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Abstract

We present a reduction from reinforcement
learning (RL) to no-regret online learning
based on the saddle-point formulation of RL,
by which any online algorithm with sublin-
ear regret can generate policies with provable
performance guarantees. This new perspec-
tive decouples the RL problem into two parts:
regret minimization and function approxima-
tion. The first part admits a standard online-
learning analysis, and the second part can be
quantified independently of the learning algo-
rithm. Therefore, the proposed reduction can
be used as a tool to systematically design new
RL algorithms. We demonstrate this idea by
devising a simple RL algorithm based on mir-
ror descent and the generative-model oracle.
For any γ-discounted tabular RL problem,
with probability at least 1− δ, it learns an ε-
optimal policy using at most Õ

(
|S||A| log( 1

δ )

(1−γ)4ε2

)
samples. Furthermore, this algorithm admits
a direct extension to linearly parameterized
function approximators for large-scale appli-
cations, with computation and sample com-
plexities independent of |S|,|A|, though at the
cost of potential approximation bias.

1 INTRODUCTION

Reinforcement learning (RL) is a fundamental problem
for sequential decision making in unknown environ-
ments. One of its core difficulties, however, is the need
for algorithms to infer long-term consequences based
on limited, noisy, short-term feedback. As a result,
designing RL algorithms that are both scalable and
provably sample efficient has been challenging.
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In this work, we revisit the classic linear-program (LP)
formulation of RL (Manne et al., 1959; Denardo and
Fox, 1968) in an attempt to tackle this long-standing
question. We focus on the associated saddle-point
problem of the LP (given by Lagrange duality), which
has recently gained traction due to its potential for
computationally efficient algorithms with theoretical
guarantees (Wang and Chen, 2016; Chen and Wang,
2016; Wang, 2017a; Lee and He, 2018; Wang, 2017b;
Lin et al., 2017; Dai et al., 2018; Chen et al., 2018; Lak-
shminarayanan et al., 2018). But in contrast to these
previous works based on stochastic approximation, here
we consider a reformulation through the lens of online
learning, i.e. regret minimization. Since the pioneering
work of Kivinen and Warmuth (1997); Gordon (1999);
Zinkevich (2003), online learning has evolved into a
ubiquitous tool for systematic design and analysis of
iterative algorithms. Therefore, if we can identify a re-
duction from RL to online learning, we can potentially
leverage it to build efficient RL algorithms.

We will show this idea is indeed feasible. We present
a reduction by which any no-regret online algorithm,
after observing N samples, can find a policy π̂N in a
policy class Π satisfying V π̂N (p) ≥ V π∗(p)− o(1)− εΠ,
where V π(p) is the accumulated reward of policy π
with respect to some unknown initial state distribution
p, π∗ is the optimal policy, and εΠ ≥ 0 is a measure of
the expressivity of Π (see Section 4.2 for definition).

Our reduction is built on a refinement of online learning,
called Continuous Online Learning (COL) (Cheng et al.,
2019a), which was proposed to model problems where
loss gradients across rounds change continuously with
the learner’s decisions. COL has a strong connection
to equilibrium problems (EPs) (Blum, 1994; Bianchi
and Schaible, 1996), and any monotone EP (including
our saddle-point problem of interest) can be framed
as no-regret learning in a properly constructed COL
problem (Cheng et al., 2019a). Using this idea, our
reduction follows naturally by first converting an RL
problem to an EP and then the EP to a COL problem.

Framing RL as COL reveals new insights into the rela-
tionship between approximate solutions to the saddle-
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point problem and approximately optimal policies. Im-
portantly, this new perspective shows that the RL
problem can be separated into two parts: regret mini-
mization and function approximation. The first part
admits standard treatments from the online learning
literature, and the second part can be quantified in-
dependently of the learning process. For example, one
can accelerate learning by adopting optimistic online
algorithms (Rakhlin and Sridharan, 2012; Cheng et al.,
2019b) that account for the predictability in COL, with-
out worrying about function approximators. Because
of these problem-agnostic features, the proposed reduc-
tion can be used to systematically design efficient RL
algorithms with performance guarantees.

As a demonstration, we design an RL algorithm based
on a simple online learning algorithm: mirror descent.
Assuming a generative model1 we first prove that, for
any tabular Markov decision process (MDP), with prob-
ability at least 1− δ, this algorithm learns an ε-optimal
policy for the γ-discounted accumulated reward, using
at most Õ

(
|S||A| log( 1

δ )

(1−γ)4ε2

)
samples, where |S|,|A| are the

sizes of state and action spaces, and γ is the discount
rate. Next, we use the separation property above and
present a natural extension based on linearly parameter-
ized function approximators, which is also applicable to
continuous problems. This version has sample and per-
round computational complexities linear in the number
of parameters, independent of |S|,|A|, though at the
cost of policy performance bias due to approximation.

This new sample complexity improves the current best
provable rate of the saddle-point RL setup (Wang and
Chen, 2016; Chen and Wang, 2016; Wang, 2017a; Lee
and He, 2018) by a large factor of |S|2

(1−γ)2 , without mak-
ing any assumption on the MDP.2 This improvement is
attributed to our new online-learning-style analysis that
uses a cleverly selected comparator in the regret defini-
tion. While it is possible to devise a minor modification
of the previous stochastic mirror descent algorithms,
e.g. Wang (2017a), achieving the same rate with our
new analysis, we remark that our algorithm is consid-
erably simpler and removes a projection required in
previous work (Wang and Chen, 2016; Chen and Wang,
2016; Wang, 2017a; Lee and He, 2018).

Finally, we do note that the same sample complexity
can also be achieved, e.g., by model-based RL and
(phased) Q-learning (Kearns and Singh, 1999; Kakade
et al., 2003). However, these methods either have super-
linear runtime, or could become unstable when using

1In practice, a generative model can be approxi-
mated by running a behavior policy with sufficient explo-
ration (Kearns and Singh, 1999).

2Wang (2017a) has the same sample complexity but
requires the MDP to be ergodic under any policy.

function approximators without further assumptions.

2 SETUP & PRELIMINARIES
Let S and A be state and action spaces, which can
be discrete or continuous. We consider γ-discounted
infinite-horizon problems for γ ∈ [0, 1). Our goal is
to find a policy π(a|s) that maximizes the discounted
average return V π(p) := Es∼p[V π(s)], where

V π(s) := (1− γ)Eξ∼ρπ(s) [
∑∞
t=0 γ

tr(st, at)] (1)

is the value function of π at state s, p the initial state
distribution, r : S×A → [0, 1] the reward function, and
ρπ(s) the distribution of trajectory ξ = s0, a0, s1, . . .
generated by running π from s0 = s in an MDP. We
assume that the initial distribution p(s0), the transition
P(s′|s, a), and the reward function r(s, a) are unknown
but can be queried through a generative model, i.e. we
can sample s0 from p, s′ from P, and r(s, a) for any
s ∈ S and a ∈ A. We remark that the definition of V π
in (1) contains a (1− γ) factor. We adopt this setup to
make writing more compact. We denote the optimal
policy as π∗ and its value function as V ∗ for short.

2.1 Duality in RL

Our reduction is based on the linear-program (LP)
formulation of RL. We provide a short recap here
(please see Appendix A and Puterman (2014) for de-
tails). To show how maxπ V

π(p) can be framed as a
LP, let us define the average state distribution under
π, dπ(s) := (1− γ)

∑∞
t=0 γ

tdπt (s), where dπt is the state
distribution at time t generated by running π from p.
By construction, dπ satisfies the stationarity property,

dπ(s′) = (1− γ)p(s′) + γEs∼dπEa∼π|s[P(s′|s, a)]. (2)

With dπ, we can write V π(p) = Es∼dπEa∼π|s [r(s, a)]
and our objective maxπ V

π(p) equivalently as:

maxµ∈R|S||A|:µ≥0 r>µ

s.t. (1− γ)p + γP>µ = E>µ
(3)

where r ∈ R|S||A|, p ∈ R|S|, and P ∈ R|S||A|×|S|
are vector forms of r, p, and P, respectively, and
E = I⊗1 ∈ R|S||A|×|S| (we use | · | to denote the cardi-
nality of a set, ⊗ the Kronecker product, I ∈ R|S|×|S|
is the identity, and 1 ∈ R|A| the vector of ones).
In (3), S and A may seem to have finite cardinali-
ties, but the same formulation extends to countable
continuous spaces under proper regularity assump-
tions (Hernández-Lerma and Lasserre, 2012). We adopt
this abuse of notation for compactness.

The variable µ of the LP in (3) resembles the joint
distribution dπ(s)π(a|s). To see this, notice that
the constraint in (3) is reminiscent of (2), and im-
plies ‖µ‖1 = 1, i.e. µ is a probability distribution.
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Then one can show µ(s, a) = dπ(s)π(a|s) when the
constraint is satisfied, which implies that (3) is the
same as maxπ V

π(p) and its solution µ∗ corresponds
to µ∗(s, a) = dπ

∗
(s)π∗(a|s) of the optimal policy π∗.

As (3) is a LP, it suggests looking at its dual, which
turns out to be the classic LP formulation of RL3,

minv∈R|S| p>v

s.t. (1− γ)r + γPv ≤ Ev.
(4)

It can be verified that for all p > 0, the solution to (4)
satisfies the Bellman equation (Bellman, 1954) and
therefore is the optimal value function v∗ (the vector
form of V ∗). We note that, for any policy π, V π by
definition satisfies a stationarity property

V π(s) = Ea∼π|s
[
(1− γ)r(s, a) + γEs′∼P|s,a

[
V π(s′)

]]
(5)

which can be viewed as a dual equivalent of (2) for dπ.
Because, for any s ∈ S and a ∈ A, r(s, a) is in [0, 1],
(5) implies V π(s) lies in [0, 1] too.

2.2 Toward RL: the Saddle-Point Setup

The LP formulations above require knowing the proba-
bilities p and P and are computationally inefficient. If
only generative models are available (as in our setup),
one can alternatively exploit the duality between the
two LPs in (3) and (4), and frame RL as a saddle-point
problem (Wang and Chen, 2016). Let us define

av := r + 1
1−γ (γP−E)v (6)

as the advantage function with respect to v (v is not
necessarily a value function). Then the saddle-point
formulation of the two LPs, using the associated La-
grangian L, can be written as

min
v∈V

max
µ∈M

L(v,µ), (7)

where L(v,µ) := p>v +µ>av and the constraints are

V = {v ∈ R|S| : v ≥ 0, ‖v‖∞ ≤ 1} (8)

M = {µ ∈ R|S||A| : µ ≥ 0, ‖µ‖1 = 1}. (9)

The solution to (7) is exactly (v∗,µ∗). Extra con-
straints on the norm of µ and v are introduced in
V,M (compared to (3) and (4)). This common prac-
tice uses known bounds on the solutions of (3) and (4)
to make the search spaces V andM compact and small,
so that optimization converges faster.

Having compact variable sets allows using first-order
stochastic methods, such as stochastic mirror descent
and mirror-prox (Nemirovski et al., 2009; Juditsky
et al., 2011), to efficiently solve the problem. These
methods only require using the generative model to

3Our setup in (4) differs from the classic one in the
(1− γ) factor in the constraint due to the average setup.

compute unbiased estimates of the gradients∇vL = bµ

and ∇µL = av, where we define

bµ := p + 1
1−γ (γP−E)>µ (10)

as the balance function with respect to µ. bµ measures
whether µ violates the stationarity constraint in (3)
and can be viewed as the dual of av. When the state
or action space is too large, one can resort to function
approximators to represent v and µ (Chen et al., 2018).

2.3 COL and EPs

Finally, we review the COL setup in (Cheng et al.,
2019a), which we will use to design the reduction from
the saddle-point problem in (7) to online learning. An
online learning problem describes the iterative inter-
actions between a learner and an opponent. In round
n, the learner chooses a decision xn from a decision
set X , the opponent chooses a per-round loss function
ln : X → R based on the learner’s decisions, and then
information about ln (e.g. its gradient ∇ln(xn)) is
revealed to the learner. The performance of the learner
is usually measured in terms of regret with respect to
some x′ ∈ X ,

RegretN (x′) :=
∑N
n=1 ln(xn)−

∑N
n=1 ln(x′).

When ln is convex and X is compact and convex,
many no-regret (i.e. RegretN (x′) = o(N)) algorithms
are available, such as mirror descent and follow-the-
regularized-leader (Cesa-Bianchi and Lugosi, 2006;
Shalev-Shwartz et al., 2012; Hazan et al., 2016).

COL is a subclass of online learning problems where
the loss sequence changes continuously with respect
to the played decisions of the learner (Cheng et al.,
2019a). In COL, the opponent is equipped with a
bifunction f : (x, x′) 7→ fx(x′), where for any fixed
x′ ∈ X , ∇fx(x′) is continuous in x ∈ X . The opponent
selects per-round losses based on f , but the learner
does not know f : in round n, if the learner chooses xn,
the opponent sets

ln(x) = fxn(x), (11)

and returns, e.g., a stochastic estimate of ∇ln(xn) (the
regret is still measured in terms of the noise-free ln).

In Cheng et al. (2019a), a natural connection is shown
between COL and equilibrium problems (EPs). As EPs
include the saddle-point problem of interest, we can
use this idea to turn (7) into a COL problem. Recall
an EP is defined as follows: Let X be compact and
F : (x, x′) 7→ F (x, x′) be a bifunction s.t. ∀x, x′ ∈ X ,
F (·, x′) is continuous, F (x, ·) is convex, and F (x, x) ≥
0.4 The problem EP(X , F ) aims to find x? ∈ X s.t.

F (x?, x) ≥ 0, ∀x ∈ X . (12)
4We restrict ourselves to this convex and continuous

case as it is sufficient for our problem setup.
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By its definition, a natural residual function to quantify
the quality of an approximation solution x to EP is
rep(x) := −minx′∈X F (x, x′) which describes the de-
gree to which (12) is violated at x. We say a bifunction
F is monotone if, ∀x, x′ ∈ X , F (x, x′) + F (x′, x) ≤ 0,
and skew-symmetric if the equality holds.

EPs with monotone bifunctions represent general con-
vex problems, including saddle-point problems, vari-
ational inequalities, etc. For instance, a convex-
concave problem miny∈Y maxz∈Z φ(y, z) can be cast
as EP(X , F ) with X = Y ×Z and the skew-symmetric
bifunction (Jofré and Wets, 2014)

F (x, x′) := φ(y′, z)− φ(y, z′), (13)

where x = (y, z) and x′ = (y′, z′). In this case, rep(x) =
maxz′∈Z φ(y, z′)−miny′∈Y φ(y′, z) is the duality gap.

As shown in Cheng et al. (2019a), a learner achieves
sublinear dynamic regret in COL if and only if the
same algorithm can solve EP(X , F ) with F (x, x′) =
fx(x′)−fx(x). Concretely, given a monotone EP(X , F )
with F (x, x) = 0 (which is satisfied by (13)), one can
construct a COL problem by setting fx′(x) := F (x′, x),
i.e. ln(x) = F (xn, x), such that any no-regret algorithm
can generate an approximate solution to the EP.
Proposition 1. (Cheng et al., 2019a) If F is skew-
symmetric and ln(x) = F (xn, x), then rep(x̂N ) ≤
1
NRegretN , where RegretN = maxx∈X RegretN (x), and
x̂N = 1

N

∑N
n=1 xn; the same guarantee holds also for

the best decision in {xn}Nn=1.

3 AN ONLINE LEARNING VIEW
We present an alternate online-learning perspective
on the saddle-point formulation in (7). This analysis
paves a way for of our reduction in the next section.
By reduction, we mean realizing the two steps below:

1. Define a sequence of online losses such that any
algorithm with sublinear regret can produce an
approximate solution to the saddle-point problem.

2. Convert the approximate solution in the first step
to an approximately optimal policy in RL.

Methods to achieve these two steps individually are
not new. The reduction from convex-concave prob-
lems to two-player no-regret online learning is well
known (Abernethy et al., 2011). Likewise, the rela-
tionship between the approximate solution of (7) and
policy performance is also available; this is how the
saddle-point formulation (Wang, 2017a) works in the
first place. So couldn’t we just use these existing ap-
proaches? We argue that purely combining these two
techniques fails to fully capture important structure
that resides in RL. While this will be made precise in
the later analyses, we highlight the main insights here.

Instead of treating (7) as an adversarial two-player
online learning problem (Abernethy et al., 2011), we
adopt the recent reduction to COL (Cheng et al., 2019a)
reviewed in Section 2.3. The main difference is that the
COL approach takes a single-player setup and retains
the Lipschitz continuity in the source saddle-point prob-
lem. This single-player perspective provides a simple
setup to analyze effects of function approximators, as
we will show in Section 4.2. Additionally, due to conti-
nuity, the losses in COL are predictable and therefore
make designing fast algorithms possible.

With the help of the COL reformulation, we study the
relationship between the approximate solution to (7)
and the performance of the associated policy in RL.
We are able to establish a tight bound between the
residual and the performance gap, resulting in a large
improvement of |S|2

(1−γ)2 in sample complexity compared
with the best bounds in the literature of the saddle-
point setup, without adding extra constraints on X
or assumptions on the MDP. Overall, this means that
stronger sample complexity guarantees can be attained
by simpler algorithms, as we demonstrate in Section 5.
The missing proofs of this section are in Appendix B.

3.1 The COL Formulation of RL

First, let us exercise the above COL idea with the
saddle-point formulation of RL in (7). To construct
the EP, we can let X = {x = (v,µ) : v ∈ V,µ ∈ M},
which is compact and convex. By (13), the bifunction
F of the associated EP(X , F ) is naturally given as

F (x, x′) := L(v′,µ)− L(v,µ′)

= p>v′ + µ>av′ − p>v − µ′>av (14)

which is skew-symmetric, and x∗ := (v∗,µ∗) is a solu-
tion to EP(X , F ). This identification gives us a COL
problem with a predictable5, linear loss

ln(x) := p>v + µ>n av − p>vn − µ>avn (15)

where xn = (vn,µn). We remark that tackling (15)
with an algorithm that isolates updates for v and µ is
the same as applying a similar algorithm in the two-
player setup. The merit of the COL viewpoint is mainly
in the EP-inspired insights into the regret analyses.

3.2 Policy Performance and Residual

By Proposition 1, any no-regret algorithm, when ap-
plied to (15), provides guarantees in terms of the resid-
ual function rep(x) of the EP. But this is not the end
of the story. We also need to relate the learner decision
x ∈ X to a policy π in RL and then convert bounds on
rep(x) back to the policy performance V π(p). Here we

5 ln can be (partially) inferred from past feedbacks, as
the MDP involved in each round is the same.
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follow the common rule in the literature and associate
each x = (v,µ) ∈ X with a policy πµ defined as

πµ(a|s) ∝ µ(s, a). (16)

In the following, we relate the residual rep(x) to the
performance gap V ∗(p) − V πµ(p) through a relative
performance measure defined as

rep(x;x′) := F (x, x)− F (x, x′) = −F (x, x′) (17)

for x, x′ ∈ X , where the last equality follows from
the skew-symmetry of F in (14). Intuitively, we can
view rep(x;x′) as comparing the performance of x with
respect to the comparator x′ under an optimization
problem proposed by x, e.g. we have ln(xn)− ln(x′) =
rep(xn;x′). And by the definition in (17), it holds that
rep(x;x′) ≤ maxx′∈X −F (x, x′) = rep(x).

We are looking for inequalities in the form V ∗(p) −
V πµ(p) ≤ κ(rep(x;x′)) that hold for all x ∈ X with
some strictly increasing function κ and some x′ ∈ X ,
so we can get non-asymptotic performance guarantees
once we combine the two steps described at the begin-
ning of this section. For example, directly applying
results of Cheng et al. (2019a) to the COL in (15) gives
V ∗(p)− V π̂N (p) ≤ κ(RegretN

N ), where π̂N is the policy
associated with the average/best decision in {xn}N1=n.

3.2.1 The Classic Result
Existing approaches (e.g. Chen and Wang (2016); Wang
(2017a); Lee and He (2018)) to the saddle-point point
formulation in (7) rely on the relative residual rep(x;x∗)
with respect to the optimal solution to the problem x∗,
which we restate in our notation.
Proposition 2. For any x = (v,µ) ∈ X , if E>µ ≥
(1− γ)p, rep(x;x∗) ≥ (1− γ) mins p(s)‖v∗ − vπµ‖∞.

Therefore, although the original saddle-point problem
in (7) is framed using V andM, in practice, an extra
constraint, such as E>µ ≥ (1− γ)p, is added intoM.
These algorithms consider instead

M′ = {µ ∈ R|S||A| : µ ∈M,E>µ ≥ (1− γ)p}, (18)

so that the marginal of the estimate µ can have the
sufficient coverage required in Proposition 2. This con-
dition is needed to establish non-asymptotic guarantees
on the performance of the policy generated by µ (Wang
and Chen, 2016; Wang, 2017a; Lee and He, 2018), but
it can sometimes be impractical to realize when p is
unknown as here. Without it, extra assumptions (like
ergodicity in Wang (2017a)) on the MDP are needed;
although it is possible to modify this constraint to use a
uniform distribution instead of p, this scheme worsens
the constant factor and could introduce bias.

In addition, the bound in Proposition 2 is quite conser-
vative, as it concerns the uniform error ‖v∗ − vπµ‖∞

whereas the objective in RL is about the gap V ∗(p)−
V πµ(p) = p>(v∗ − vπµ) with respect to the initial dis-
tribution p (i.e. a weighted error). Also, the constant
term (1−γ) mins p(s) can be quite small (e.g. when p is
uniform, it is 1−γ

|S| ) which can significantly amplify the
error in the residual. Since a no-regret algorithm typi-
cally decreases the residual in O(N−1/2) after seeing
N samples, a factor of 1−γ

|S| would multiply the sample

complexity by |S|2
(1−γ)2 . This makes existing saddle-point

approaches sample inefficient in comparison with RL
methods like Q-learning (Kakade et al., 2003).

One may conjecture that the bound in Proposition 2
could perhaps be tightened by better analyses. How-
ever, we prove this is impossible in general.

Proposition 3. There is a class of MDPs such that,
for some x ∈ X , Proposition 2 is an equality.

We note that Proposition 3 does not hold for all MDPs.
Indeed, if one makes stronger assumptions on the MDP,
such as that the Markov chain induced by every policy
is ergodic (Wang, 2017a), then it is possible to show, for
all x ∈ X , rep(x;x∗) = c‖v∗−vπµ‖∞ for some constant
c independent of γ and |S|, when one constrains E>µ ≥
(1−γ+γ

√
c)p. Nonetheless, this construct still requires

adding an undesirable constraint to X .

3.2.2 Curse of Distribution Shift
Why does this happen? This issue is due to the mis-
match between distributions. To better understand it,
we notice a simple equality, which has often been used
implicitly, e.g. in the technical proofs of Wang (2017a).

Lemma 1. For any x = (v,µ), if x′ ∈ X satisfies (2)
and (5) (i.e. v′ and µ′ are the value function and state-
action distribution of policy πµ′), rep(x;x′) = −µ>av′ .

Lemma 1 implies rep(x;x∗) = −µ>av∗ , which is non-
negative. This is similar to the performance difference
lemma (Ng et al., 1999; Kakade and Langford, 2002).

Lemma 2. Let vπ and µπ denote the value and state-
action distribution of some policy π. Then for any
function v′, it holds that p>(vπ − v′) = (µπ)>av′ . In
particular, it implies V π(p)− V π′(p) = (µπ)>avπ′ .

From Lemmas 1 and 2, we see that the difference
between the residual rep(x;x∗) = −µ>av∗ and the
performance gap V πµ(p) − V π

∗
(p) = (µπµ)>av∗ is

due to the mismatch between µ and µπµ , or more
specifically, the mismatch between the two marginals
d = E>µ and dπµ = E>µπµ . Indeed, when d = dπµ ,
the residual is equal to the performance gap. However,
in general, we do not have control over that difference
for the sequence of variables {xn = (vn,µn) ∈ X}
an algorithm generates. The sufficient condition in
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Proposition 2 attempts to mitigate the difference, us-
ing the fact dπµ = (1 − γ)p + γP>πµ

dπµ from (2),
where Pπµ is the transition matrix under πµ. But the
missing half γP>πµ

dπµ (due to the long-term effects in
the MDP) introduces the unavoidable, weak constant
(1− γ) mins p(s), if we want to have a uniform bound
on ‖v∗−vπµ‖∞. The counterexample in Proposition 3
was designed to maximize the effect of distribution
shift, so that µ fails to captures state-action pairs with
high advantage. To break the curse, we must properly
weight the gap between v∗ and vπµ instead of relying
on the uniform bound on ‖v∗ − vπµ‖∞ as before.

4 THE REDUCTION

The analyses above reveal both good and bad proper-
ties of the saddle-point setup in (7). On the one hand,
we showed that approximate solutions to the saddle-
point problem in (7) can be obtained by running any
no-regret algorithm in the single-player COL problem
defined in (15); many efficient algorithms are available
from the online learning literature. On the other hand,
we also discovered a root difficulty in converting an
approximate solution of (7) to an approximately opti-
mal policy in RL (Proposition 2), even after imposing
strong conditions like (18). At this point, one may won-
der if the formulation based on (7) is fundamentally
sample inefficient compared with other approaches to
RL, but this is actually not true.

Our main contribution shows that learning a policy
through running a no-regret algorithm in the COL
problem in (15) is, in fact, as sample efficient in policy
performance as other RL techniques, even without the
common constraint in (18) or extra assumptions on the
MDP like ergodicity imposed in the literature.

Theorem 1. Let XN = {xn ∈ X}Nn=1 be any sequence.
Let π̂N be the policy given by x̂N via (16), which is
either the average or the best decision in XN . Define
y∗N := (vπ̂N ,µ∗). Then V π̂N (p) ≥ V ∗(p)− RegretN (y∗N )

N .

Theorem 1 shows that if XN has sublinear regret, then
both the average policy and the best policy in XN

converge to the optimal policy in performance with a
rate O(RegretN (y∗N )/N). Compared with existing re-
sults obtained through Proposition 2, the above result
removes the factor (1−γ) mins p(s) and imposes no as-
sumption on XN or the MDP. Indeed Theorem 1 holds
for any sequence. For example, when XN is generated
by stochastic feedback of ln, Theorem 1 continues to
hold, as the regret is defined in terms of ln, not of the
sampled loss. Stochasticity only affects the regret rate.

In other words, we have shown that when µ and v
can be directly parameterized, an approximately op-
timal policy for the RL problem can be obtained by
running any no-regret online learning algorithm, and

that the policy quality is simply dictated by the re-
gret rate. To illustrate, in Section 5 we will prove
that simply running mirror descent in this COL pro-
duces an RL algorithm that is as sample efficient as
other common RL techniques. One can further foresee
that algorithms leveraging the continuity in COL—e.g.
mirror-prox (Juditsky et al., 2011) or PicCoLO (Cheng
et al., 2019b)—and variance reduction can lead to more
sample efficient RL algorithms.

Below we will also demonstrate how to use the fact
that COL is single-player (see Section 2.3) to cleanly
incorporate the effects of using function approxima-
tors to model µ and v. We will present a corollary of
Theorem 1, which separates the problem of learning
µ and v, and that of approximating M and V with
function approximators. The first part is controlled
by the rate of regret in online learning, and the sec-
ond part depends on only the chosen class of function
approximators, independently of the learning process.
As these properties are agnostic to problem setups
and algorithms, our reduction leads to a framework
for systematic synthesis of new RL algorithms with
performance guarantees. The missing proofs of this
section are in Appendix C.

4.1 Proof of Theorem 1

The main insight of our reduction is to adopt, in defin-
ing rep(x;x′), a comparator x′ ∈ X based on the output
of the algorithm (represented by x), instead of the fixed
comparator x∗ (the optimal pair of value function and
state-action distribution) that has been used conven-
tionally, e.g. in Proposition 2. While this idea seems
unnatural from the standard saddle-point or EP per-
spective, it is possible, because the regret in online
learning is measured against the worst-case choice in
X , which is allowed to be selected in hindsight. Specifi-
cally, we propose to select the following comparator to
directly bound V ∗(p)− V π̂N (p) instead of the conser-
vative measure ‖V ∗ − V π̂N ‖∞ used before.

Proposition 4. For x = (v,µ) ∈ X , define y∗x :=
(vπµ ,µ∗) ∈ X . It holds rep(x; y∗x) = V ∗(p)− V πµ(p).

To finish the proof, let x̂N be either 1
N

∑N
n=1 xn or

arg minx∈XN rep(x; y∗x), and let π̂N denote the policy
given by (16). First, V ∗(p) − V π̂N (p) = rep(x̂N ; y∗N )
by Proposition 4. Next we follow the proof idea of
Proposition 1 in Cheng et al. (2019a): since F is skew-
symmetric and F (y∗N , ·) is convex, we have by (17)

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N ) = −F (x̂N , y
∗
N )

= F (y∗N , x̂N ) ≤ 1
N

∑N
n=1 F (y∗N , xn)

= 1
N

∑N
n=1−F (xn, y

∗
N ) = 1

NRegretN (y∗N ).
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4.2 Function Approximators

When the state and action spaces are large or contin-
uous, directly optimizing v and µ can be impractical.
Instead we can consider optimizing over a subset of fea-
sible choices parameterized by function approximators

XΘ = {xθ = (φθ,ψθ) : ψθ ∈M, θ ∈ Θ}, (19)

where φθ and ψθ are functions parameterized by θ ∈ Θ,
and Θ is a parameter set. Because COL is a single-
player setup, we can extend the previous idea and
Theorem 1 to provide performance bounds in this case
by a simple rearrangement (see Appendix C), which is
a common trick used in the online imitation learning
literature (Ross et al., 2011; Cheng and Boots, 2018;
Cheng et al., 2019c). Notice that, in (19), we require
only ψθ ∈M, but not φθ ∈ V, because for the perfor-
mance bound in our reduction to hold, we only need the
constraintM (see Lemma 4 in proof of Proposition 4).
Corollary 1. Let XN = {xn ∈ Xθ}Nn=1 be any se-
quence. Let π̂N be the policy given either by the average
or the best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− RegretN (Θ)
N − εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N )−rep(x̂N ;xθ) mea-
sures the expressiveness of Xθ, and RegretN (Θ) :=∑N

n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

We can quantify εΘ,N with the basic Hölder’s inequality.
Proposition 5. Let x̂N = (v̂N , µ̂N ). Under the setup
in Corollary 1, regardless of the parameterization, it is
true that εΘ,N is no larger than

min
(vθ,µθ)∈XΘ

‖µθ − µ∗‖1
1− γ + min

w:w≥1
‖bµ̂N ‖1,w‖vθ − vπ̂N ‖∞,1/w

≤ min
(vθ,µθ)∈XΘ

1

1− γ

(
‖µθ − µ∗‖1 + 2‖vθ − vπ̂N ‖∞

)
.

where the norms are defined as ‖x‖1,w =
∑
i wi|xi| and

‖x‖∞,1/w = maxi w
−1
i |xi|.

Proposition 5 says εΘ,N depends on how well XΘ cap-
tures the value function of the output policy vπ̂N and
the optimal state-action distribution µ∗. We remark
that this result is independent of how vπ̂N is generated.
Furthermore, Proposition 5 makes no assumption what-
soever on the structure of function approximators. It
even allows sharing parameters θ between v = φθ and
µ = ψθ, e.g., they can be a bi-headed neural network,
which is common for learning shared feature represen-
tations. More precisely, the structure of the function
approximator would only affect whether ln((φθ,ψθ))
remains a convex function in θ, which determines the
difficulty of designing algorithms with sublinear regret.

In summary, the proposed COL formulation provides a
reduction which dictates the policy performance with

Algorithm 1 Mirror descent for RL
Input: ε optimality of the γ-average return

δ maximal failure probability
generative model of an MDP

Output: π̂N = πµ̂N

1: x1 = (v1,µ1) where µ1 is uniform and v1 ∈ V
2: Set N = Ω̃(

|S||A| log( 1
δ
)

(1−γ)2ε2 ) and η = (1− γ)(|S||A|N)−1/2

3: Set the Bregman divergence as (21)
4: for n = 1 . . . N − 1 do
5: Sample gn according to (23)
6: Update xn+1 according to (20)
7: end for
8: Set (v̂N , µ̂N ) = x̂N = 1

N

∑N
n=1 xn

two separate factors: 1) the rate of regret RegretN (Θ)
which is controlled by the choice of online learning
algorithm; 2) the approximation error εΘ,N which is
determined by the choice of function approximators.
These two factors can almost be treated independently,
except that the choice of function approximators would
determine the properties of ln((φθ,ψθ)) as a function of
θ, and the choice of Θ needs to ensure (19) is admissible.

5 SAMPLE COMPLEXITY OF
MIRROR DESCENT

We demonstrate the power of our reduction by applying
perhaps the simplest online learning algorithm, mirror
descent, to the proposed COL problem in (15) with
stochastic feedback (Algorithm 1). For transparency,
we first discuss the tabular setup. We will show a
natural extension to basis functions at the end. Recall
that mirror descent is a first-order algorithm, whose
update rule can be written as

xn+1 = arg minx∈X 〈gn, x〉+ 1
ηBR(x||xn) (20)

where η > 0 is the step size, gn is the feedback direction,
and BR(x||x′) = R(x)−R(x′)−〈∇R(x′), x− x′〉 is the
Bregman divergence generated by a strictly convex
function R. Based on the geometry of X = V ×M, we
consider a natural Bregman divergence of the form

BR(x′||x) = 1
2|S|‖v

′ − v‖22 +KL(µ′||µ) (21)

This choice mitigates the effects of dimension (e.g. if
we set x1 = (v1,µ1) with µ1 being the uniform distri-
bution, it holds BR(x′||x1) = Õ(1) for any x′ ∈ X ).

To define the feedback direction gn, we slightly modify
the per-round loss ln in (15) and consider a new loss

hn(x) := b>µnv + µ>( 1
1−γ1− avn) (22)

that shifts ln by a constant, where 1 is the vector of ones.
One can verify that ln(x) − ln(x′) = hn(x) − hn(x′),
for all x, x′ ∈ X . Therefore, using hn does not change
regret. The reason for using hn instead of ln is to
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make ∇µhn((v,µ)) (and its unbiased approximation)
a positive vector, so the regret bound can have a better
dimension dependency. This is a common trick used
in online learning (e.g. in EXP3 Hazan (2016)) for
optimizing variables living in a simplex (µ here).

We set the first-order feedback gn as an unbiased sam-
pled estimate of ∇hn(xn). In round n, this is realized
by two independent calls of the generative model:

gn =

[
p̃n + 1

1−γ (γP̃n −En)>µ̃n

|S||A|( 1
1−γ 1̂n − r̂n − 1

1−γ (γP̂n − Ên)vn)

]
(23)

Let gn = [gn,v; gn,µ]. For gn,v, we sample p, sample
µn to get a state-action pair, and query the transi-
tion P at the state-action pair sampled from µn. (p̃n,
P̃n, and µ̃n denote the single-sample estimate of these
probabilities.) For gn,µ, we first sample uniformly a
state-action pair (which explains the factor |S||A|), and
then query the reward r and the transition P. (1̂n, r̂n,
P̂n, and Ên denote the single-sample estimates.) To
emphasize, we use ·̃ and ·̂ to distinguish the empirical
quantities obtained by these two independent queries.
By construction, we have gn,µ ≥ 0. It is clear that this
direction gn is unbiased, i.e. E[gn] = ∇hn(xn). More-
over, it is extremely sparse and can be computed using
O(1) sample, computational, and memory complexities.

Below we show this algorithm, despite being extremely
simple, has strong theoretical guarantees. In other
words, we obtain simpler versions of the algorithms
proposed in Wang and Chen (2016); Wang (2017a);
Chen et al. (2018), but with improved performance.
Theorem 2. With probability 1−δ, Algorithm 1 learns
an ε-optimal policy with Õ

(
|S||A| log( 1

δ )

(1−γ)2ε2

)
samples.

Note that the above statement makes no assumption
on the MDP (except the tabular setup for simplifying
analysis). Also, because the definition of value function
in (1) is scaled by a factor (1 − γ), the above result
translates into a sample complexity in Õ

(
|S||A| log( 1

δ )

(1−γ)4ε2

)
for the conventional discounted accumulated rewards.

5.1 Proof Sketch of Theorem 2
The proof is based on basic properties of mirror descent
and martingale concentration (see Appendix D for the
full details). Let y∗N = (vπ̂N ,µ∗). We bound the regret
in Theorem 1 using the facts that hn is a constant shift
from ln and that hn(·) is linear.

RegretN (y∗N ) ≤

(
N∑
n=1

(∇hn(xn)− gn)>xn

)

+

(
max
x∈X

N∑
n=1

g>n (xn − x)

)
+

(
N∑
n=1

(gn −∇hn(xn))>y∗N

)

The first term is a martingale (xn does not depend on
gn), we apply a Bernstein-type martingale concentra-

tion to it and show it is in Õ(

√
N |S||A| log( 1

δ )

1−γ ). For the
second term, we treat g>n x as the per-round loss and
use standard regret analysis of mirror descent to show

a bound in Õ(

√
N |S||A|
1−γ ). The third term is not a mar-

tingale (vπ̂N in y∗N = (vπ̂N ,µ∗) depends on {gn}Nn=1).
Using a union bound, we show it is again no more than

Õ(

√
N |S||A| log( 1

δ )

1−γ ). The union bound does not increase
the rate because we only need to handle vπ̂N , not µ∗
which induces a martingale. To finish the proof, we
substitute this h-p regret bound into Theorem 1.

5.2 Extension to Function Approximators

The above algorithm assumes a tabular setup for il-
lustration purposes. In Appendix E, we describe a
direct extension of Algorithm 1 that uses linearly
parameterized function approximators of the form
xθ = (Φθv,Ψθµ), where columns of bases Φ,Ψ be-
long to V and M, respectively, and (θv,θµ) ∈ Θ.
The overall algorithm stays the same, but the gra-
dient is computed by chain-rule. This can be done
in O(dim(Θ)) time and space (compared to the slow
O(|S||A|) required before for the projection in (20)),
as we now only optimize in Θ. We also prove that the
sample complexity is better, though at the cost of bias
εΘ,N in Corollary 1. Therefore, the algorithm becomes
applicable to large-scale or continuous problems.

Theorem 3. Under a proper choice of Θ and BR,
with probability 1− δ, Algorithm 1 learns an (ε+ εΘ,N )-
optimal policy with Õ

(
dim(Θ) log( 1

δ )

(1−γ)2ε2

)
samples.

The full proof is in Appendix E. In short, for a Θ satis-
fying (19), we use Corollary 1 to reduce the problem
into regret minimization. We then sample uniformly
over the dim(Θ) columns of Ψ (instead of over all
states and actions like (23)) when computing unbiased
estimates of ∇θµhn((θv,θµ)).

6 CONCLUSION

We propose a reduction from RL to no-regret online
learning that provides a systematic way to design new
RL algorithms with performance guarantees. Com-
pared with existing approaches, our framework makes
no assumption on the MDP and naturally works with
function approximators. To illustrate, we design a sim-
ple RL algorithm based on mirror descent; it achieves
similar sample complexity as other RL techniques and is
scalable to large or continuous problems. This encourag-
ing result shows the strength of the online learning per-
spective. As future work, we think faster learning in RL
is possible by using control variates for variance reduc-
tion or applying advanced online techniques (Rakhlin
and Sridharan, 2012; Cheng et al., 2019b) that exploit
the continuity in COL to predict future gradients.
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