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Abstract

Many algorithms for score-based Bayesian net-
work structure learning (BNSL), in particular
exact ones, take as input a collection of po-
tentially optimal parent sets for each variable
in the data. Constructing such collections
naively is computationally intensive since the
number of parent sets grows exponentially
with the number of variables. Thus, pruning
techniques are not only desirable but essen-
tial. While good pruning rules exist for the
Bayesian Information Criterion (BIC), current
results for the Bayesian Dirichlet equivalent
uniform (BDeu) score reduce the search space
very modestly, hampering the use of the (often
preferred) BDeu. We derive new non-trivial
theoretical upper bounds for the BDeu score
that considerably improve on the state-of-the-
art. Since the new bounds are mathematically
proven to be tighter than previous ones and
at little extra computational cost, they are a
promising addition to BNSL methods.

1 Introduction

A Bayesian network (Pearl, 1988) is a widely used
probabilistic graphical model. It is composed of (i) a
structure defined by a directed acyclic graph (DAG)
where each node is associated with a random vari-
able, and where arcs represent probabilistic dependen-
cies entailing the Markov condition: every variable is
conditionally independent of its non-descendant vari-
ables given its parents; and (ii) a collection of condi-
tional probability distributions defined for each vari-
able given its parents in the graph. Their graphical
nature make Bayesian networks ideal for complex prob-
abilistic relationships existing in many real-world prob-
lems (Cussens et al., 2013).
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Bayesian network structure learning (BNSL) is essen-
tially a search problem where we aim at finding the
optimal graph given some data. We assume discrete
data and tackle score-based learning, that is, we de-
fine the optimal graph as the structure maximising a
data-dependent score (Heckerman et al., 1995). In par-
ticular, we focus on the Bayesian Dirichlet equivalent
uniform (BDeu) score (Cooper and Herskovits, 1992),
which consists in the log probability of the graph given
(multinomial) data and a uniform prior on structures.
The BDeu score is decomposable; namely we can write
it as a sum of local scores of the domain variables:

BDeupGq “
ÿ

iPV

LBDeupi, Siq,

where LBDeu is the local score function; V “ t1, . . . , nu
is the set of (indices of) variables in the data, which
are in correspondence with nodes of the network to be
learned; and Si Ď V zi, with V zi “ V ztiu, the parent
set of node i in the DAG G.

A common approach to exact BNSL divides the prob-
lem into two steps:

1. Candidate Parent Set Identification: For
each variable, find a suitable collection of candidate
parent sets and their local scores.

2. Structure Optimisation: Given the collection
of candidate parent sets, choose a parent set for
each variable so as to maximise the overall score
while avoiding directed cycles.

This paper concerns pruning ideas to help solve can-
didate parent set identification. Simply put, we aim
at reducing the number of BDeu scores we have to
compute by discarding parent sets that will not lead
to an optimal solution at the second step.

BNSL is known to be NP-hard (Chickering et al., 2004)
and the subproblem of parent set identification is un-
likely to admit a polynomial-time (in n) algorithm; it is
proven to be LOGSNP-Hard for BIC (Koivisto, 2006).
As a compromise, one typically chooses a maximum
in-degree d (number of parents per node) and computes
the score only for parent sets with in-degree at most d.
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Naturally, that does reduce the search space but comes
at the cost of discarding numerous potentially optimal
graphs. Conversely, increasing the maximum in-degree
can considerably improve the chances of finding better
structures but requires higher computing time: there
are Θpndq candidate parent sets (per variable) if an
exhaustive search is performed with in-degree d, and
2n´1 without any in-degree constraint. The large search
space is an important limiting factor in BNSL, as d ą 2
is already prohibitively expensive for many interesting
applications (Bartlett and Cussens, 2017).

Our goal is then to prune this search space more aggres-
sively to help scale exact BNSL with BDeu. We provide
new theoretical upper bounds for the local scores that
allow us to identify and discard non-optimal parent sets
without ever having to compute their scores. These
new upper bounds are efficient and can be readily inte-
grated to any searching approach (Chen et al., 2016;
Cussens, 2011; de Campos and Ji, 2011; de Campos
et al., 2009; Jaakkola et al., 2010; Koivisto and Sood,
2004; Yuan and Malone, 2012, 2013). While our study
has been motivated by the scientific interest in solving
the BNSL problem in an exact manner, we shall note
that local scores for a variable given its parents also
have a probabilistic interpretation (the decomposition
of the score comes from independence assumptions).
Therefore, new approaches to prune such search space
of parent sets can be useful for other purposes too.

The paper is organised as follows. Section 2 provides
the notation and required definitions, as well as a brief
description of the current best bound for BDeu in the
literature, which we call ubf . Section 4 presents a
new improved bound ubg whose derivation follows the
same mathematical approach as the existing state-of-
the-art bound but further exploits properties of the
score function to get better results. This new bound
is provably tighter than previous ones but still does
not capture all cases and other bounds can be devised.
Section 5 looks at the problem from a new angle and
introduces a bound ubh based on a (tweaked) maximum
likelihood estimation. Bounds ubg and ubh leverage
different aspects of the problem and we show how they
can be effectively combined for an even more aggressive
pruning in Section 6. Finally, Section 7 concludes the
paper and gives directions for future research.

2 Definitions and Notation

First of all, since the collection of scores are computed
independently for each variable in the dataset (BDeu
is decomposable), we drop i from the notation and use
simply LBDeupSq to refer to the score of node i with
parent set S Ď V zi. We need some further notation:

´ The state space of variable i is denoted by cpiq.

Similarly, cpSq is the set of all joint instantiations
of the random variables in S Ď V , that is, cpSq is
the Cartesian product of the state space of involved
variables, cpSq “

Ś

iPS cpiq. We denote the size of
state space cpSq as qpSq “ |cpSq|, and we abuse
notation to say qpiq “ |cpiq|.

´ We reserve i for (indices of) variables and j for
instances of a state space, e.g., jS P cpSq. The
subscript is omitted if clear from the context.

´ The data D is a multiset (repetitions are allowed)
of elements from cpV q, with DS the projection of D
onto variables S Ď V (note that D “ DV ). The same
notation applies for projections of instantiations, e.g.
jS . Moreover, we use DSpjS1q Ď DS to denote the
elements of DS compatible with a given jS1 P cpS

1q,
that is, DSpjS1q “ tjS : jS P DS , jSXS

1

S “ jSXS
1

S1 u.
Finally, we use Du instead of D to denote the set of
unique elements from a given multiset D.

´ For j P cpSq, we define nj “ |DSpjq|, that is, the
number of occurrences of j in DS .

´ The vector ~αj “ pαj,kqkPcpiq is the prior for parent

set S Ď V zi under configuration j P cpSq. In the
BDeu score, ~αj satisfies αj,k “ αess{qpSYtiuq, where
αess is the equivalent sample size, a pre-defined user
parameter to define the strength of the prior.

Let Γα pxq “
Γpx`αq

Γpαq for x non-negative integer and

α ą 0 (Γ denotes the Gamma function). Denote
ř

kPcpiq αj,k “ αess{qpSq by αj . The local score for

i with parent set S Ď V zi can be written as

LBDeupSq “
ÿ

jPcpSq

LLBDeupS, jq, and

LLBDeupS, jq“´ log Γαj
pnjq `

ÿ

kPcpiq

log Γαj,k
pnj,kq .

LBDeupSq is a sum of qpSq values each of which is
specific to a particular instantiation of variables in S.
We call such values local local BDeu scores (llB). In par-
ticular, LLBDeupS, jq “ 0 if nj “ 0, so we concentrate
on instantiations j that do appear in the data:

LBDeupSq “
ÿ

jPDS
u

LLBDeupS, jq .

This formula does not come by chance. In Section 5
we discuss its relation with the posterior probability of
having S as parent of i.

3 Pruning in Candidate Parent Set
Identification

The pruning of parent sets rests on the (simple) ob-
servation that a parent set cannot be optimal if one
of its subsets has a higher score (Teyssier and Koller,
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2005). Thus, when learning Bayesian networks from
data using BDeu, it is useful to have an upper bound

ubpSq ě max
T :TĄS

LBDeupT q (1)

so as to potentially prune a whole area of the search
space at once. Ideally, one would like an upper bound
that is both tight (with respect to the inequality in
Expression 1) and cheap to compute, so that one can
score parent sets incrementally, and at the same time
check whether it is worth ‘expanding’ them: if ubpSq
is not greater than maxR:RĎS LBDeupRq, then it is
unnecessary to expand S. Figure 1 illustrates how a
hypothetical bound would prune the search space.

With that in mind, we can define candidate parent set
identification more formally.

Definition 1 (Candidate Parent Set Identification).
For each variable i P V , find a collection of parent sets

Li “ tS Ď V zi : S1 Ă S ñ LBDeupS1q ă LBDeupSqu .

Unfortunately, we cannot predict the elements of Li and
have to compute the scores for a list Li potentially much
larger than Li. The practical benefit of our bounds is
to reduce |Li|, thus lowering the computational cost of
BNSL, while ensuring we do not miss any potentially
optimal parent set, that is, Li Ě Li. Before presenting
the current best bound in the literature (Cussens, 2012;
de Campos and Ji, 2010, 2011), we give a lemma on
the variation of counts with expansions of parent sets.

Lemma 1. For S Ď T Ď V zi, jS P DS
u and jT P

DT
u with jST “ jS, we have |DTYtiu

u | ě |DSYtiu
u |, and

|DTYtiu
u pjT q| ď |DSYtiu

u pjSq|.

Proof. Given that S Ď T Ď V zi, every instantiation
in DSYi

u is compatible with one or more elements of
DTYi
u , and thus |DTYi

u | ě |DSYi
u |. The relationship is

reversed when we consider unique occurrences com-
patible with a given instantiation. By construction
jST “ jS , so if there is an instantiation jT P DT

u , there
must be at least one corresponding jS P DS

u , and it fol-

lows that |DTYtiu
u pjT q| ď |DSYtiu

u pjSq|. Note that both

|DTYtiu
u pjT q| and |DSYtiu

u pjSq| are bounded by qpiq: one
instantiation for each value child i can assume.

As an example, consider the small dataset of Table
1. The number of non-zero counts never decreases
as we add a new variable to the parent set of vari-
able i “ 3. With S “ t1u and T “ t1, 2u, we have

|DSYtiu
u | “ 3 and |DTYtiu

u | “ 4. Conversely, the num-
ber of (unique) occurrences compatible with a given
instantiation of the parent set never increases with its
expansion: for example with jS “ p1q and jT “ p1, 1q,

we have |DSYtiu
u pjSq| “ 2 and |DTYtiu

u pjT q| “ 2.
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t1, 2, 3, 4u
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Figure 1: Illustration of potential parent sets in a
dataset with 8 variables (the 8th one is the child and
does not show). This is still a small part of the search
space with only sets including variable 1. In red dashed
lines, the sets pruned if LBDeupt1uq ě ubpt1, 3uq.

We now introduce function f that, for a variable i, is
defined on the sets of potential parents S Ď V zi, and
observed instantiations j P DS

u :

fpS, jq “ ´|DSYtiu
u pjq| log qpiq ,

fpSq “
ÿ

jPDS
u

fpS, jq. (2)

Theorem 1 (ubf ). For a variable i, a potential parent
set S Ď V zi and its instantiations j P DS

u , we have that
LLBDeupS, jq ď fpS, jq.

Moreover, if LBDeupS1q ě
ř

jPDS
u
fpS, jq “ fpSq for

some S1 Ă S, then all T Ě S are not in Li (Cussens
and Bartlett, 2015; de Campos and Ji, 2011).

From Theorem 1, we get an upper bound on the local
BDeu score of all supersets of parent set S

ubf pSq “ fpSq ě max
T :TĄS

LBDeupT q. (3)

In words, we compute the number of non-zero counts

per instantiation, |DSYtiu
u pjq|, and we ‘gain’ log qpiq

for each of them. Note that fpSq “ ´|DSYtiu
u | log qpiq,

which by Lemma 1 is monotonically non-increasing over
expansions of the parent set S. Hence fpSq is not only
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Table 1: Example of data D, its reductions by parent
sets S “ t1u and T “ t1, 2u, and the number of unique
occurrences compatible with jS P DS

u and jT , j
1
T P DT

u ,

with jST “ j1
S
T “ jS . The child variable is i “ 3, and

we have jS “ p1q, jT “ p1, 1q, j
1
T “ p1, 0q.

D
1 2 3
0 0 0
1 0 0
1 1 0
1 1 1

DSYtiu
u

1 3
0 0
1 0
1 1

DTYtiu
u

1 2 3
0 0 0
1 0 0
1 1 0
1 1 1

DSYtiu
u pjSq

1 3
1 0
1 1

DTYtiu
u pjT q

1 2 3
1 1 0
1 1 1

DTYtiu
u pj1T q

1 2 3
1 0 0

an upper bound on LBDeupSq but also on LBDeupT q
for every T Ě S. Bound ubf is cheap to compute but is
unfortunately too loose. We derive much tighter upper
bounds on LLBDeupS, jq (where nj ą 0) by considering
instantiation counts for the full parent set V zi, the
parent set that includes all possible parents for child
i. We call these full instantiation counts. Evidently,
the number of full parent instantiations qpV ziq grows
exponentially with |V |, but it is linear in |D| when we

consider only the unique elements DV zi

u .

4 Exploiting the Gamma Function

First, we extend the current state-of-the-art upper
bound of Theorem 1 by exploiting some properties of
the Gamma function. For that, we need some interme-
diate results, where we assume α ą 0.

Lemma 2. Let x be a positive integer. Then

Γα p0q “ 1 and log Γα pxq “
x´1
ÿ

`“0

logp`` αq .

Proof. Follows from Γpx` 1q “ xΓpxq.

Lemma 3. For x positive integer and v ě 1,

log

ˆ

Γα pxq

Γα{v pxq

˙

ě log v .

Proof. By applying Lemma 2, we obtain

x´1
ÿ

`“0

log
`` α

`` α{v
“ log v `

x´1
ÿ

`“1

log
`` α

`` α{v
ě log v ,

as each term of the sum (if any) is greater than zero.

Lemma 4. Let x, y be non-negative integers such that
x` y ą 0. Then
"

Γα px` yq “ Γα pxqΓα pyq if x ¨ y “ 0 ,
Γα px` yq ě Γα pxqΓα pyq p1` y{αq otherwise.

Proof. If x (resp. y) is zero, then Γα pxq “ 1 and the
equality holds. Otherwise we apply Lemma 2 three
times and manipulate the products:

Γα px` yq

Γα pxqΓα pyq
“

śx`y´1
z“0 pz ` αq

śx´1
z“0pz ` αq

śy´1
z“0pz ` αq

“

x`y´1
ź

z“y

pz ` αq
x´1
ź

z“0

1

pz ` αq

“

x´1
ź

z“0

y ` z ` α

z ` α
ě
y ` α

α
,

which holds since all terms in this final product are
greater or equal to 1.

Corollary 1. Let x1, . . . , xk be a list of non-negative
integers in decreasing order with x1 ą 0, then

Γα

˜

k
ÿ

l“1

xl

¸

ě

k
ź

l“1

Γα pxlq
k1´1
ź

l“1

p1` xl{αq ,

where k1 ď k is the last positive integer in the list (in
this notation, the second product on the right-hand side
disappears if k1 “ 1).

Proof. Repeatedly apply Lemma 4 to xt ` p
řk
l“t xlq

until all elements are processed. While both the current
xt and the rest of the list are positive (until t “ k1´ 1),
we obtain the extra term p1 ` xt{αq. After that, we
only ‘collect’ the Gamma functions of the first product
on the right-hand side, so the result follows.

Lemma 5. For S Ď V zi and j P DS
u , assume that ~nj “

pnj,kqkPcpiq are in decreasing order over k “ 1, . . . , qpiq
(this is without loss of generality, since we can name
and process them in any order). Then for any α ě
αj “ αess{qpSq, we have

LLBDeupS, jq ď fpS, jq ` gpS, j, αq,

gpS, j, αq “ ´
k1´1
ÿ

l“1

log p1` nj,l{αq ,

where k1 ď k is the largest index such that nj,k1 ą 0.

Proof. First of all, we have

LLBDeupS, jq “´ log Γαj
pnjq `

ÿ

kPcpiq

log Γαj,k
pnj,kq

“´ log Γαj

¨

˝

ÿ

kPcpiq

nj,k

˛

‚`
ÿ

kPcpiq

log Γαj,k
pnj,kq .
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Since counts nj,k are in decreasing order by k, we apply
Corollary 1:

LLBDeupS, jq ď ´ log

¨

˝

qpiq
ź

l“1

Γαj
pnj,lq

k1´1
ź

l“1

p1`
nj,l
αj
q

˛

‚

`
ÿ

kPcpiq

log Γαj,k
pnj,kq

“
ÿ

kPcpiq

log

ˆ

Γαj,k
pnj,kq

Γαj
pnj,kq

˙

´

k1´1
ÿ

l“1

log

ˆ

1`
nj,l
αj

˙

ď ´|DSYtiu
u pjq| log qpiq ´

k1´1
ÿ

l“1

log
´

1`
nj,l
α

¯

with α ě αj and Γαj,k
pnj,kq {Γαj

pnj,kq ď ´ log qpiq by
Lemma 3 whenever nj,k ą 0.

The difference here is the summation from the gap of
the super-multiplicativity of Γ (Lemma 4 and Corol-
lary 1). That extra term gives us a tighter bound
on LLBDeupS, jq, but gpSq “ fpSq `

ř

jPDS
u
gpS, j, αq

is no longer monotonic over expansions of S (albeit
monotone in α). Hence, gpSq is not an upper bound
on LBDeupT q for every T Ě S, and we need further
results on gpS, j, αq.

Lemma 6. For S Ď T Ď V zi, jT P DT
u , and jS P DS

u

with jST “ jS, we have

fpT, jT q ě fpS, jSq,

gpT, jT , αq ě gpS, jS , αq.

Proof. Because jST “ jS , |DTYtiu
u pjT q| ď |DSYtiu

u pjSq|.
Moreover, njT ,k ď njS ,k for every k P cpiq (the counts
get partitioned as more parents are introduced to arrive
at T from S), so p1`njT ,k{αq ď p1`njS ,k{αq for every
k, and the result follows.

Using this property of g as described in Lemma 6, we
can pick the best value of g over all full expansions j
of a current instantiation jS to create a valid bound:

Theorem 2 (ubg). Let S Ď V zi, jS P DS
u , Then

LLBDeupS, jSq ď fpS, jSq ` gpS, jSq

gpS, jSq “ min
jPDV zi

u : jS“jS

gpV zi, j, αess{qpSqq

Also, if LBDeupS1q ě pfpSq`
ř

jSPDS
u
gpS, jSqq “ gpSq

for some S1 Ă S, then all T Ě S are not in Li.

Proof. First we prove that fpS, jSq ` gpS, jSq is an
upper bound for LLBDeupS, jSq. From Lemma 6, if
we take any instantiation of the fully expanded parent

set, j P DV zi

u : jS “ jS , we have that gpS, jS , αq ď

gpV zi, j, αq for any α. As Lemma 6 is valid for every full
instantiation j, we take the minimum over them to get
the tightest bound. From Lemma 5, LLBDeupS, jSq ď
fpS, jSq ` gpS, jSq. Now, if we sum all the llBs, we
obtain the second part of the theorem for S.

Finally, we need to show that this second part of the
theorem holds for any T Ą S, which follows from
fpT q ď fpSq (as the total number of non-zero counts
only increases, by Lemma 1) and

ÿ

jT PDT
u

gpT, jT q “
ÿ

jSPDS
u

¨

˝

ÿ

jT PDT
u : jST“jS

gpT, jT q

˛

‚

ď
ÿ

jSPDS
u

gpS, jSq .

That holds as gpT, jT q ď 0 and, with jST “ jS , at least
one term gpT, jT q is smaller than gpS, jSq, as their
minimisation spans the same full instantiations (and
gp¨, ¨, αq is non-decreasing on α).

In brief, the relevance of Theorem 2 is that it gives us
a tighter upper bound ubgpSq ď ubf pSq, such that

ubgpSq “ gpSq “ pfpSq `
ÿ

jSPDS
u

gpS, jSqq

ě max
T :TĄS

LBDeupT q.

Therefore, this bound is always equal or superior to the
current state-of-the-art bound. Moreover, the overhead
of computing the bounds is negligible if a smart imple-
mentation is used (one that reuses computations that
are nevertheless required for calculating the scores).
The process which constructs contingency tables of
counts for local score computations (say, from an AD-
tree) is the main bottleneck in scoring, but it can be
cheaply extended to simultaneously produce tables of
sets of “full instantiations” for the computation of up-
per bounds where, for instance, addition of counts are
replaced with unions of sets. While this technical de-
tail is irrelevant for the mathematical proofs here, it
is important to point out that the new bounds imply
very little extra computational costs.

5 Exploiting the Likelihood Function

Bound ubg of previous section was based on the best full

instantiation j P DV zi

u that is compatible with an llB of
the parent set S. Knowing that function g is monotonic
over parent set sizes, we could look at an instantiation
of the fully extended parent set to derive a bound for
the llB of S and all its supersets. Even though the
results are valid for every full instantiation, we can only
compute bound ubg using one of them at a time. The
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new bound of this section comes from the realisation
that it is possible to exploit all full instantiations to
derive a valid bound on the llB of S. For that purpose,
we need some properties of inferences with the Dirichlet-
multinomial distribution and conjugacy.

The BDeu score is simply the log marginal prob-
ability of the observed data given suitably chosen
Dirichlet priors over the parameters of a BN struc-
ture. Consequently, llBs are intimately connected to
the Dirichlet-multinomial conjugacy. Given a Dirichlet
prior ~αj “ pαj,1, . . . , αj,qpiqq, the probability of observ-
ing data D~nj

with counts ~nj “ pnj,1, . . . , nj,qpiqq is:

log PrpD~nj
|~αjq “ log

ż

p

PrpD~nj
|pqPrpp|~αjqdp ,

where the first distribution under the integral is multi-
nomial and the second is Dirichlet. Note that

log

ż

p

PrpD~nj
|pqPrpp|~αjqdp ď max

p
log PrpD~nj

|pq, (4)

since
ş

p
Prpp|~αjqdp “ 1. Note also that llBs are not the

probability of observing sufficient statistics counts, but
of a particular dataset, that is, there is no multinomial
coefficient which would consider all the permutations
yielding the same sufficient statistics. Therefore, we
may devise a new upper bound based on the maximum
(log-)likelihood estimation.

Lemma 7. Let S Ď V zi and j P DS
u . Then

LLBDeupS, jq ď MLp~njq , where we have that
MLp~njq “

ř

kPcpiq nj,k logpnj,k{njq. (In this notation,

we use 0 log 0 “ 0.)

Proof. The llB is simply the log probability of observ-
ing a data sequence with counts ~nj under a Dirichlet-
multinomial distribution with parameter vector ~αj .
The result follows from Expression (4) and holds for
any prior ~αj .

Corollary 2. Let S Ď V zi and jS P DS
u . Then

LLBDeupS, jSq ď
ř

jPDV zi
u : jS“jS

MLp~njq .

Proof. This follows from the properties of the maxi-
mum likelihood estimation, because it is monotonically
non-decreasing with the expansion of parent sets (in
terms of maximum likelihood, we fit the distribution
just as well or better when having more parents).

We can improve further on this bound of Corollary 2 by
considering llBs as a function h of α for fixed ~nj , since
we can study and exploit the shape of their curves. We
define

h~nj
pαq “ ´ log Γα pnjq `

ÿ

kPcpiq

log Γα{qpiq pnj,kq .

Lemma 8. If Ek : nj,k “ nj, then h~nj
is a concave

function for positive α ď 1.

Proof. (This result can also be obtained from (Levin
and Reeds, 1977).) Using the identity in Lemma 2,
or, equivalently, by exploiting known properties of the
digamma and trigamma functions, we have

Bh~nj

Bα
pαq “ ´

nj´1
ÿ

`“0

1

`` α
`

qpiq
ÿ

k“1

nj,k´1
ÿ

`“0

1

`qpiq ` α
, and

B2h~nj

Bα2
pαq “

nj´1
ÿ

`“0

1

p`` αq2
´

qpiq
ÿ

k“1

nj,k´1
ÿ

`“0

1

p`qpiq ` αq2
.

It suffices to show that
B
2h~nj

Bα2 pαq is always negative
under the conditions of the theorem. If there are at
least two nj,k ą 0, then

B2h~nj

Bα2
pαq ď

nj´1
ÿ

`“0

1

p`` αq2
´

2

α2

simply by ignoring all those negative terms with ` ě 1.
Now we approximate it by the infinite sum of quadratic
reciprocals:

B2h~nj

Bα2
pαq ď

nj´1
ÿ

`“0

1

p`` αq2
´

2

α2

“ ´
1

α2
`

1

p1` αq2
`

nj´1
ÿ

`“2

1

p`` αq2

ă ´
1

α2
`

1

p1` αq2
`

8
ÿ

`“2

1

`2

“ ´
1

α2
`

1

p1` αq2
`
π2

6
´ 1 ,

which is negative for any α ď 1 (the gap between the
two fractions containing α obviously decreases with the
increase of α, so it is enough to check the sign for the

largest value α “ 1). Thus we have
B
2h~nj

Bα2 pαq ă 0.

The concavity of h~nj
is useful for the following reason.

Lemma 9. Let S Ď V zi and j P DV zi

u such that Ek :

nj,k “ nj. If α ď qpSq and
Bh~nj

Bα pα{qpSqq is non-
negative, then

h~nj
pα{qpT qq ď h~nj

pα{qpSqq for every T Ě S.

Proof. Since Ek : nj,k “ nj and α{qpSq ď 1,
we have that h~nj

is concave (Lemma 8) and since
Bh~nj

Bα pα{qpSqq ě 0, h~nj
is non-decreasing.
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The final step to improve the upper bound is to consider
any local score of a parent set S as a function of the
(log-)probabilities over full mass functions.

Lemma 10. Let S Ď V zi and jS P DS
u . Then

LLBDeupS, jSq ď
ÿ

jPDV zi
u : j‰j‹

MLp~njq ` log PrpD~nj‹
|~αjS q,

where j‹ “ arg min
jPDV zi

u
log PrpD~nj

|~αjS q.

Proof. We rewrite njS ,k as the sum of counts from
full mass functions: njS ,k “

ř

jPDV zi
u : jS“jS

nj,k.

Thus, LLBDeupS, jSq is the log probability
log PrpD~njS

|~αjS q of observing a data sequence
with counts ~njS “ p

ř

jPDV zi
u : jS“jS

nj,kqkPcpiq under

the Dirichlet-multinomial with parameter vector ~αjS .
Assume an arbitrary order for the full mass functions

related to elements in tj P DV zi

u : jS “ jSu and name

them j1, . . . , jw, with w “ |tj P DV zi

u : jS “ jSu|.
Exploiting the conjugacy multinomial-Dirichlet we can
express this probability as a product of conditional
probabilities:

PrpD~njS
|~αjS q “

w
ź

`“1

Pr

˜

D~nj`

ˇ

ˇ

ˇ

ˇ

ˇ

`´1
ÿ

t“1

~njt ` ~αjS

¸

,

LLBDeupS, jSq “
w
ÿ

`“1

log Pr

˜

D~nj`

ˇ

ˇ

ˇ

ˇ

ˇ

`´1
ÿ

t“1

~njt ` ~αjS

¸

ď log Prp~nj1 |~αjS q `
w
ÿ

t“2

MLp~njtq.

These are obtained by applying Expression (4) to all
but the first term. Since the order is arbitrary, we can
pick one in our best interest and the result follows.

While the bound of Lemma 10 is valid for S, it gives
no assurances about its supersets T , so it is of little
direct use (if we need to compute it for every T Ą S,
then it is better to compute the scores themselves).
To address that, we replace the first term of the right-
hand side summation with a proper upper bound, while
the maximum likelihood terms are already valid terms,
as discussed earlier. We note that Theorem 3 is in
fact much simpler than its formal enunciation—this
is unavoidable, since we are combining different possi-
ble bounds for the term log PrpD~nj‹

|~αjS q that appears
in Lemma 10 into one bound, while also keeping all
the other maximum likelihood bounds. Moreover, to
make Theorem 3 slightly more compact, we sum all
maximum likelihood (ML) terms (first summation in
the expression) and then we discard one of them (the
first negative ML term) in order to (potentially) re-
place it with a better bound. This is the only reason
why the definition of h in the following theorem looks
unpleasant to the eyes.

Theorem 3 (ubh). Let S Ď V zi, α “ αess{qpSq, jS P

DS
u , and h~nj

pαq “ h~nj
pαq if α ď 1 and

Bh~nj

Bα pαq ě 0,
and zero otherwise. Let

hpS, jSq “
ÿ

jPDV zi

u :

jS“jS

MLp~njq ` min
jPDV zi

u :

jS“jS

´

´MLp~njq

`mintMLp~njq; fpV
zi, jq ` gpV zi, j, αq; h~nj

pαqu
¯

.

Then LLBDeupS, jSq ď hpS, jSq. Moreover, if
LBDeupS1q ě

ř

jSPDS
u
hpS, jSq “ hpSq for some S1 Ă

S, then S and all its supersets are not in Li.

Proof. For parent set S, the bound based on MLp~njq
only (first option in the inner minimisation, which
cancels out the double ML terms) is valid by Corollary 2.
The other two options rely on Lemma 10 and their own
results: the bound on fpV zi, jq ` gpV zi, j, αq is valid
by Lemma 6, while the bound based on h~nj

pαq comes
from Lemma 9, and thus the result holds for S. Take
T Ą S. It is straightforward that

LBDeupT q ď
ÿ

jT PDT
u

hpT, jT q “

ÿ

jSPDS
u

¨

˝

ÿ

jT PDT
u : jST“jS

hpT, jT q

˛

‚ď
ÿ

jSPDS
u

hpS, jSq,

since
ř

jT PDT
u : jST“jS

hpT, jT q ď hpS, jSq, because both

sides run over the same full instantiations and the right-
hand side use the tighter minimisation of Expression (3)
only once, while the left-hand side can use that tighter
minimisation once every jT , and Lemmas 6 and 9 en-
sure that the computed values fpV zi, jq ` gpV zi, j, αq
and h~nj

pαq are valid for T .

As with previous theorems, Theorem 3 gives us a new
upper bound on the local score of a parent set S

ubhpSq “ hpSq “
ÿ

jSPDS
u

hpS, jSq ě max
T :TĄS

LBDeupT q.

6 Combining the Bounds

We note that bound ubg of the previous section was
obtained in a similar way as ubf , and we prove that
ubgpSq ď ubf pSq for any candidate parent set S. Con-
versely, ubh bears no such relation to ubf as we de-
rived it through a new route, studying the properties
of the likelihood function. This is to our advantage, as
due to their independent theoretical derivations, ubg
and ubh prune different regions of the search space
and can be effectively combined into a tighter bound
ubg,h “ mintubg; ubhu.
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This work focus on new theoretical derivations leading
to tighter bounds, and thus an empirical analysis is
beyond its scope. Nonetheless, we illustrate possible
gains as well as a comparison of the different bounds
in simple benchmark datasets in Figures 2 and 3. The
code for computing these bounds and reproducing the
experiments is available on the authors’ pages.
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Figure 2: Upper bound values for each candidate parent
set for variable Standard-of-living-index in the CMC
dataset (Dua and Graff, 2017). Parent sets are arbi-
trarily ordered within each cardinality (neighbourhood
in the graph within same cardinality is not relevant).

For small datasets, it is feasible to score every candi-
date parent set so that we can compare how far the
upper bounds for a given parent set S (and all its su-
persets) are from the true best score among itself and
its supersets. Figure 2 shows such a comparison for
variable Standard-of-living-index in the CMC dataset
(Dua and Graff, 2017), which has 10 variables and
1,473 instances. It is clear that the new bound ubg,h
is much tighter than the current best bound in the
literature (here called ubf ) and improves considerably
towards the true best score (only available because this
particular dataset is not too large).

For larger datasets (more than 10 variables), evaluating
all candidate parent sets becomes computationally im-
practicable, so instead we evaluate the number of scores
computed with each bound. In Figure 3, we see the new
bounds considerably reduced the number of scores com-
puted, which translates into smaller lists of potentially
optimal parent sets Li (see Definition 1). This goes to
show the practical value of tighter upper bounds, as we
save computing time in both steps of BNSL: parent set
identification (fewer scores to compute) and structure
optimisation (smaller search space).

Finally, we point out that the mathematical results may
seem harder to apply than they actually are. Comput-
ing ubgpSq and ubhpSq to prune a parent set S and all
its supersets can be done in linear time, as one pass
through the data is enough to collect and process all
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¨106 zoo segment

6 8 10 12 14
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2.5
¨106

Max. number of parents
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ubf ubg ubh ubg,h no pruning

6 8 10 12 14

Max. number of parents
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Figure 3: Number of scores computed per maximum
number of parents with different pruning bounds for
four UCI datasets (Dua and Graff, 2017) with 17 (zoo,
segment) and 18 (primary-tumor, lymph) variables.
The scores were computed using breadth-first search.

required counts; more sophisticated data structures,
such as AD-trees (Moore and Lee, 1998), might allow
for even greater speedups. Since calculating a score
already takes linear time in the number of data samples,
we have cheap bounds which are provably superior to
the current state-of-the-art pruning for BDeu.

7 Conclusions

We introduced new theoretical upper bounds for exact
structure learning of Bayesian networks with the BDeu
score by studying the score function from multiple an-
gles. These bounds are provably tighter than previous
results and shall provide significant benefits in reducing
the search space in candidate parent set identification
in BNSL and potentially other applications involving
independence assumptions.

A natural step for future research is the integration of
our bounds with more sophisticated data structures
and search algorithms. As an example, branch-and-
bound methods are particularly promising as they not
only consider the parent sets and its corresponding full
instantiations but also partial instantiations that are
formed by disallowing some variables to be parents in
some of the branches. Our results also open new routes
for further theoretical work in exact structure learning.
Notably, we conjecture that the maximum likelihood
estimation terms still leave room for tighter bounds.
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