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Abstract

Online learning is a powerful tool for analyz-
ing iterative algorithms. However, the classic
adversarial setup fails to capture regularity
that can exist in practice. Motivated by this
observation, we establish a new setup, called
Continuous Online Learning (COL), where
the gradient of online loss function changes
continuously across rounds with respect to
the learner’s decisions. We show that COL
appropriately describes many interesting ap-
plications, from general equilibrium problems
(EPs) to optimization in episodic MDPs. Us-
ing this new setup, we revisit the difficulty
of sublinear dynamic regret. We prove a
fundamental equivalence between achieving
sublinear dynamic regret in COL and solv-
ing certain EPs. With this insight, we of-
fer conditions for efficient algorithms that
achieve sublinear dynamic regret, even when
the losses are chosen adaptively without any
a priori variation budget. Furthermore, we
show for COL a reduction from dynamic re-
gret to both static regret and convergence in
the associated EP, allowing us to analyze the
dynamic regret of many existing algorithms.

1 INTRODUCTION

Online learning (Gordon, 1999; Zinkevich, 2003),
which studies the interactions between a learner (i.e.
an algorithm) and an opponent through regret mini-
mization, has proved to be a powerful framework for
analyzing and designing iterative algorithms. How-
ever, while classic setups focus on bounding the worst
case, many applications are not naturally adversarial.
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In this work, we aim to bridge this reality gap by estab-
lishing a new online learning setup that better captures
certain regularity that appears in practical problems.

Formally, an online learning problem repeats the fol-
lowing steps: in round n, the learner plays a deci-
sion xn from a decision set X , the opponent chooses
a loss function ln : X → R based on the decisions
of the learner, and then information about ln (e.g.
∇ln(xn)) is revealed to the learner for making the next
decision. This abstract setup (Shalev-Shwartz et al.,
2012; Hazan et al., 2016) studies the adversarial set-
ting where ln can be almost arbitrarily chosen except
for minor restrictions like convexity. Often the perfor-
mance is measured relatively through static regret,

RegretsN :=
∑N
n=1 ln(xn)−minx∈X

∑N
n=1 ln(x). (1)

Recently, interest has emerged in algorithms that make
decisions that are nearly optimal at every round. The
regret is therefore measured on-the-fly and suitably
named dynamic regret,

RegretdN :=
∑N
n=1 ln(xn)−

∑N
n=1 ln(x∗n), (2)

where x∗n ∈ arg minx∈X ln(x). As dynamic regret by
definition upper bounds static regret, minimizing dy-
namic regret is a more difficult problem.

While algorithms with sublinear static regret are well
understood, the research on dynamic regret is rela-
tively recent. As dynamic regret grows linearly in
the adversarial setup, most papers (Zinkevich, 2003;
Mokhtari et al., 2016; Yang et al., 2016; Dixit et al.,
2019; Besbes et al., 2015; Jadbabaie et al., 2015; Zhang
et al., 2017) focus on how dynamic regret depends on
certain variations of the loss sequence across rounds
(such as the path variation VN =

∑N−1
n=1 ‖x∗n−x∗n+1‖).

Even if the algorithm does not require knowing the
variation, the bound is still written in terms of it.
While tight bounds have been established (Yang et al.,
2016), their results do not always translate into con-
ditions for achieving sublinear dynamic regret in prac-
tice, because the size (i.e. budget) of the variation can
be difficult to verify beforehand. This is especially the
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case when the opponent is adaptive, responding to the
learner’s decisions at each round. In these situations,
it is unknown if existing results become vacuous or
yield sublinear dynamic regret.

Motivated by the use of online learning to analyze it-
erative algorithms in practice, we consider a new setup
we call Continuous Online Learning (COL), which di-
rectly models regularity in losses as part of the problem
definition, as opposed to the classic adversarial setup
that adds ad-hoc budgets. As we will see, this minor
modification changes how regret and feedback interact
and makes the quest of seeking sublinear dynamic re-
gret well-defined and interpretable, even for adaptive
opponents, without imposing variation budgets.

1.1 Definition of COL

A COL problem is defined as follows. We suppose
that the opponent possesses a bifunction f : (x, x′) 7→
fx(x′) ∈ R, for x, x′ ∈ X , that is unknown to the
learner. This bifunction is used by the opponent to de-
termine the per-round losses: in round n, if the learner
chooses xn, then the opponent responds with

ln(·) = fxn(·). (3)

Finally, the learner suffers ln(xn) and receives feedback
about ln. For fx(x′), we treat x as the query argument
that proposes a question (i.e. an optimization objec-
tive fx(·)), and treat x′ as the decision argument whose
performance is evaluated. This bifunction f generally
can be defined online as queried, with only the limita-
tion that the same loss function fx(·) must be selected
by the opponent whenever the learner plays the same
decision x. Thus, the opponent can be adaptive, but
in response to only the learner’s current decision.

In addition to the restriction in (3), we impose regu-
larity into f to relate ln across rounds so that seeking
sublinear dynamic regret becomes well defined.1

Definition 1. We say an online learning problem is
continuous if ln is set as in (3) by a bifunction f sat-
isfying, ∀x′ ∈ X , ∇fx(x′) is a continuous map in x 2.

The continuity structure in Definition 1 and the con-
straint (3) in COL limit the degree that losses can vary,
making it possible for the learner to partially infer fu-
ture losses from the past experiences.

The continuity may appear to restrict COL to purely
deterministic settings, but adversity such as stochas-
ticity can be incorporated via an important nuance
in the relationship between loss and feedback. In the
classic online learning setting, the adversity is incor-
porated in the loss: the losses ln and decisions xn may

1Otherwise the opponent can define fx(·) pointwise for
each x to make ln(xn)− ln(x∗n) constant.

2We define ∇fx(x′) as the derivative with respect to x′.

themselves be generated adversarially or stochastically
and then they directly determine the feedback, e.g.,
given as full information (receiving ln or ∇ln(xn)) or
bandit (just ln(xn)). The (expected) regret is then
measured with respect to these intrinsically adversar-
ial losses ln. By contrast, in COL, we always measure
regret with respect to the true underlying bifunction
ln = fxn . However, we give the opponent the freedom
to add an additional stochastic or adversarial compo-
nent into the feedback; e.g., in first-order feedback, the
learner could receive gn = ∇ln(xn) + ξn, where ξn is
a probabilistically bounded and potentially adversar-
ial vector, which can be used to model noise or bias
in feedback. In other words, the COL setting models
a true underlying loss with regularity, but allows the
adversary to be modeled within the feedback. This
addition is especially important for dynamic regret, as
it allows us to always consider regret against the true
fxn while incorporating the possibility of stochasticity.

1.2 Examples

At this point, the setup of COL may sound abstract,
but this setting is in fact motivated by a general class
of problems and iterative algorithms used in prac-
tice, some of which have been previously analyzed
in the online learning setting. Generally, COL de-
scribes the trial-and-error principle, which attempts to
achieve a difficult objective fx(x) through iteratively
constructing a sequence of simplified and related sub-
problems fxn(x), similar to majorize-minimize (MM)
algorithms. Our first application of this kind is the
use of iterative algorithms in solving (stochastic) equi-
librium problems (EPs) (Bianchi and Schaible, 1996).
EPs are a well-studied subject in mathematical pro-
gramming, which includes optimization, saddle-point
problems, variational inequality (VI) (Facchinei and
Pang, 2007), fixed-point problems (FP), etc. Except
for toy cases, these problems usually rely on using iter-
ative algorithms to generate ε-approximate solutions;
interestingly, these algorithms often resemble known
algorithms in online learning, such as mirror descent
or Follow-the-Leader (FTL). In Sections 4 and 5, we
will show how the residual function of these problems
renders a natural choice of bifunction f in COL and
how the regret of COL relates to its solution quality.
In this example, it is particularly important to clas-
sify the adversary (e.g. due to bias or stochasticity)
as feedback rather than as a loss function, to properly
incorporate the continuity in the source problem.

Another class of interesting COL problems comes from
optimization in episodic Markov decision processes
(MDPs). In online imitation learning (IL) (Ross et al.,
2011), the learner optimizes a policy to mimic an
expert policy π?. In round n, the loss is ln(π) =
Es∼dπn [c(s, π;π?)], where dπn is the state distribu-
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tion visited by running the learner’s policy πn in the
MDP, and c(s, π;π?) is a cost that measures the dif-
ference between a policy π and the expert π?. This is
a bifunction form where continuity exists due to ex-
pectation and feedback is noisy about ln (allowed by
our feedback model). In fact, online IL is the main
inspiration behind this research. An early analysis
of IL was framed using the adversarial, static regret
setup (Ross et al., 2011). Recently, results were refined
through the use of continuity in the bifunction and dy-
namic regret (Cheng and Boots, 2018; Lee et al., 2018;
Cheng et al., 2019b). This problem again highlights
the importance of treating stochasticity as the feed-
back. We wish to measure regret with respect to the
expected cost ln(π) which admits a continuous struc-
ture, but feedback only arrives via stochastic samples
from the MDP. Structural prediction and system iden-
tification can be framed similarly (Ross and Bagnell,
2012; Venkatraman et al., 2015). Details, including
new insights into the IL, can be found in Appendix F.

Lastly, we note that the classic fitted Q-iteration (Gor-
don, 1995; Riedmiller, 2005) for reinforcement learning
also uses a similar setup. In the nth round, the loss can
be written as ln(Q) = Es,a∼µπ(Qn)

Es′∼P(s,a)[(Q(s, a)−
r(s, a) − γmaxa′ Qn(s′, a′))2], where µπ(Qn) is the
state-action distribution3 induced by running a pol-
icy π(Qn) based on the Q-function Qn of the learner,
and P is the transition dynamics, r is the reward, and
γ is the discount factor. Again this is a COL problem.

1.3 Main Results

The goal of this paper is to establish COL and to
study, particularly, conditions and efficient algorithms
for achieving sublinear dynamic regret. We choose not
to pursue algorithms with fast static regret rates in
COL, as there have been studies on how algorithms
can systematically leverage continuity in COL to ac-
celerate learning (Cheng et al., 2019b,a) although they
are framed as online IL research. Knowledge of dy-
namic regret is less well-known, with the exception of
Cheng and Boots (2018); Lee et al. (2018) (both also
framed as online IL), which study the convergence of
FTL and mirror descent, respectively.

Our first result shows that achieving sublinear dy-
namic regret in COL is equivalent to solving certain
EP, VI, and FP problems that are known to be PPAD-
complete4 (Daskalakis et al., 2009). In other words, we
show that achieving sublinear dynamic regret that is
polynomial in the dimension of the decision set can be
extremely difficult.

Nevertheless, based on the solution concept of EP, VI,

3Or some fixed distribution with sufficient excitation.
4In short, they are NP problems whose solutions are

known to exist, but it is open as to if they belong to P.

and FP, we show a reduction from monotone EPs to
COL, and we present necessary conditions and suffi-
cient conditions for achieving sublinear dynamic re-
gret with polynomial dependency. Particularly, we
show a reduction from sublinear dynamic regret to
static regret and convergence to the solution of the
EP/VI/FP. This reduction allows us to quickly derive
non-asymptotic dynamic regret bounds of popular on-
line learning algorithms based on their known static
regret rates. Finally, we extend COL to consider par-
tially adversarial loss and discuss open questions.

2 RELATED WORK

Much work in dynamic regret has focused on improv-
ing rates with respect to various measures of the loss
sequence’s variation. Zinkevich (2003); Mokhtari et al.
(2016) showed the dynamic regret of gradient descent
in terms of the path variation. Other measures of
variation such as functional variation (Besbes et al.,
2015) and squared path variation (Zhang et al., 2017)
have also been studied. While these algorithms may
not need to know the variation size beforehand, their
guarantees are still stated in terms of these variations.
Therefore, these results can be difficult to interpret
when the losses can be chosen adaptively.

To illustrate, consider the online IL problem. It is
impossible to know the variation budget a priori be-
cause the loss observed at each round of IL is a function
of the policy selected by the algorithm. This budget
could easily be linear, if an algorithm selects very dis-
parate policies, or it could be zero if the algorithm
always naively returns the same policy. Thus, existing
budget-based results cannot describe the convergence
of an IL algorithm.

Our work is also closely related to that of Rakhlin and
Sridharan (2013); Hall and Willett (2013), which con-
sider predictable loss sequences, i.e. sequences that are
presumed to be non-adversarial and admit improved
regret rates. The former considers static regret for
both full and partial information cases, and the latter
considers a similar problem setting but for the dynamic
regret case. These analyses, however, still require a
known variation quantity in order to be interpretable.

By contrast, we leverage extra structures of COL to
provide interpretable dynamic regret rates, without a
priori constraints on the variation. That is, our rates
are internally governed by the algorithms, rather than
externally dictated by a variation budget. This prob-
lem setup is in some sense more difficult, as achieving
sublinear dynamic regret requires that both the per-
round losses and the loss variation, as a function of the
learner’s decisions, be simultaneously small. Nonethe-
less, we can show conditions for sublinear dynamic re-
gret using the bifunction structure in COL.
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3 PRELIMINARIES

We review background, in particular VIs and EPs, for
completeness (Facchinei and Pang, 2007; Bianchi and
Schaible, 1996; Konnov and Laitinen, 2002).

Notation Throughout the paper, we reserve the no-
tation f to denote the bifunction that defines COL
problems, and we assume X ⊂ Rd is compact and con-
vex, where d ∈ N+ is finite. We equip X with norm
‖·‖, which is not necessarily Euclidean, and write ‖·‖∗
to denote its dual norm. We denote its diameter by
DX := maxx,x′∈X ‖x− x′‖.

As in the usual online learning, we are particularly in-
terested in the case where fx(·) is convex and contin-
uous. For simplicity, we will assume all functions are
continuously differentiable, except for fx(x′) as a func-
tion over the querying argument x, where x′ ∈ X . We
will use ∇ to denote gradients. In particular, for the
bifunction f , we use ∇f to denote ∇f : x 7→ ∇fx(x)
and we recall, in the context of f , ∇ is always with re-
spect to the decision argument. Likewise, given x ∈ X ,
we use ∇fx to denote ∇fx(·). Note that the continu-
ous differentiability of fx′(·) together with the conti-
nuity of ∇f·(x) implies ∇f is continuous; the analy-
ses below can be extended to the case where ∇fx′(·)
is a subdifferential.5 Finally, we assume, ∀x ∈ X ,
‖∇fx(x)‖∗ ≤ G for some G <∞.

Convexity For µ ≥ 0, a function h : X → R is
called µ-strongly convex if it satisfies, for all x, x′ ∈ X ,
h(x′) ≥ h(x) + 〈∇h(x), x′ − x〉+ µ

2 ‖x− x
′‖2. If h sat-

isfies above with µ = 0, it is called convex. A func-
tion h is called pseudo-convex if 〈∇h(x), x′ − x〉 ≥ 0
implies h(x′) ≥ h(x). These definitions have a nat-
ural inclusion: strongly convex functions are convex;
convex functions are pseudo-convex. We say h is L-
smooth if ∇h is L-Lipschitz continuous, i.e., there is
L ∈ [0,∞) such that ‖∇h(x)−∇h(x′)‖∗ ≤ L‖x− x′‖
for all x, x′ ∈ X . Finally, we will use Bregman di-
vergence BR(x′||x) := R(x′)−R(x)− 〈∇R(x), x′ − x〉
to measure the difference between x, x′ ∈ X , where
R : X → R is a µ-strongly convex function with µ > 0;
by definition BR(·||x) is also µ-strongly convex.

Fixed-Point Problems Let T : X → 2X be a
point-to-set map, where 2X denotes the power set of
X . A fixed-point problem FP(X , T ) aims to find a
point x? ∈ X such that x? ∈ T (x?). Suppose T is
λ-Lipschitz. It is called non-expansive if λ = 1 and
λ-contractive if λ < 1.

Variational Inequalities VIs study equilibriums
defined by vector-valued maps. Let F : X → Rd

5Our proof can be extended to upper hemicontinuity for
set-valued maps, such as subdifferentials.

be a point-to-point map. The problems VI(X , F ) and
DVI(X , F ) aim to find x? ∈ X and x? ∈ X , respec-
tively, such that the following conditions are satisfied:

VI : 〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X
DVI : 〈F (x), x− x?〉 ≥ 0, ∀x ∈ X

VIs and DVIs are also known as Stampacchia and
Minty VIs, respectively (Facchinei and Pang, 2007).
The difficulty of solving VIs depends on the property
of F . For µ ≥ 0, F is called µ-strongly monotone if
∀x, x′ ∈ X . 〈F (x)− F (x′), x− x′〉 ≥ µ‖x− x′‖2. If F
satisfies the above with µ = 0, F is called monotone.
F is called pseudo-monotone if 〈F (x′), x− x′〉 ≥ 0 im-
plies 〈F (x), x− x′〉 ≥ 0 for x, x′ ∈ X . It is known that
the gradient of a (strongly/pseudo) convex function is
(strongly/pseudo) monotone.

VIs are generalizations of FPs. For a point-to-point
map T : X → X , FP(X , T ) is equivalent to VI(X , I −
T ), where I is the identity map. If T is λ-contractive,
then F is (1− λ)-strongly monotone.

Equilibrium Problems EPs further generalize
VIs. Let Φ : X × X → R be a bifunction such that
Φ(x, x) ≥ 0. The problems EP(X ,Φ) and DEP(X ,Φ)
aim to find x?, x? ∈ X , respectively, such that

EP : Φ(x?, x) ≥ 0, ∀x ∈ X
DEP : Φ(x, x?) ≤ 0, ∀x ∈ X .

By definition, we have VI(X , F ) = EP(X ,Φ) if we
define Φ(x, x′) = 〈F (x), x′ − x〉.

We can also define monotonicity properties for EPs.
For µ ≥ 0, Φ is called µ-strongly monotone if for
∀x, x′ ∈ X , Φ(x, x′) + Φ(x′, x) ≤ −µ‖x − x′‖2. It
is called monotone if it satisfies the above with µ = 0.
Similarly, Φ is called pseudo-monotone if Φ(x, x′) ≥ 0
implies Φ(x′, x) ≤ 0 for x, x′ ∈ X . One can verify that
these definitions are consistent with the ones for VIs.

Primal and Dual Solutions We establish some ba-
sics of the solution concepts of EPs. As VIs are a spe-
cial case of EPs, these results can be applied to VIs
too. First, we have a basic relationship between the
solution sets, X? of EP and X? of DEP.

Proposition 1. (Bianchi and Schaible, 1996) If Φ is
pseudo-monotone, X? ⊆ X?. If Φ(·, x) is continuous
∀x ∈ X , X? ⊆ X?.

The proposition states that a dual solution is always a
primal solution when the problem is continuous, and
a primal solution is a dual solution when the problem
is pseudo-monotone. Intuitively, we can think of the
primal solutions X? as local solutions and the dual so-
lutions X? as global solutions. In particular for VIs,
if F is a gradient of some, even nonconvex, function,
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any solution in X? is a global minimum; any local
minimum of a pseudo-convex function is a global min-
imum (Konnov and Laitinen, 2002).

We note, however, that Proposition 1 does not directly
ensure that the solution sets are non-empty. The ex-
istence of primal solutions X? has been extensively
studied. Here we include a basic result that is suffi-
cient for the scope of our online learning problems with
compact and convex X .

Proposition 2. (Bianchi and Schaible, 1996) If
Φ(x, ·) is convex and Φ(·, x) is continuous ∀x ∈ X ,
then X? is non-empty.

Analogous results have been established for VIs and
FPs as well. If F and T are continuous then solutions
exist for both VI(X , F ) and FP(X , T ), respectively
(Facchinei and Pang, 2007). On the contrary, the exis-
tence of dual solutions X? is mostly based on assump-
tions. For example, by Proposition 1, X? is non-empty
when the problem is pseudo-monotone. Uniqueness
can be established with stronger conditions.

Proposition 3. (Konnov and Laitinen, 2002) If the
conditions of Proposition 2 are met and Φ is strongly
monotone, then the solution to EP(X ,Φ) is unique.

4 EQUIVALENCE AND HARDNESS

We first ask what extra information the COL formula-
tion entails. We present this result as an equivalence
between achieving sublinear dynamic in COL and solv-
ing several mathematical programming problems.

Theorem 1. Let f be given in Definition 1. Suppose
fx(·) is convex and continuous. The following prob-
lems are equivalent:

1. Achieving sublinear dynamic regret w.r.t. f .

2. VI(X , F ) where F (x) = ∇fx(x).

3. EP(X ,Φ) where Φ(x, x′) = fx(x′)− fx(x).

4. FP(X , T ) where T (x) = arg minx′∈X fx(x′).

Therefore, if there is an algorithm that achieves sub-
linear dynamic regret that in poly(d), then it solves all
PPAD problems in polynomial time.

Theorem 1 says that, because of the existence of a
hidden bifunction, achieving sublinear dynamic re-
gret is essentially equivalent to finding an equilibrium
x? ∈ X?, in which X? denotes the set of solutions
of the EP/VI/FP problems in Theorem 1. Therefore,
a necessary condition for sublinear dynamic regret is
that X? is non-empty. Fortunately, this is true for our
problem definition by Proposition 2.

Moreover, it suggests that extra structure on COL is
necessary for algorithms to achieve sublinear dynamic

regret that depends polynomially on d (the dimension
of X ). The requirement of polynomial dependency is
important to properly define the problem. Without
it, sublinear dynamic regret can be achieved already
at least asymptotically, e.g. by simply discretizing X
(as X is compact and ∇f is continuous) and grid-
searching, albeit with an exponentially large constant.

Due to space limitation, we defer the proof of Theo-
rem 1 to Appendix A, along with other proofs for this
section. But we highlight the key idea is to prove that
the gap function ρ(x) := fx(x)−minx′∈X fx(x′) can be
used as a residual function for the above EP/VI/FP
in Theorem 1. In particular, we note that, for the Φ
in Theorem 1, ρ(x) is equivalent to a residual function
rep(x) := maxx′∈X −Φ(x, x′) used in the EP literature.

Below we discuss sufficient conditions on f based on
the equivalence between problems in Theorem 1, so
that the EP/VI/FP in Theorem 1 becomes better
structured and hence allows efficient algorithms.

4.1 EP and VI Perspectives

We first discuss some structures on f such that the
VI/EP in Theorem 1 can be efficiently solved. From
the literature, we learn that the existence of dual so-
lutions is a common prerequisite to design efficient
algorithms (Konnov, 2007; Dang and Lan, 2015; Bu-
rachik and Millán, 2016; Lin et al., 2018). For example,
convergence guarantees on combined relaxation meth-
ods (Konnov, 2007) for VIs rely on the assumption
that X? is non-empty. Here we discuss some sufficient
conditions for non-empty X?, which by Proposition 1
and Definition 1 is a subset of X?.

By Proposition 1 and 2, a sufficient condition for non-
empty X? is pseudo-monotonicity of F or Φ (which we
recall is a consequence of monotonicity). For our prob-
lem, the dual solutions of the EP and VI are different,
while their primal solutions X∗ are the same.

Proposition 4. Let X? and X?? be the solutions to
DVI(X , F ) and DEP(X ,Φ), respectively, where F and
Φ are defined in Theorem 1. Then X?? ⊆ X?. The
converse is true if fx(·) is linear ∀x ∈ X .

Proposition 4 shows that, for our problem, pseudo-
monotonicity of Φ is stronger than that of F . This is
intuitive: as the pseudo-monotonicity of Φ implies that
there is x? such that fx(x?) ≤ fx(x), i.e. a decision
argument that is consistently better than the query-
ing argument under the latter’s own question, whereas
the pseudo-monotonicity of F merely requires the in-
tersection of the half spaces of X cut by ∇fx(x) to
be non-empty. Another sufficient assumption for non-
empty X? of VIs is that X is sufficiently strongly con-
vex. This condition has recently been used to show fast
convergence of mirror descent and conditional gradient
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descent (Garber and Hazan, 2015; Veliov and Vuong,
2017). We leave this discussion to Appendix B.

The above assumptions, however, are sometimes hard
to verify for COL. Here we define a subclass of COL
and provide constructive (but restrictive) conditions.

Definition 2. We say a COL problem with f is (α, β)-
regular if for some α, β ∈ [0,∞), ∀x ∈ X ,

1. fx(·) is a α-strongly convex function.

2. ∇f·(x) is a β-Lipschitz continuous map.

We call β the regularity constant; for short, we will
also say ∇f is β-regular and f is (α, β)-regular. We
note that β is different from the Lipschitz constant of
∇fx(·). The constant β defines the degree of online
components; in particular, when β = 0 the learning
problem becomes offline. Based on (α, β)-regularity,
we have a sufficient condition to monotonicity.

Proposition 5. ∇f is (α− β)-strongly monotone.

Proposition 5 shows if ∇fx(·) does not change too fast
with x, then ∇f is strongly monotone in the sense of
VI, implying X? = X? is equal to a singleton (but
not necessarily the existence of X??). Strong mono-
toncity also implies fast linear convergence is possible
for deterministic feedback (Facchinei and Pang, 2007).
When α = β, it implies at least monotonicity, by which
we know X? is non-empty.

We emphasize that the condition α ≥ β is not nec-
essary for monotonicity. The monotonicity condition
of ∇f more precisely results from the monotonicity
of ∇f·(x′) and ∇fx(·), as 〈∇fx(x)−∇fx′(x′), x− x′〉 =

〈∇fx(x)−∇fx(x′), x− x′〉 + 〈∇fx(x′)−∇fx′(x′), x− y〉.
From this decomposition, we can observe that as long
as the sum of ∇f·(x′) and ∇fx(·) is monotone for any
x, x′ ∈ X , then ∇f is monotone. In the definition
of (α, β)-regular problems, no condition is imposed on
∇f·(x), so we need α ≥ β in Proposition 5.

4.2 Fixed-point Perspective

We can also study the feasibility of sublinear dynamic
regret from the perspective of the FP in Theorem 1.
Here again we consider (α, β)-regular problems.

Proposition 6. Let α > 0. If α > β, then T is β
α -

contractive; if α = β, T is non-expansive.

We see again that the ratio β
α plays an important role

in rating the difficulty of the problem. When α >
β, an efficient algorithm for obtaining the the fixed
point solution is readily available (i.e. by contraction)
An alternative interpretation is that x∗n changes at a
slower rate than xn when α > β with respect to ‖ · ‖.

5 MONOTONE EP AS COL

After understanding the structures that determine the
difficulty of COL, we describe a converse result of The-
orem 1, which converts monotone EPs into COL.

Theorem 2. Let EP(X ,Φ) be monotone with
Φ(x, x) = 0.6Consider COL with fx(x′) = Φ(x, x′).
Let {xn}Nn=1 be any sequence of decisions and define

x̂N := 1
N

∑N
n=1 xn It holds that rdep(x̂N ) ≤ 1

NRegretsN ,
where rdep(x

′) := maxx∈X Φ(x, x′) is the dual residual.
The same holds for the best decision in {xn}Nn=1.

Theorem 2 shows monotone EPs can be solved by
achieving sublinear static regret in COL, at least in
terms of the dual residual. Below we relate bounds on
the dual residual back to the primal residual, which
we recall is given as rep(x) := maxx′∈X −Φ(x, x′).

Theorem 3. Suppose Φ(·, x) is L-Lipschitz, ∀x ∈ X .
If Φ satisfies Φ(x, x′) = −Φ(x′, x), i.e. Φ is skew-
symmetric, then rep(x) = rdep(x). Otherwise,

1. For x ∈ X such that rdep(x) ≤ 2LDX , it holds

rep(x) ≤ 2
√

2LDX
√
rdep(x).

2. If Φ(x, ·) is in addition µ-strongly convex with µ >
0, for x ∈ X such that rdep(x) ≤ L2/µ, it holds
rep(x) ≤ 2.8(L2/µ)1/3rdep(x)2/3

We can view the above results as a generalization of the
classic reduction from convex optimization and Black-
well approachability to no-regret learning (Abernethy
et al., 2011). Generally, the rate of primal residual con-
verges slower than the dual residual. However, when
the problem is skew-symmetric (which is true for EPs
coming from optimization and saddle-point problems;
see Appendix C), we recover the classic results. In this
case, we can show rep(x̂N ) = rdep(x̂N ) ≤ 1

NRegretsN ≤
1
NRegretdN = 1

N

∑N
n=1 rep(xn).

These results complement the discussion in Sec-
tion 4.1, as monotonicity implies the dual solution set
X?? is non-empty. Namely, these monotone EPs con-
stitute a class of source problems of COL for which
efficient algorithms are available. Proofs and further
discussions of this reduction are given in Appendix C.

6 REDUCTION BY REGULARITY

Inspired by Theorem 1, we present a reduction from
minimizing dynamic regret to minimizing static regret
and convergence toX?. Intuitively, this is possible, be-
cause Theorem 1 suggests achieving sublinear dynamic
regret should not be harder than finding x? ∈ X?. De-
fine RegretsN (x?) :=

∑N
n=1 ln(xn)− ln(x?) ≤ RegretsN .

Theorem 4. Let x? ∈ X? and ∆n := ‖xn − x?‖. If f
is (α, β)-regular for α, β ∈ [0,∞), then for all N ,

6Φ(x, x) = 0 is not a restriction; see Appendix C.
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RegretdN ≤ min{G
∑N
n=1 ∆n,RegretsN (x?)}

+
∑N
n=1 min{βDX∆n,

β2

2α∆2
n}

If further X?? of the dual EP is non-empty, RegretdN ≥
α
2

∑N
n=1 ‖x∗n − x?‖2, where x? ∈ X?? ⊆ X?.

Theorem 4 roughly shows that when x? exists (e.g.
given by the sufficient conditions in the previous sec-
tion), it provides a stabilizing effect to the problem,
so the dynamic regret behaves almost like the static
regret when the decisions are around x?.

This relationship can be used as a powerful tool for
understanding the dynamic regret of existing algo-
rithms designed for EPs, VIs, and FPs. These in-
clude, e.g., mirror descent (Beck and Teboulle, 2003),
mirror-prox (Nemirovski, 2004; Juditsky et al., 2011),
conditional gradient descent (Jaggi, 2013), Mann iter-
ation (Mann, 1953), etc. Interestingly, many of those
are also standard tools in online learning, with static
regret bounds that are well known (Hazan et al., 2016).

We can apply Theorem 4 in different ways, depending
on the known convergence of an algorithm. For algo-
rithms whose convergence rate of ∆n to zero is known,
Theorem 4 essentially shows that their dynamic regret
is at most O(

∑N
n=1 ∆n). For the algorithms with only

known static regret bounds, we can use a corollary.

Corollary 1. If f is (α, β)-regular and α > β, it holds

that RegretdN ≤ RegretsN (x?) +
β2 ˜RegretsN (x?)

2α(α−β) , where
˜RegretsN (x?) denotes the static regret of the linear on-

line learning problem with ln(x) = 〈∇fn(xn), x〉.

The purpose of Corollary 1 is not to give a tight bound,
but to show that for nicer problems with α > β,
achieving sublinear dynamic regret is not harder than
achieving sublinear static regret. For tighter bounds,
we still refer to Theorem 4 to leverage the equilibrium
convergence. We note that the results in Section 5 and
here concern different classes of COL in general, be-
cause α > β does not necessarily imply the EP(X ,Φ)
is monotone, but only VI(X , F ) unless fx(·) is linear.

Finally, we remark Theorem 4 is directly applicable to
expected dynamic regret (the right-hand side of the in-
equality will be replaced by its expectation) when the
learner only has access to stochastic feedback, because
the COL setup in non-anticipating. Similarly, high-
probability bounds can be obtained based on martin-
gale convergence theorems, as in (Cesa-Bianchi et al.,
2004). In these cases, we note that the regret is defined
with respect to ln in COL, not the sampled losses.

6.1 Example Algorithms

We showcase applications of Theorem 4. These bounds
are non-asymptotic and depend polynomially on d.

Also, these algorithms do not need to know α and β,
except to set the stepsize upper bound for first-order
methods. Please refer to Appendix D for the proofs.

6.1.1 Functional Feedback

We first consider the simple greedy update, which sets
xn+1 = arg minx∈X ln(x). By Proposition 6 and The-

orem 4, we see that if α > β, it has RegretdN = O(1).
For α = β, we can use algorithms for non-expansive
fixed-point problems (Mann, 1953).

Proposition 7. For α = β, there is an algorithm that
achieves sublinear dynamic regret in poly(d).

6.1.2 Exact First-order Feedback

Next we use the reduction in Theorem 4 to derive dy-
namic regret bounds for mirror descent, under deter-
ministic first-order feedback. We recall that mirror
descent with step size ηn > 0 follows

xn+1 = arg min
x∈X

〈ηngn, x〉+BR(x‖xn). (4)

where gn is feedback direction, BR is a Bregman diver-
gence with respect to some 1-strongly convex function
R. Here we assume additionally that fx(·) is γ-smooth
with γ > 0 for all x ∈ X .

Proposition 8. Let f be (α, β)-regular and fx(·)
be γ-smooth, ∀x ∈ X . Let R be 1-strongly con-
vex and L-smooth. If α > β, gn = ∇ln(xn), and

ηn <
2(α−β)
L(γ+β)2 , then, for some 0 < ν < 1, RegretdN ≤

(G+ βDX )
√

2BR(x?‖x1)
∑N
n=1 ν

n−1 = O(1) for (4).

6.1.3 Stochastic & Adversarial Feedback

We now consider stochastic and adversarial cases in
COL. As discussed, these are directly handled in the
feedback, while the (expected) regret is still measured
against the true underlying bifunction. Importantly,
we make the subtle assumption that bifunction f is
fixed before learning. We consider mirror descent in
(4) with additive stochastic and adversarial feedback
given as gn = ∇ln(xn) + εn + ξn, where εn ∈ Rd is
zero-mean noise with E

[
‖εn‖2∗

]
< ∞ and ξn ∈ Rd is

a bounded adversarial bias. The component εn can
come from observing a stochastic loss ln(x; ζn) with
random variable ζn, when the true loss is ln(x) =
Eζn [ln(x; ζn)] (i.e. ∇ln(xn; ζn) = ∇ln(xn) + εn). On
the other hand the adversarial component ξn can de-
scribe extra bias in computation. We consider the ex-
pected dynamic regret E[RegretdN ] = E[

∑N
n=1 ln(xn)−

minx∈X ln(x)], where the expectation is over εn. De-

fine Ξ :=
∑N
n=1 ‖ξn‖∗. By reduction to static regret in

Corollary 1, we have the following proposition.

Proposition 9. If f is fixed before learning, α >
β and ηn = 1√

n
, then mirror descent with gn =

∇ln(xn) + εn + ξn has E[RegretdN ] = O(
√
N + Ξ).
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6.2 Remark

Essentially, our finding indicates that the feasibility
of sublinear dynamic regret is related to a problem’s
properties. For example, the difficulty of the problem
depends largely on the ratio β

α when there is no other
directional information about ∇f·(x), such as mono-
tonicity. When β ≤ α, we have shown efficient algo-
rithms are possible. But, for β > α, we are not aware
of any efficient algorithm. If one exists, it would solve
all (α, β)-regular problems, which, in turn, would effi-
ciently solve all EP/VI/FP problems as we can formu-
late them into the problem of solving COL problems
with sublinear dynamic regret by Theorem 1.

7 EXTENSIONS

The COL framework reveals some core properties of
dynamic regret. However, while we allow feedback to
be adversarial, we still assume that the same loss func-
tion fx(·) must be returned by the bifunction for the
same query argument x ∈ X . Therefore, COL does
not capture time-varying situations where the oppo-
nent’s strategy can change across rounds. Also, this
constraint allows the learner to potentially enumerate
the opponent. Here we relax (3) and define a general-
ization of COL. The proofs of this section are included
in Appendix E.

Definition 3. We say an online learning problem is
(α, β)-predictable with α, β ∈ [0,∞) if ∀x ∈ X ,

1. ln(·) is a α-strongly convex function.

2. ‖∇ln(x)−∇ln−1(x)‖∗ ≤ β‖xn−xn−1‖+an, where

an ∈ [0,∞) and
∑N
n=1 an = AN = o(N).

This problem generalizse COL along two directions:
1) it makes the problem non-stationary; 2) it allows
adversarial components within a sublinear budget in-
side the loss function. We note that the second con-
dition above is different from having adversarial feed-
back, e.g., in Section 6.1.3, because the regret now is
measured with respect to the adversarial loss as op-
posed to those generated by a fixed bifunction. This
new condition can make achieving sublinear dynamic
regret considerably harder.

Let us further discuss the relationship between (α, β)-
predictable and (α, β)-regular problems. First, a con-
traction property like Proposition 6 still holds.

Proposition 10. For (α, β)-predictable problems with
α > 0, ‖x∗n − x∗n−1‖ ≤

β
α‖xn − xn−1‖+ an

α .

Proposition 10 shows that when functional feedback is
available and β

α < 1, sublinear dynamic regret can be
achieved, e.g., by a greedy update. However, one fun-
damental difference between predictable problems and
COL problems is the lack of equilibria X∗, which is the

foundation of the reduction in Theorem 4. This makes
achieving sublinear dynamic regret much harder when
functional feedback is unavailable or when α = β. Us-
ing Proposition 10, we establish some preliminary re-
sults below.

Theorem 5. Let β
α < α

2L2γ . For (α, β)-predictable

problems, if ln(·) is γ-smooth and R is 1-strongly con-
vex and L-smooth, then mirror descent with deter-
ministic feedback and step size η = α

2Lγ2 achieves

RegretdN = O(1 +AN +
√
NAN ).

We find that, in Theorem 5, mirror descent must main-
tain a sufficiently large step size in predictable prob-
lems, unlike COL problems which allow for decaying
step size. When α = β, we can show that sublinear
dynamic regret is possible under functional feedback.

Theorem 6. For α = β, if A∞ < ∞ and ‖ · ‖ is
the Euclidean norm, then there is an algorithm with
functional feedback achieving sublinear dynamic regret.
For d = 1 and an = 0 for all n, sublinear dynamic
regret is possible regardless of α, β.

We do not know, however, whether sublinear dynamic
regret is feasible when α = β and A∞ = ∞. We con-
jecture this is infeasible when the feedback is only first-
order, as mirror descent is insufficient to solve mono-
tone problems using the last iterate (Facchinei and
Pang, 2007) which contain COL with α = β (a simpler
case than predictable online learning with α = β).

8 CONCLUSION

We present COL, a new class of online problems where
the gradient varies continuously across rounds with re-
spect to the learner’s decisions. We show that this set-
ting can be equated with certain equilibrium problems
(EPs). Leveraging this insight, we present a reduction
from monotone EPs to COL, and show necessary con-
ditions and sufficient conditions for achieving sublin-
ear dynamic regret. Furthermore, we show a reduction
from dynamic regret to static regret and the conver-
gence to equilibrium points.

There are several directions for future research on this
topic. Our current analyses focus on classical algo-
rithms in online learning. We suspect that the use of
adaptive or optimistic methods can accelerate conver-
gence to equilibria, if some coarse model can be esti-
mated. In addition, although we present some prelim-
inary results showing the possibility for interpretable
dynamic regret rates in predictable online learning,
further refinement and understanding the correspond-
ing lower bounds remain important future work. Fi-
nally, while the current formulations restrict the loss
to be determined solely by the learner’s current de-
cision, extending the discussion to history-dependent
bifunctions is an interesting topic.
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