Data Generation for Neural Programming by Example

A  Appendix

Specifics of neural network architectures
considered

The original DeepCoder network, summarized in de-
tail in the supplemental material of (Balog et al.|
2017), takes as input 5 I/O pairs, padded to a fixed
length. Each integer in the network inputs is sent
through a trainable embedding layer, represented as
20-dimensional real-valued vectors; these embeddings
are then concatenated together and passed through
three fully-connected layers of size 256. This yields
5 representations, one for each of the input/output
pairs input into the network; these are then averaged,
and passed as input into a final sigmoidal activation
layer, which outputs the predicted probabilities of the
34 components appearing in the program. Note that
the branching factor for a search tree (e.g. depth-first
search) is larger than 34, since the lines which contain
higher-order functions also require selection of one of
the predicate functions; for lines which have two func-
tions, the ranking order is determined by the smaller
probability.

In the recurrent neural network, a long short-term
memory (LSTM) network is added to produce a per-
line heuristic. Most of the architecture is unchanged:
as in the original DeepCoder model, the inputs and
outputs are sent through an embedding layer, con-
catenated, passed through three fully-connected lay-
ers, and then averaged across the five examples. How-
ever, instead of predicting the probabilities of inclusion
for each function directly, this representation is instead
provided as an input into the LSTM, which outputs a
new representation for each line of the program. As
before, a final sigmoidal output layer emits probabili-
ties for each of the 34 functions, but now it is applied
across each line. The embedding layer in this network
is 50-dimensional, and the both the fully connected
layers and the LSTM have 200 hidden units. The re-
sult is a network which takes as arguments not just the
input / output examples, but also a target “number
of lines”, and then returns estimates of probabilities
that a function occurs on a per-line basis, rather than
program-wide.

Influence of the size of the training set

We investigated the effect of training on 90%, 20%,
10% and 1% of the possible programs. All the experi-
ments here were done on programs of length ¢ = 3, us-
ing non-uniform sampling to generate the training and
test sets. Although we decrease the number of total
unique programs in the training sets, the total number
of examples remain fixed for each set at n = 300000.
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Figure 8: Here we vary the total number of unique
programs in training sets and compare the resulting
network performance on a fixed, semantically disjoint,
test set. All sets were generated on length ¢ = 3 pro-
grams with the non-uniform sampling method.

Although the later sets see less programs, they contain
more examples per program.

We observe in Figurethat the performance on top-k
prediction of the test set programs is not very sensitive
to the amount of programs in the test set. In light of
this fact, we choose to train with sets containing 10%
of the possible programs. This is good news, since
in most settings, valid input-output pairs would be
cheaper to generate than valid programs.

Details of Restricted Domain data generation
method

A value range for acceptable outputs is specified (ini-
tially [—255,256]), as well as the maximum length of
the output if it is a list (the length is chosen uniformly
at random from one to ten). The program is evaluated
backwards, computing for each intermediate variable
a ‘safe’ range for its value that guarantees to have out-
puts in the target range.

By applying this backward propagation of bounds to
the whole program we find a suitable input range. Val-
ues are then sampled uniformly from this range to cre-
ate the input(s), and the output is calculated by eval-
uating the program. If the resulting valid range for
some input is empty or a singleton, then the program
is discarded.

The short program described in Figure |§| illustrates
the approach and a key limitation of it. The function
SCANL1 (*) on list A outputs a list whose value at po-
sition k is the product IT¥_jA[i]. For lists of length 5
the input range for SCANL1 (%) that guarantees out-
puts between —256 and 256 is [—3,3]. Pushing this
range back through MAP(+1) gives a range for b of
[—4, 2], which is unchanged by FILTER (%2==1). In
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Example program:
a < [int] a
b < FILTER (%2==1) a
c <+ Map (+1) b

d «+ ScaNL1 (%) ¢

Qo0 o

Example input, and incremental output:

[-200, 144, 25, 66, -7, 38, -1, 14, 80, 81, 155]
= [25, -7, -1, 81, 155]

= [26, -6, 0, 82, 156]

[26, -156, 0, 0, O]

Figure 9: A program with complex restrictions on inputs that will remain in the target range
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Figure 10: Marginal distribution over proposed integer
values in the non-uniform sampling.

fact any even number could be accepted as part of the
input, and if the input contains —1 at some point then
any value appearing subsequently in list can be large.

Non-uniform Sampling

The marginal distribution over sampled integer values
is shown in Figure [10]

A note about empty outputs Some programs in
the DSL output either null or the empty list on a
large number of outputs. While these are informative
to some extent, they dominated the examples gener-
ated for certain programs. The process of propagating
bounds through the program is focussed on the value
ranges and does not naturally exclude empty outputs.
For example, it is not possible to specify a range (other
than one containing only a single element) for inputs
to FILTER(%2==0) that guarantees a non-empty out-
put. To ensure that empty outputs could not domi-
nate we included post processing for both sampling
methods which rejects empty outputs until 90% of the
permitted attempts have been made.

Details of Simple Constraint Based Data
Generation

Our training data was made up of 25 sets of 5 exam-
ples for each program. Due to the random choice of
minimum input length there are 6 versions of the ini-
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Figure 11: Relative improvement to a search procedure
assisted by neural network predictions. The network
was trained on the Semantic Variation data, we see
how the loss in predictive performance is reflected in
increased search effort

tial SMT problem. Subsequent SMT problems depend
on the previous examples produced but because subse-
quent calls to the solver vary only slightly the examples
generated can be very similar. We experimented with
randomly adding weak constraints such as setting the
first element of an input to be odd or even or positive
or negative in order to modify the problem slightly for
each call to the solver, however for the experiments re-
ported here the data was produced without any such
random constraints and a few examples are indeed re-
peated across different sets.

The Effect of Neural Network Performance on
Search

Since the intention of training the neural network is to
use it to aid a search procedure, we ran a depth first
search based on the predictions made by each network.
The cumulative time taken to complete the search by
each network is shown in Figure showing the effect
of reduced prediction accuracy on the time taken to
find suitable programs. The network trained on simi-
lar data saved around one quarter of the total search
time across the test set over the worst performing net-
work. This shows how the benefits of machine learning
to programming by example may be overstated when
only evaluated on “friendly” artificial data.



