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Abstract

We propose a new class of practical structured
methods for nonisotropic Monte Carlo (MC)
sampling, called DPPMC, designed for high-
dimensional nonisotropic distributions where
samples are correlated to reduce the variance
of the estimator via determinantal point pro-
cesses. We successfully apply DPPMCs to high-
dimensional problems involving nonisotropic
distributions arising in guided evolution strat-
egy (GES) methods for reinforcement learning
(RL), CMA-ES techniques and trust region al-
gorithms for blackbox optimization, improving
state-of-the-art in all these settings. In particu-
lar, we show that DPPMCs drastically improve
exploration profiles of the existing evolution
strategy algorithms. We further confirm our
results, analyzing random feature map estima-
tors for Gaussian mixture kernels. We provide
theoretical justification of our empirical results,
showing a connection between DPPMCs and
recently introduced structured orthogonal MC
methods for isotropic distributions.

1 Introduction

Structured Monte Carlo (MC) sampling has recently re-
ceived significant attention (Yu et al., 2016; Choromanski
et al., 2018b,c, 2017; Rowland et al., 2018; Choroman-
ski et al., 2019c; Rowland et al., 2019) as a universal
tool to improve MC methods for applications ranging
from dimensionality reduction techniques and random
feature map (RFM) kernel approximation Choromanski
et al. (2017) Choromanski et al. (2019c) to evolution
strategy methods for reinforcement learning (RL) (Row-
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land et al., 2018, 2019) and estimating sliced Wasserstein
distances between high-dimensional probabilistic distri-
butions (Rowland et al., 2019). Structured MC methods
rely on choosing samples from joint distributions where
different samples are correlated in a particular way to
reduce the variance of the estimator. They are also related
to the class of Quasi Monte Carlo (QMC) methods that
aim to improve concentration properties of MC estimators
by using low discrepancy sequences of samples to reduce
integration error (Yang et al., 2014; Kritzer et al., 2014).

However, the key limitation of the above techniques is
that they can only be applied to isotropic distributions,
since they rely on samples’ orthogonalization. For this
class of methods the unbiasedness or asymptotic near-
unbiasedness (for large enough dimensionality d) of the
resulted orthogonal estimator follows directly from the
isotropicity of the corresponding multivariate distribution.

We propose a new class of structured methods for MC
sampling, called DPPMC, designed for high-dimensional
non-isotropic distributions where samples are correlated
to reduce the variance of the estimator via learned or non-
adaptive determinantal point processes (DPPs, Kulesza
and Taskar (2012); Gartrell et al. (2017)). DPPMCs are
designed to work with highly non-isotropic distributions,
yet they inherit accuracy gains coming from structured
estimators for the isotropic ones. As opposed to other
sampling mechanisms applying DPPs (see: Section 2 for
more details), we propose a very practical and general
framework that can be used in a wide spectrum of sce-
narios ranging from kernel estimation to reinforcement
learning, and is characterized by fast sampling.

We successfully applied DPPMCs to problems involv-
ing high-dimensional nonisotropic distributions naturally
arising in guided evolution strategy (GES) methods for
RL (Maheswaranathan et al., 2019; Choromanski et al.,
2019a), CMA-ES techniques and trust region methods for
blackbox optimization, improving state-of-the-art in all
of these settings. In particular, we show that DPPMCs
drastically improve exploration profiles of the existing
evolution strategy algorithms. We further confirm our re-
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sults analyzing RFM-estimators for Gaussian mixture ker-
nels (Wilson and Adams, 2013; Samo and Roberts, 2015),
and presenting detailed comparison with state-of-the-art
density quantization methods. We use MC sampling as
a preprocessing step from which a DPP downsamples to
construct a final set of samples. Furthermore, we provide
theoretical justification of our empirical results, showing
a connection between DPPMCs and structured orthogonal
MC methods for isotropic distributions.

This paper is organized as follows:(1) in Section 2 we
discuss related work, (2) In Section 3 we introduce Monte
Carlo methods and Determinantal Point Processes, (3)
In Section 4 we introduce our DPPMC algorithm, (4) In
Section 5 we present theoretical guarantees for the class
of DPPMC estimators, (5) In Section 6 we present all
experimental results, in particular applications to a wide
range of reinforcement learning tasks.

Additional experimental details and proofs are given in
the Appendix.

2 Related Work

Determinantal Point Processes (DPPs) are becoming in-
creasingly popular in machine learning, as a means to
generate diverse subsets of data equipped with elegant
mathematical properties and flexible enough to define
diversity via general kernel mechanisms. The recent
surge of interest in DPPs, has seen research on faster
sampling (Gillenwater et al., 2019; Rezaei and Gharan,
2019; Derezinski et al., 2019; Mariet et al., 2019; Li et al.,
2016b; Wachinger and Golland, 2015) (e.g. by approxi-
mating samples from a DPP with generative deep models)
and novel applications. Some works have sought to move
away from nonsymmetric DPPs, allowing both attraction
and repulsion (Brunel, 2018; Gartrell et al., 2019). Appli-
cations of DPPs range from kernel quadrature (Belhadji
et al., 2019) to compactifying neural network architec-
tures (the so-called diversity networks Mariet and Sra
(2016)), dealing with mode collapse in generative models
(Elfeki et al., 2019) and improving recommender systems
(Gillenwater et al. (2018)).

In parallel, effort has been made to understand whether
DPPs can be applied in Monte Carlo integration. A
striking result of Bardenet and Hardy (2016) shows that
mixing quadratures with repulsive sampling provided by
DPPs provably improves convergence rates of MC estima-
tors. Despite providing theoretical foundations for using
DPPs in MCs, this result uses expensive machinery of or-
thogonal multivariate polynomials by relying effectively
on continuous determinantal point processes. Sampling
from them is substantially slower than from “regular”
discrete DPPs and in practice cannot be applied to high-

dimensional data. The authors of Gautier et al. (2019)
build on the results of Bardenet and Hardy (2016) and
propose two ways of using DPPs, providing an intriguing
connection with the class of Ermakov-Zolotukhin MC
estimators. They also manage to speed up the original
algorithm by bypassing unnecessary evaluations of the
univariate orthogonal Jacobi polynomials. Yet, the result-
ing algorithm is still slow (all empirical evidence from
Gautier et al. (2019) is for data taken from R2). Sampling
from continuous DPPs can be conducted with Markov
Chain Monte Carlo (MCMC) techniques (see: Rezaei and
Gharan (2019)), but apart from specific classes of kernels
those methods are only of theoretical interest due to their
time complecity.

To the best of our knowledge, the DPPMC algorithm pro-
posed in this paper is one of the first approaches for using
Determinantal Point Processes to conduct nonisotropic
Monte Carlo sampling with provable theoretical guaran-
tees (see: Section 5) and that can be applied in practice
to improve state-of-the-art algorithms operating on high-
dimensional data (see: Section 6). In particular, we be-
lieve we are the first to show that DPPs can be used to
drastically improve Evolution Strategies (ES) algorithms
for learning reinforcement learning policies. That exposes
this class of techniques to another vibrant field where ma-
chine learning can be successully applied: robotics.

Our algorithm is much faster than its related counterparts
such as Gautier et al. (2019); Rezaei and Gharan (2019),
applied in MC sampling since it does not rely on continu-
ous DPPs and MCMC methods, but on discrete DPPs. It is
also easy to implement (see: algorithmic box in Section 4).
Efficient (approximate) discrete DPP sampling has been
a subject of voluminous literature and several methods
have been proposed (see: Gillenwater et al. (2019); Kang
(2013); Li et al. (2016a)). As opposed to other sampling
mechanisms using DPPs (Li et al., 2016b; Wachinger
and Golland, 2015), we propose a general DPP-MC ar-
chitecture that can be applied in a wide range of down-
stream scenarios from kernel estimation to reinforcement
learning. Presenting downstream accuracy improvements
for new important applications of DPPs with respect to
state-of-the-art is what distinguishes this work from other
recent results focusing more on theoretical aspects of im-
proved DPP samplers, where different DPP methods are
benchmarked in terms of their relative speed (Derezinski
et al. (2019); Blaszczyszyn and Keeler (2018)).

Our main contributions are though as follows:
• We propose simple to implement algorithm using

DPPs for high-dimensional Monte Carlo estimation.

• We apply this algorithm for kernel estimation, re-
inforcement learning and blackbox optimization, in
each setting improving over state-of-the-art.
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3 Towards DPPMCs: MC Methods and
Determinantal Point Processes

3.1 Unstructured and Structured MC Sampling

Consider a function F : Rd ! Rm defined as follows:

F (✓) = Ev⇠P [h✓(v)], (1)

where: P 2 P(Rd) is a distribution from a family of
d-dimensional (not necessarily isotropic) distributions
and h✓ : Rd ! Rm is some function. Several impor-
tant machine learning quantities can be expressed as in
Equation 1. For instance, many classes of kernel func-
tions K : Rd ⇥ Rd ! R admit representation given by
Equation 1. The celebrated Bochner’s theorem (Rahimi
and Recht, 2007) states for every shift-invariant kernel
K : Rd ⇥ Rd ! R:

K(x,y) =

Z

Rd

p(!)ei!
T (x�y)d!, (2)

for some distribution P 2 P(Rd) with density function
p (sometimes called spectral density) which is a Fourier
Transform of k : Rd ! R defined as k(⌧) = K(⌧, 0).
According to Equation 2, values of the stationary kernel K
can be written as: K(x,y) = Ev⇠P [cos(v>(x�y))], for
some distribution P 2 P(Rd). If furthermore a stationary
kernel K is a radial basis function (RBF) kernel, i.e. there
exists g : R ! R such that K(x,y) = g(kx � yk2),
then the above distribution is isotropic. RBF kernels
include in particular the classes of Gaussian, Matérn and
Laplace kernels. Other prominent classes of kernels such
as angular kernels or more general Pointwise Nonlinear
Gaussian kernels (Choromanski et al., 2017) can be also
expressed via Equation 1.

Finally, in evolution strategies (ES), a blackbox optimiza-
tion method frequently applied to learn policies for rein-
forcement learning and robotics (Salimans et al., 2017;
Choromanski et al., 2018c; Rowland et al., 2018; Choro-
manski et al., 2019b), gradients of Gaussian �-smoothings
of blackbox functions f : Rd ! R (ES gradients) are
defined as:

r�f(✓) = Eg⇠N (0,Id)[
1

�
f(✓ + �g)g]. (3)

An unbiased baseline MC estimator of F (✓) from Equa-
tion 1 relies on independent sampling from distribution
P and is of the form:

bF iid
m =

1

m

mX

i=1

h✓(vi), (4)

where vi
iid⇠ P and m stands for the number of sam-

ples used. In the context of dot-product kernel approx-

imation that estimator leads to the so-called Johnson-
Lindenstrauss Transforms (Ailon and Liberty, 2011; Das-
gupta et al., 2010) and for nonlinear kernel approximation
to the celebrated class of random feature map methods
(see: Rahimi and Recht (2007)). In blackbox optimiza-
tion domains it is a core part of many state-of-the-art
ES methods (Salimans et al., 2017; Mania et al., 2018;
Choromanski et al., 2019b).

In all the above applications distributions P from which
samples were taken are isotropic. For such P , we can
further enforce different samples to be exactly orthogonal,
while preserving their marginal distributions. This leads
to the class of the so-called orthogonal estimators bF ort

m

(Yu et al., 2016), often characterized by lower variance
than their unstructured counterparts (Choromanski et al.,
2018b, 2017) followed by downstream gains (in ES opti-
mization (Choromanski et al., 2018c), Wassterstein GAN
and autoencoder algorithms (Rowland et al., 2019) or
even complicated hybrid predictive state recurrent neural
network architectures as in (Choromanski et al., 2018a).

3.2 The Landscape of Nonisotropic Distributions

Two fundamental limitations of the class of estimators
bF ort
m is that they need the underlying distributions to be

isotropic for their (near)unbiasedness and they require
the number of samples to satisfy m  d. Unfortunately,
in practice the number of MC samples m required even
for a relatively modest task of spherical Gaussian kernel
approximation with precision ✏ with any constant proba-
bility is of the order ⌦( d

✏2 log(
d
✏ )) (see: Rahimi and Recht

(2007)). That problem can be addressed by stacking in-
dependent orthogonal blocks of samples. However the
former problem cannot be solved since the geometry of or-
thogonal structured transforms is intrinsically intertwined
with the isotropicity of P .

Nonisotropic distributions arise in many important appli-
cations of machine learning. Several classes of non-RBF
kernels are used as a more expressive tool to apply Gaus-
sian processes (GPs) for learning hidden representation in
data (Wilson and Adams, 2013). The effectiveness of GPs
depends on the quality of the interpolation mechanism
applying given kernel function. As noticed in Remes et al.
(2017), RBF kernels lead to neighborhood-dominated in-
terpolation that is unable of modelling different parts of
the input space in several domains such as: geostatistics,
bioinformations, signal processing.

A much more expressive family of non-monotonic (yet
still stationary) kernels can be obtained by modelling cor-
responding spectral density (leading straightforwardly to
MC estimators) with the use of Gaussian mixture distri-
butions P that are no longer isotropic.
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To be more specific, take the family of Gaussian mixture
kernels defined as:

K(x,y) =
QX

q=1

wq
dY

i=1

exp(�2⇡2⌧2i v
q
i ) cos(2⇡⌧iµ

q
i ),

(5)

where: x,y 2 Rd, ⌧ = x� y, Q is the number of Gaus-
sian mixture components, weights wq define their relative
contributions, and finally µq and Covq = diag(vq1, ..., v

q
d)

stand for the mean and covariance matrix of the qth com-
ponent. The spectral distribution for that class of ker-
nels P = N ({w1, µ1,Cov1}, ..., {wQ, µQ,CovQ}) is
a mixture Gaussian distributions with relative weights
{w1, ..., wQ}, means {µ1, ..., µQ} and covariance matri-
ces {Cov1, ...,CovQ} of different mixture components.
Thus the values of these kernels can be expressed as:
K(x,y) = Ev⇠P cos(v>(x � y)) for the nonisotropic
P defined above.

Since mixtures of Gaussians are dense in the set of distri-
bution functions (in a weak topology sense), by applying
Bochner’s theorem, we can conclude that Gaussian mix-
ture kernels are dense in the space of all stationary kernels.
The generalizations of Gaussian mixture kernels were also
proved to be dense in the space of all non-stationary ker-
nels (Samo and Roberts, 2015).

Nonisotropic distributions also play a very important role
in blackbox optimization, for instance in the CMA-ES
algorithm (Akimoto et al., 2012; Akimoto and Hansen,
2018) to create the populations of samples of parameters
to be evaluated in each epoch of the algorithm. Finally,
learned nonisotropic distributions are applied on a regular
basis in guided ES algorithms for policy optimization (Ma-
heswaranathan et al., 2019; Choromanski et al., 2019a)
that estimate gradients of Gaussian smoothings r�f(✓)
of the RL function f by sampling from nonisotropic dis-
tributions.

3.3 Determinantal Point Processes

Consider a finite set of datapoints X = {x1, ...,xN},
where xi 2 Rd. A determinantal point process is a dis-
tribution P over the subsets of of X such that for some
real, symmetric matrix K indexed by the elements of X
the following holds for every A ✓ X :

P(A ✓ S) = det(KA), (6)

where S is sampled from P and KA stands for the subma-
trix of K obtained by taking rows and columns indexed
by the elements of A. Note that K is positive semidefi-
nite since all principal minors det(KA) are nonnegative.
Determinantal point processes (DPPs) satisfy several so-
called negative dependence property conditions, such as:

P[xi 2 S|xj 2 S] < P[xi 2 S] for i 6= j, which can
be directly derived from their algebraical definition. This
makes them an interesting mechanism in applications
where the goal is to subsample a diverse set of samples
from a given set. To see it even more clearly, we can con-
sider a restricted class of DPPs, the so-called L-ensembles
(Borodin and Rains, 2005), where the probability that a
particular subset S is chosen satisfies:

P[S = S] =
detLS

det(L+ IN )
(7)

for some matrix L that as before, has to be positive
semidefinite. If we interpret L as a kernel matrix L =
[h�(xi),�(xj)i]i,j=1,...,N , where � is a corresponding
feature map and hi stands for the dot-product form in the
corresponding Hilbert space, then we see that under the
DPP sampling process the sets of near-orthogonal samples
in the Hilbert space are favorable over nearly-collinear
ones. For instance, if � : Rd ! Rm for some m < 1
(as it is the case for example for random feature map
representations from Rahimi and Recht (2007)) then prob-
abilities P[S = S] are proportional to squared volumes of
the parallelepipeds defined by feature vectors �(xs) for
s 2 S. Thus samples that are similar according to a given
kernel are less likely to appear together in the subsampled
set than those that correspond to the orthogonal elements
in the corresponding Hilbert space (see Subsection 5.1).

The DPPs described above construct subsampled sets of
different sizes, but if a fixed-size subset is needed a variant
of the DPP called a k-DPP can be used (see: Kulesza and
Taskar (2011)).

4 DPPMC Algorithm

We propose to estimate the expression from Equation 1
by the following procedure. We first choose the number
of samples m that we will average over (as in a standard
baseline MC method). We then conduct oversampling by
sampling independently at random m⇢ samples from P
for some fixed multiplier ⇢ > 1 (which is the hyperpa-
rameter of the algorithm) to obtain set SMC. Optionally,
we renormalize datapoints of SMC so that they are all
of equal lengths. We then downsample from the SMC

using m-DPP and get an m-element set SDPP (see also:
Algorithm box 1 summarizing the method). Finally, we
estimate F (✓) as:

bF (✓)DPPMC =
1

m

X

v2SDPP

h✓(v). (8)

In most practical applications it suffices to use a DPP
determined by a fixed kernel function (see for instance:
Mariet and Sra (2016)) and we show in Section 6.2 this
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approach is successful for RL tasks. However, for com-
pleteness we also present a learning framework. In or-
der to learn the right kernel determining matrix L for
the DPP (see: Subsection 3.3), we model this kernel as
K(x,y) = h�(x),�(y)i, where function � is the output
of the feedforward fully connected neural network.

Algorithm 1 DPPMC sampling
Input: Distribution P , number of samples n, upsample
parameter ⇢, kernel function K : Rd ⇥ Rd ! R.
1. Sample ✏1, · · · , ✏⇢n independently from P .
2. Use a DPP defined by K to choose diverse subset of n
samples ✏i1 , ..., ✏in .
3. Evaluate (renormalized) ✏i1 , · · · , ✏in .

There is an extensive literature on learning DPPs via
learned mappings � produced by neural networks (see:
Gartrell et al. (2017)). However, most approaches focus
on a different setting, where the goal is to learn the DPP
from the subsets it produces (via negative maximal log-
likelihood loss functions). Our neural network training is
conducted as follows.

We approximate distribution P by the Gaussian mixture
distribution PGM. In most interesting practical applica-
tions the nonisotropic distributions under consideration
are already Gaussian mixtures (thus no approximation
is needed), but in principle the method can also be ap-
plied to other nonisotropic distributions. Then we fix a
training set of datapoints Xtrain ✓ Rd. In practice we
use publicly available datasets (see: Subsection 6.1) with
dimensionalities matching that of distribution P . One
can also consider synthetic datasets. Next we train the
neural network to minimize the empirical mean squared
error (MSE) of the DDPMC estimator of the Gaussian
mixture kernel from Equation 5 corresponding to PGM

on the pairs of points from the training set Xtrain (this
is just one of many loss functions that can be effectively
used here).

For given datapoints x,y 2 Rd, the empirical MSE
of the DPPMC approximator bK of the Gaussian
mixture kernel K is given as: [MSE( bK(x,y)) =
1
t

Pt
i=1[(

1
m

P
v2Si

DPP
h⌧ (v) � K(x,y))2], where ⌧ =

x�y, h✓(v) = cos(v>✓) and sets Si
DPP are constructed

by t independent runs of the above procedure, where t is
a fixed hyperparameter determining accuracy of the es-
timation of MSE( bK(x,y)). The final loss function that
we backpropagate through is the average empirical MSE
over pairs of points from Xtrain.

The empirical mean squared error of kernels associated
with nonisotropic distributions under consideration was
chosen on purpose as an objective function minimized

during training. For isotropic distributions the orthogonal
structure (see: discussion about bF ort

m in Subsection 3.1)
that was first introduced as an effective tool for minimiz-
ing mean squared error of associated kernels (via random
feature map mechanism) was later rediscovered as supe-
rior to baseline methods in other downstream tasks, as we
discussed in Subsection 3.1.

5 Theoretical Results

In this section we consider functions F : Rd ! Rm from
Equation 1. All proofs of the presented results are given in
the Appendix. We start by showing that DPPs can be used
to provably reduce the MSE of downsampled estimators.
Let {v1, · · · ,vN} ✓ Rd be N evaluation points of F 1.
Consider the case where each datapoint vi is selected as
part of the estimator with probability pi. More formally,
let {✏i}Ni=1 be an ensemble of Bernoulli random variable
with values in {0, 1} and marginal probabilities {pi}Ni=1.
Define the unbiased downsampled estimator as:

F̂ (✓)U =
1

N

NX

i=1

✏i
pi
h✓(v

i). (9)

Notice that E{✏i}

h
F̂ (✓)U

i
= 1

N

PN
i=1 h✓(vi). Let {wi}

be a set of importance weights with wi > 0. We show
that ensembles of Bernoulli random variables {✏i} sam-
pled from a DPP can yield downsampling estimators with
better variance than if these are produced i.i.d. with
✏i ⇠ Ber(pi). Let K be a marginal kernel matrix defining
a DPP with marginal probabilities Ki,i = pi and such
that the ensemble follows the DPP process. We consider
the following subsampled ES estimator:

F̂ (✓)DPP
U =

1

N

NX

i=1

✏i
pi
h✓(v

i), (10)

where {✏i} ⇠ DPP(K). Recall that here we have:
E [✏i] = Ki,i and E [✏i✏j ] = Ki,iKj,j �K2

i,j for i 6= j.
We define F̂ (✓)iidU in the analogous way, where this time
samples {✏i} are i.i.d. Bernoulli with parameters pi. In
the theorem below we assume that N � d+ 2:
Theorem 1. If pi < 1 for all i, there exists a Marginal
Kernel K 2 RN⇥N such that:

E{✏i}⇠DPP(K)

h
F̂ (✓)DPP

U

i
= E{✏i}⇠{Ber(pi)}

h
F̂ (✓)iidU

i

=
1

N

NX

i=1

h✓(v
i)

(11)

and furthermore: Var(F̂ (✓)DPP
U ) < Var(F̂ (✓)iidU ).

1An important special case is when vi ⇠ P for all i although
it is not necessary for some of the results in this section to hold.
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Thus DPP-based mechanism provides more accurate es-
timators. As a consequence of the above theorem, we
obtain guarantees for estimators of gradients of Gaus-
sian smoothings. Let f : Rd ! R and let f�(✓) =
Eg⇠N (0,Id)[F (✓+ �g)g] be its Gaussian smoothing. Let
rf�(✓) denote the ES gradient of f , as defined in equa-
tion 3, and call r̂iid

U f�(✓) and r̂DPP
U f�(✓) the corre-

sponding unbiased downsampled iid and DPP versions of
the estimator of rf�(✓).
Corollary 1. Let g1, · · · ,gN ⇠ N (0, Id) be N � d+2
iid normally distributed perturbations and let {pi}Ni=1

such that pi < 1 for all i be an ensemble of downsam-
pling parameters. For any ✓ 2 Rd there is a marginal
kernel K 2 RN⇥N such that: E

h
r̂DPP

U f�(✓)
i

=

E
h
r̂iid

U f�(✓)
i
= rf�(✓), where: the first expectation is

taken with respect to both {vi} ⇠ N (0, Id) and {✏i} ⇠
DPP(K) and the second expectation is taken with respect
to both {vi} ⇠ N (0, Id) and {✏i} ⇠ {Ber(pi)}. The
variance satisfies: Var(r̂DPP

U f�(✓)) < Var(r̂iid
U f�(✓)),

where the variance on the LHS of the inequality is com-
puted with respect to {✏i} ⇠ DPP(K) and the vari-
ance on the RHS is computed with respect to {✏i} ⇠
{Ber(pi)}.

This implies that provided we select an appropriate DPP-
Kernel matrix K, DPPMC yields an unbiased estimator of
the gradient of the Gaussian smoothing rf�(✓) of smaller
variance than iid estimator. The proof of this theorem can
be turned into a procedure to produce such a Kernel K.
When the probabilities pi = p for all i, the importance
weighted estimator is equivalent (with high probability)
to the downsampled estimators we use in Section 6 that
already outperform other methods.

5.1 Connections with Orthogonality

In this section we formalize the intuition that the most
likely sets sampled under a Determinantal Point Pro-
cess correspond to subsets of the dataset with orthog-
onal features in the kernel space. In Choromanski et al.
(2018c) the authors study the benefits of coupling sens-
ing directions used to build ES estimators by enforcing
orthogonality between the sampling directions while pre-
serving Gaussian marginals. It can be shown this strat-
egy provably reduces the variance of the resulting gra-
dient estimators. We shed light on this phenomenon
through the perspective of DPPs. In what follows assume
X = {x1, · · · ,xN} with xi 2 Rd and let � : Rd ! RD

be a possibly infinite feature map � defining a kernel.
Theorem 2. Let L = [h�(xi),�(xj)i]i,j 2 RN⇥N be an
L� ensemble, where k�(xi)k2 = 1 for all i 2 [N ]. Let
k 2 N with k  N and assume there exist k samples
xi1 , · · · ,xik in X satisfying h�(xij ),�(xil)i = 0 for all

j, l 2 [k]. If Pk denotes the DPP measure over subsets of
size k of [N ] defined by L, the most likely outcomes from
Pk are the size-k pairwise orthogonal subsets of X .

6 Experiments

We aim to address the following questions: (1) Do
DPPMCs help to achieve better concentration results for
MC estimation? (2) Do DPPMCs provide benefits for
downstream tasks? To address (1), we consider estimat-
ing kernels using random features. To address (2), we
analyze applications of DPPMCs for high-dimensional
blackbox optimization. We present extended ablation
studies for parameter ⇢ in the Appendix (see: Sec. 8.2).

Complexity: We emphasize the conceptual simplicity
of our algorithm. Improving state-of-the-art in the RL
setting, where we fix an RBF kernel defining the DPP (i.e.
learning is not needed) requires adding few lines of code
(we include a generic 11-line example of standard DPP
python implementation in Section 8.1). Learning a DPP
follows the standard supervised framework. Sampling
from DPPs requires the eigen-decomposition of matrix L
a priori, however we use fast sub-cubic (k)-DPP approxi-
mate sampling mechanisms (Kang, 2013; Li et al., 2016a).
For blackbox optimization, time complexity of DPP sam-
pling was negligible in comparison with that for function
querying. Thus wall-clock time is accurately measured
by the number of timesteps/function evaluations and we
show that DPPMC enhancements need substantially fewer
of them. For kernel approximation, time complexity of es-
timating kernel values is exactly the same for the DPPMC
and baseline estimator (and reduces to that of matrix-
vector multiplication). DPPMC requires DPP sampling,
but in that setting it is a one-time cost.

6.1 Kernel Estimation

We compare the accuracy of the baseline MC estimator of
values of Gaussian mixture kernels from Equation 5 us-
ing independent samples (IID) with those applying Quasi
Monte Carlo methods (QMC) Avron et al. (2016), estima-
tors based on state-of-the-art quantization methods: DPQ
(Alamgir et al., 2014), DSC (Mirzasoleiman et al., 2015)
and our DPPMC mechanism. We applied different QMC
estimators and on each plot show the best one. We also
compared against other techniques for reducing variance
of Monte Carlo estimators such as importance sampling
from Elvira et al. (2015) and stratification with antithetic
samples and moment-matching methods. Obtained curves
are very similar to these for the best QMC variants thus
for clarity of the presentation, we do not explicitly present
them on the plots. We compare empirical mean squared
errors of the above methods. The results are presented on
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(a) Q = 2 (b) Q = 3

(c) Q = 4 (d) Q = 5

Figure 1: Comparison of different estimators of Gaussian mix-
ture kernels for different number of components: Q on cpu

dataset. On the horizontal axis: the ratio of the number of sam-
ples used and dimensionality of the datapoints. On the vertical
axis: obtained empirical mean squared error.

the enriched cpu dataset. DPP mechanism was trained on
the enriched wine dataset. Both datasets were taken from
UCI Machine LearningRepository. Mapping � was en-
coded by feedforward fully connected neural networks
with two hidden layers of size h = 40 each and with tanh
nonlinearities. We analyzed Gaussian mixture kernels
with different number of components Q. Fig. 1 shows
that in all settings, DPPMC substantially outperforms all
other methods. We did not include orthogonal sampling
method, since it did not work for the considered kernels.

6.2 Blackbox Optimization

ES blackbox optimization relies on sampling perturba-
tion directions for function evaluations to optimize sets
of parameters (Salimans et al., 2017; Choromanski et al.,
2018c). We propose to improve these baseline algorithms
by augmenting their sampling subroutines with DPPMCs.
We consider the following baseline methods: (1) recently
proposed guided ES methods, such as Guided Evolution
Strategies (Maheswaranathan et al., 2019; Choromanski
et al., 2019a), (2) Trust-Region based ES methods resus-
ing certain samples for better time complexity (Choro-
manski et al., 2019b), (3) Covariance Matrix Adaptation
Evolution Strategy CMA-ES, a state-of-the-art blackbox
optimization algorithm (Hansen et al., 2003).

In each setting, the key difference between the baseline
algorithm and our proposed method is that the former
carries out uniform sampling from a given distribution
P , while our method diversifies the set of samples using
DPPMC. Using a diverse set of samples leads to more
efficient exploration in the parameter space and benefits
downstream training, as we show later. We used a fixed

Gaussian kernel with tuned variance to determine DPP.
We consider two sets of benchmark problems.

Reinforcement Learning: In reinforcement learning
(RL), at each time step t an agent observes state st 2 S,
takes action at, receives reward rt 2 R and transitions
to the next state st+1 2 S. A policy is a mapping
⇡✓ : S ! A from states to actions that will be conducted
in that states and is parameterized by vector ✓. The goal is
to optimize that mapping to maximize expected cumula-
tive reward E[

PT
t=0 rt] over given time horizon T . When

framing RL as a blackbox optimization problem, the input
✓ to the blackbox function f is usually a vectorized neural
network and the output is a noisy estimate of the cumula-
tive reward, obtained by executing policy ⇡✓ in a particu-
lar environment. We consider environments: Swimmer-
v2, HalfCheetah-v2, Walker2d-v2 and Reacher from
the OpenAI Gym library and trained policies encoded
by fully connected feedforward neural networks.
Nevergrad Functions: Blackbox functions from
the recently open-sourced Nevergrad library (Tey-
taud and Rapin, 2018), using the well-known
open-source implementation of CMA-ES (from
https : //github.com/CMA-ES/pycma). We tested
functions: Cigar, Sphere, Rosenbrock and Rastragin.

We are ready to describe the considered ES algorithms.

Figure 2: Standard Guided ES versus their DPPMC enhance-
ments on OpenAI Gym tasks. Presented are median-curves
from k = 10 seeds and with inter-quartile ranges shadowed.

Guided ES: In each iteration, Guided ES methods sam-
ple m perturbations from the non-isotropic Gaussian dis-
tribution P with an adaptive covariance matrix computed
from the empirical covariance matrix of gradients ob-
tained via a biased oracle or previous estimation, as in
recently proposed approaches based on ES-active sub-
spaces (Maheswaranathan et al., 2019; Choromanski et al.,
2019a). Such an adaptive non-isotropic sensing often
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leads to more sample-efficient gradient estimator by ex-
ploring subspaces where the true gradients are most likely
to be. In the DPPMC enhancement of those techniques,
we first sample l = ⇢m vectors from P for ⇢ = 10, and
then down-sample to get a subset of m vectors via DPPs.

In Fig.2, we compare baseline Guided ES with its en-
hanced DPPMC version. The vertical axis shows the
expected cumulative reward during training and the hori-
zontal axis - the number of time steps. Each plot shows
the average performance with shaded area indicating inter-
quartiles across r = 10 random seeds. DPPMC leads to
substantially better training curves. To achieve reward
⇡ 2000 in HalfCheetah-v2, the baseline algorithm re-
quires ⇡ 108 steps while DPPMC only 107.

Trust Region ES: Trust Region ES methods, as those
recently proposed in Choromanski et al. (2019b), rely on
reusing �m perturbations from previous epochs for some
0 < � < 1 and applying regression techniques to estimate
gradients of blackbox functions. Those methods do not
require perturbations to be independent. DPPMCs can
be applied here by sampling (1� �

2 )m new perturbations
(instead of (1 � �)m) and then downsampling from the
set of all (1 + �

2 )m perurbations ((1� �
2 )m new and �m

reused) only m of them. By doing it, we do not reuse all
�m samples, but obtain more diverse set of perturbations
that improves sampling complexity. We take � = 0.2.

Figure 3: RBO trust region method using MC/ridge gradients
versus its DPPMC enhancements on OpenAI Gym tasks. All
curves are median-curves from k = 5 seeds and with inter-
quartile ranges as shadowed.

As we can see in Fig.3, for most of the cases DPPMC-
based Trust Region ES method outperforms algorithm
RBO from Choromanski et al. (2019b) that uses standard
Trust Region ES mechanism and was already showed
to outperform vanilla ES baselines. In particular, for
Walker2d-v2 the only method that manages to learn in a

given timeframe is based on DPPMC sampling.

Figure 4: CMA-ES (baseline) versus its DPPMC version for
Nevergrad functions. Presented are median-curves from k = 5

seeds and with inter-quartile ranges as shadowed.

CMA-ES: In each iteration, CMA-ES samples a set
of m perturbation vectors from a non-isotropic Gaussian
distribution for function evaluations. Unlike for the above
Guided ES methods, the covariance matrix is adapted
by running weighted regression over sampled perturba-
tions, where the weights are the function evaluations for
different perturbations. Such an adaptive mechanism al-
lows also for efficient exploration in the parameter space,
and has performed robustly even for high-dimensional
tasks (Hansen et al., 2003; Duan et al., 2016). To con-
struct the candidate pool for CMA-ES, we first sample
l = ⇢m non-isotropic Gaussian vectors for ⇢ = 10, and
then downsample m elements via DPPs.

We compare CMA-ES baseline with its DPPMC enhance-
ment in Fig. 4. The horizontal axis shows the cumulative
number of function evaluations we make as the optimiza-
tion progresses, while the vertical axis shows the expected
loss. DPPMC achieves consistent gains across all pre-
sented Nevergrad benchmarks. We remark that since
the open source implementation of pycma is highly op-
timized, obtaining even marginal improvements across
multiple benchmarks is not trivial.

7 Conclusion
We presented a new sampling mechanism DPPMC based
on Determinantal Point Processes to improve standard
Monte Carlo methods for nonisotropic distributions. We
furthermore showed the effectiveness of our approach on
several downstream tasks (guided ES search, CMA-ES
and trust-region methods for blackbox optimization) and
provided theoretical guarantees.
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