side of x∗n with respect
to xn+1 and xn; namely it is guaranteed that (x∗n+1 − xn+1)(x∗n − xn+1) ≥ 0 and (x∗n+1 − xn)(x∗n − xn) ≥ 0.

Towards a contradiction, suppose that there is some C > 0 such that |xn − x∗n| ≥ C for infinitely many n. Then
xn at every round moves a distance of at least C

1+λ in the same direction infinitely since x∗n+1 always lies the
same side of xn+1 as x∗n. This contradicts the compactness of X . Therefore |xn − x∗n| must converge to zero.

F New Insights into Imitation Learning

In this section, we investigate an application of the COL framework in the sequential decision problem of online
IL (Ross et al., 2011). We consider an episodic MDP with state space S, action space A, and finite horizon H.
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For any s, s′ ∈ S and a ∈ A, the transition dynamics P gives the conditional density, denoted by P(s′|s, a), of
transitioning to s′ starting from state s and applying action a. The reward of state s and action a is denoted as
r(s, a). A deterministic policy π is a mapping from S to a density over A. We suppose the MDP starts from
some fixed initial state distribution. We denote the probability of being in state s at time t under policy π as
dπt (s), and we define the average state distribution under π as dπ(s) = 1

T

∑T
t=1 d

π
t (s).

In IL, we assume that P and r are unknown to the learner, but, during training time, the learner is given access
to an expert policy π? and full knowledge of a supervised learning loss function c(s, π;π?), defined for each state
s ∈ S. The objective of IL is to solve

min
π∈Π

Es∼dπ [c(s, π;π?)] , (14)

where Π is the set of allowable parametric policies, which will be assumed to be convex. Note that it is often
the case that π? 6∈ Π.

As dπ is not known analytically, optimizing (14) directly leads to a reinforcement learning problem and therefore
can be sample inefficient. Online IL, such as the popular DAgger algorithm Ross et al. (2011), bypasses this
difficulty by reducing (14) into a sequence of supervised learning problems. Below we describe a general construc-
tion of online IL: at the nth iteration (1) execute the learner’s current policy πn in the MDP to collect state-action
samples; (2) update πn+1 with information of the stochastic approximation of ln(π) = Edπn [c(s, π;π?)] based the
samples collected in the first step. Importantly, we remark that in these empirical risks, the states are sampled
according to dπn of the learner’s policy.

The use of online learning to analyze online IL is well established (Ross et al., 2011). As studied in Cheng
and Boots (2018); Lee et al. (2018), these online losses can be formulated as a bifunction, ln(π) = fπn(π) =
Es∼dπn [c(s, π;π?)], and the policy class Π can be viewed as the decision set X . Naturally, this online learning
formulation results in many online IL algorithms resembling standard online learning algorithms, such as follow-
the-leader (FTL), which uses full information feedback ln(·) = Es∼dπn [c(s, ·;π?)] at each round (Ross et al., 2011),
and mirror descent (Sun et al., 2017), which uses the first-order feedback ∇ln(πn) = Edπn [∇πnc(s, πn;π?)]. This
feedback can also be approximated by unbiased samples. The original work by Ross et al. (2011) analyzed FTL
in the static regret case by immediate reductions to known static regret bounds of FTL. However, a crucial
objective is understanding when these algorithms converge to useful solutions in terms of policy performance,
which more recent work has attempted to address (Cheng and Boots, 2018; Lee et al., 2018; Cheng et al., 2019b).
According to these refined analyses, dynamic regret is a more appropriate solution concept to online IL when
π? /∈ Π, which is the common case in practice.

Below we frame online IL in the proposed COL framework and study its properties based on the properties of
COL that we obtained in the previous sections. We have already shown that the per-round loss ln(·) can be
written as the evaluation of a bifunction fπn(·). This COL problem is actually an (α, β)-regular COL problem
when the expected supervised learning loss Es∼dπn [c(s, π;π?)] is strongly convex in π and the state distribution dπ

is Lipschitz continuous (see Ross et al. (2011); Cheng and Boots (2018); Lee et al. (2018)). We can then leverage
our results in the COL framework to immediately answer an interesting question in the online IL problem.

Proposition 14. When α > β, there exists a unique policy π̂ that is optimal on its own distribution:

Es∼dπ̂n [c(s, π̂;π?)] = min
π∈Π

Es∼dπ̂n [c(s, π;π?)] .

This result is immediate from the fact that α > β implies that∇fπ(π) is a µ-strongly monotone VI with µ = β−α
by Proposition 5. The VI is therefore guaranteed to have a unique solution (Facchinei and Pang, 2007).

Furthermore, we can improve upon the known conditions sufficient to find this policy through online gradient
descent and give a non-asymptotic convergence guarantee through a reduction to strongly monotone VIs. We
will additionally assume that f is γ-smooth in π, satisfying ‖∇fπ′(π1) −∇fπ′(π2)‖ ≤ γ‖π1 − π2‖ for any fixed
query argument π′.

We then apply our results from Section 6.1. Specifically, we consider mirror descent with BR(π‖π′) = 1
2‖π−π

′‖22,
which is equivalent to online gradient descent studied in Sun et al. (2017); Lee et al. (2018). Note that R = 1

2‖π‖
2
2,

which is 1-strongly convex and 1-smooth. Then, we apply Lemma 5.
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Corollary 3. If α > β and the stepsize is chosen such that η = α−β
(γ+β)2 , then, under the online gradient descent

algorithm with deterministic feedback gn = ∇ln(πn), it holds that

‖πn − π̂‖2 ≤

(
1−

(
α− β
γ + β

)2
)n−1

‖π1 − π̂‖2

By Proposition 8, RegretdN will therefore be sublinear (in fact, RegretdN = O(1)) and the policy converges linearly
to the policy that is optimal on its own distribution, π̂. The only condition required on the problem itself is
α > β while the state-of-the-art sufficient condition of Lee et al. (2018) additionally requires α

γ >
2β
α . The result

also gives a new non-asymptotic convergence rate to π̂.

The above result only considers the case when the feedback is deterministic; i.e., there is no sampling error due
to executing the policy on the MDP, and the risk Edπn [c(s, π;π?)] is known exactly at each round. While this
is a standard starting point in analysis of online IL algorithms (Ross et al., 2011), we are also interested in the
more realistic stochastic case, which has so far not been analyzed for the online gradient descent algorithm in
online IL. It turns out that the COL framework can be easily leveraged here too to provide a sublinear dynamic
regret bound.

At round n, we consider observing the empirical risk l̃n(π) = 1
T

∑T
t=1 c(st, π;π?) where st ∼ dπnt . Note that

E[l̃n(π)|πn] = ln(π) and it is easy to show that the first-order feedback ∇l̃n(πn) can be modeled as the expected
gradient with an additive zero-mean noise: gn = ∇ln(πn) + εn. For simplicity, we assume E

[
‖εn‖2

]
<∞.

Corollary 4. If α > β and the stepsize is chosen as ηn = 1√
n

, then, under online gradient descent with stochastic

feedback, it holds that E[RegretdN ] = O(
√
N).

This corollary follows from Proposition 9, which in turn leverages the reduction to static regret in Corollary 1.


