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Abstract

Graph clustering is a basic technique in ma-
chine learning, and has widespread appli-
cations in different domains. While spec-
tral techniques have been successfully applied
for clustering undirected graphs, the perfor-
mance of spectral clustering algorithms for
directed graphs (digraphs) is not in general
satisfactory: these algorithms usually require
symmetrising the matrix representing a di-
graph, and typical objective functions for
undirected graph clustering do not capture
cluster-structures in which the information
given by the direction of the edges is cru-
cial. To overcome these downsides, we pro-
pose a spectral clustering algorithm based
on a complex-valued matrix representation of
digraphs. We analyse its theoretical perfor-
mance on a Stochastic Block Model for di-
graphs in which the cluster-structure is given
not only by variations in edge densities, but
also by the direction of the edges. The signif-
icance of our work is highlighted on a data
set pertaining to internal migration in the
United States: while previous spectral clus-
tering algorithms for digraphs can only reveal
that people are more likely to move between
counties that are geographically close, our
approach is able to cluster together counties
with a similar socio-economical profile even
when they are geographically distant, and il-
lustrates how people tend to move from rural
to more urbanised areas.
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1 Introduction

Clustering is one of the most important techniques in
analysing massive data sets, and has numerous appli-
cations ranging from machine learning to computer
vision, from network analysis to social sciences. When
the underlying graph to cluster is undirected, the ob-
jective is to partition the vertices of the graph into
clusters such that vertices within the same cluster are
on average better connected to one another than ver-
tices belonging to different clusters. This notion can
be formalised by introducing an objective function to
minimise, such as the conductance or the normalised
cut (Lee et al., 2014; Shi and Malik, 2000). For exam-
ple, the widely used spectral clustering algorithm (Ng
et al., 2001; Peng et al., 2017; von Luxburg, 2007),
which uses eigenvectors of the adjacency matrix of a
graph as input features for k-means, exploits a con-
vex relaxation of the normalised cut to obtain a good
partitioning of the graph.

However, when the underlying graph is directed, the
normalised cut value and other clustering metrics based
on edge-density often fail to uncover many of the signif-
icant patterns in a graph. For instance, let us consider
a graph representing the number of people moving
between different counties in the (mainland) United
States during 1995-2000 (Census Bureau, 2002; Perry,
2003). If one tries to symmetrise its (asymmetric)
adjacency matrix M in a naive way by considering
M + MT, migration flows between counties in different
states will be lost in the process. Indeed, when consid-
ering the outcome of spectral clustering on M + MT
of this migration data set as input, the visualisation
in Figure 1a shows that clusters align particularly well
with the political and administrative boundaries of the
US states, as observed by Cucuringu et al. (2013). This
is, somehow counterintuitively, an unsatisfactory out-
come since it doesn’t provide us with much information
about migration patterns between far-away states.

Motivated by this example, we study spectral cluster-
ing for digraphs based on a complez-valued Hermitian
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Figure 1: Visualisation of the clustering obtained on a US migration data set: (a) spectral clustering on the symmetrised
matrix M + M7, and (b) our procedure. The red and green clusters highlighted in (c) are such that 68% of the total
weight of the edges between the two clusters is oriented from the green to the red one.

matrix representations considered by Guo and Mohar
(2017); Singer (2011) and defined as follows: for any
N-vertex digraph G, the Hermitian adjacency matrix
A € CNXN of @ is the matrix where Ay =4y, =11if
there is a directed edge u ~» v, and A, , = 0 otherwise,
where ¢ is the imaginary unity. Because of the use of i
and i in expressing a directed edge, all the eigenvalues
of A are real-valued. We show that, when the edge di-
rections impart a cluster-structure on G, this structure
is approximately encoded in the eigenvectors associ-
ated with the top eigenvalues of A. To demonstrate
the significance of our Hermitian adjacency matrix,
Figure 1b visualises the outcome of spectral clustering
when A is used to encode the migration data set. It is
clear such clustering is much less correlated with state
boundaries than the one from Figure la. Furthermore,
in Figure 1b we can observe several interesting migra-
tion patterns emerging, especially when considering
pairs of clusters with large “imbalance” between their
edge directions. The pair with the largest such imbal-
ance (which we formalise in a later section) is shown in
Figure 1c, showcasing that people tend to move from
counties in green towards counties in red. In particu-
lar, Figure 1c highlights a migration pattern around
the East Coast, where people tend to move from, for
example, North and South Carolina to geographically
distant areas such as the New York metropolitan area,
Chicago, and the East side of Florida. From this per-
spective, while previous algorithms identify different
clusters based on the relations between vertices in a
cluster and vertices outside a cluster, our algorithm
uncovers “higher-order” structures between clusters. In
contrast to all the previous spectral algorithms for di-
graphs we experimented with, only our approach is
able to uncover such patterns in this data set.

Our contributions and the organisation of this paper
are as follows. In Section 2 we generalise the classical
stochastic block model (SBM) to the setting of digraphs,
and propose a directed stochastic block model (DSBM)
with a latent structure defined with respect to imbal-
anced cuts between the clusters. In contrast to the
classical SBM, the additional parameters of our model
are used to assign different probabilities to the direc-
tions of the edges across different clusters. As graphs

from the DSBM possess a ground truth clustering, this
model will be used to analyse the performances of our
algorithm. In Section 3 we present a spectral clustering
algorithm for digraphs, and compare our algorithm
with previous approaches. To convince the reader of
the effectiveness of our algorithm, in Section 4 we
provide theoretical guarantees for our algorithm when
applied to a broad class of DSBMs. Complementing the
theoretical analysis of our algorithm, in Section 5 we
empirically demonstrate its practicality, and compare
its performance against several competing approaches
on synthetic and real-world data sets. We propose
directions for future work in Section 6.

Related work. Because of its comprehensive appli-
cations and intriguing theoretical properties, graph
clustering has received immense attention over the
years. Now we review some related works most related
to ours, and we refer the reader to Fortunato (2010)
for a more comprehensive introduction.

First of all, we remark that while clustering undirected
graphs has received most of the attention, the prob-
lem of clustering directed graphs is much less stud-
ied. Chung (2005) proposes a Cheeger inequality for
digraphs, which relates the spectrum of a Laplacian
operator to a notion of connectivity measuring how
well a “flow” can spread through a digraph, where this
flow is defined according to the stationary distribution
of a random walk on the digraph. Finding clusters that
minimise this measure would amount to find regions of
the digraph with a limited amount of flow circulating
between them. This is almost opposite to our objective:
we want to uncover regions characterised by a strong
and imbalanced flow circulating among them.

While graph clustering has been classically used to
uncover structural information between nodes of a net-
work, our work lies in a recent line of research that tries
to uncover a higher-order structure between different
groups of nodes in a network. For example, Benson
et al. (2015) and Benson et al. (2016) propose tensor
and spectral-based algorithms to find clusters in a (di-
rected) graph so that small groups of nodes in the same
cluster are more likely to form motifs selected by the
user (such as triangles or small oriented cycles) than
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groups of nodes belonging to different clusters. This is
different from our aim: instead of preserving substruc-
tures inside clusters, our main focus is the relationships
among clusters.

Finally, the works on co-clustering (Rohe et al.,
2016) and bibliographic symmetrisation (Satuluri and
Parthasarathy, 2011) are probably the most closely
related to ours. We defer a more detailed comparison
of these works to Section 3.

Notation. For any unweighted and directed graph
G with N vertices, the Hermitian adjacency matrix of
G is the matrix A € CN*N_ where Aypy = Apu =1
if there is a directed edge from wu to v, expressed by
u~> v, and A, , = 0 otherwise. When G is a weighted
digraph with weight w,, ,, on any edge u ~> v, we define
Ayy = (Wyp — Wy y)i. Notice that A is a Hermitian
matrix, and therefore has N real-valued eigenvalues
{A;}}L1. We order these eigenvalues [A1| > ... > |An],
and the eigenvector associated with ); is denoted by
g; € CN with ||g;|| = 1, for 1 < j < N. For any
y € CV, the complex conjugate of y is expressed by y*.
For any Hermitian matrix A, the image of A is denoted
by Im(A) and the spectral norm of A is denoted by
IA]l. We use 1% to express the k x k matrix where
all the entries are 1. For ease of discussion, we always
label the clusters, as well as the rows and columns of
the matrix F' € R*¥** introduced later, from 0 to k — 1.

2 Directed stochastic block model

We study graphs generated from the directed stochastic
block model (DSBM) defined by k,n, p, ¢, and matrix
F € [0,1]**F where k > 2 represents the number
of clusters, n the number of vertices in each cluster,
p € [0,1] the probability there is an edge between
two vertices within the same cluster, ¢ € [0, 1] the
probability there is an edge between two vertices be-
longing to two different clusters, while ' € [0, 1]¥**
controls the edge orientations among clusters and sat-
isfies Fy; + Fjp = 1 for any 0 < 4,5 < k — 1. This
implies that Fy o = 1/2 for any 0 < ¢ < k — 1. The set
G (k,n,p,q,F) consists of graphs G generated as fol-
lows: every G € G is a directed graph defined on vertex
set V. ={1,..., N}, where N = k- n. These vertices
belong to k clusters Cy,...,Ci—1, where |C;| = n for
0 < j <k —1. For any pair of vertices {u, v}, if they
belong to the same cluster, they are connected by an
edge with probability p; otherwise, they are connected
with probability ¢. Moreover, if u € Cy and v € C; are
connected, the direction of this edge is determined by
F': the direction is set to be u ~» v with probability
Fy;, and v ~ u with probability Fj;, = 1— Fy ;. By
definition, the direction of an edge inside a cluster is
chosen uniformly at random. The matrix F' can be

viewed as the adjacency matrix of a weighted directed
graph which represents the meta-graph describing the
relations between the clusters. The example below
explains the roles of these parameters.

Ezample. Let k=3, p=q, and

1/2 2/3 1/3
F=| 1/3 1/2 2/3 /Z? “QQN
2/3 1/3 1/2

N
)=(®)
In this case, G consists of 3 clus- Figure 2

ters Cy, C7 and Cs of equal size, and any pair of vertices
is connected by an edge with the same probability p.
The directions of the edges inside a cluster are cho-
sen uniformly at random, but directions of the edges
crossing different clusters are chosen non-uniformly ac-
cording to F'. In particular, in expectation two thirds
of the edges between u € C; and v € Cj 1 mod 3 are set
to be u ~» v, and the remaining one third is set to be
v ~> u, as shown in Figure 2. We notice that this “cyclic
flow structure” of the edges across different clusters
is particularly interesting, since in expectation all the
vertices in G have the same in- and out-degrees, and
the cluster-structure of G cannot be easily identified
by the vertices’ degree distribution.

Our model can be viewed as a generalisation of the
classical SBM (Holland et al., 1983) into the setting of
directed graphs. As a special case of our model, when
Fp; =1/2for 0 < ¢,j <k — 1, the edge directions
play no role in defining a cluster-structure, and the
clusters are completely determined by p and ¢, which is
exactly the case for the SBM. On the other hand, the
DSBM captures the setting where p = ¢ and the cluster
structure is determined exclusively by the directions of
the edges. We remark that our proposed DSBM is a
special case of the co-SBM (Rohe et al., 2016), which
also includes bipartite structures. We think, however,
that what is lost by our model in generality is gained
in clarity and simplicity.

3 Algorithm

Now we describe a spectral clustering algorithm for
graphs generated from the DSBM. Given a graph
G = (V, E) generated from the DSBM G (k,n,p, q, F),
our algorithm first computes the eigenvectors g1, ..., gs
corresponding to the eigenvalues \; satisfying |\;| > e
for some parameter €. Secondly, the algorithm con-
structs a matrix P which is the projection matrix on the
subspace spanned by g1, ..., gs, and applies k-means
with the rows of P as input features. Finally, the al-
gorithm partitions the vertex set of G based on the
output of k-means. See Algorithm 1.

We remark that the number ¢ of eigenvectors used by
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Algorithm 1 Spectral clustering for digraphs

Require: directed graph G = (V, E) with Hermitian
adjacency matrix A; k> 2;¢ >0
1: Compute the eigenpairs {()\;,g:)}i_; of A with
|)\z| > €.
2: P« 25:1 995
Apply k-means with input the rows of P.
4: Return a partition of V' based on the output of
k-means.

@

the algorithm depends on the parameters of the model,
and in particular on the rank of F' which defines the
direction of the edges among different clusters. In
general, ¢ < k, but for practical purposes one can
simply set ¢ = k.! However, to obtain the optimal
theoretical guarantees, at least for the case of p = g,
we set € = 104/pnlog(pn), whose value can be easily
estimated with high probability since the average degree
in the graph concentrates around pkn when p > 1/n.
As it will become clear from our following analysis, in
this way £ is set as the rank of F', without the need to
actually know F'. We also notice that including all the
eigenvectors corresponding to the same eigenvalue in
absolute value ensures that P is a real matrix. This
follows from A being skew-symmetric. We also add
that using the nk-dimensional embedding given by
the rows of P is analogous to using the /-dimensional
embedding given by the rows of U, where U is the
eigendecomposition of P =UUT.

Comparison with other spectral methods. We
compare our algorithm with other spectral methods for
digraph clustering that are based on the real-valued ad-
jacency matrix M of an unweighted digraph G = (V, E),
defined as follows: for any pair of vertices u, v, M, , =1
if w ~» v and M,, ,, = 0 otherwise. While Algorithm 1
exploits the top eigenvectors of the Hermitian adja-
cency matrix A = (M — MT) - i, previous spectral
clustering algorithms for directed graphs (Malliaros
and Vazirgiannis, 2013; Rohe et al., 2016; Satuluri
and Parthasarathy, 2011) typically use eigenvectors
of MTM, MMT, or MTM + MMT (or a regularised
version of these matrices). To compare our algorithm
with previous ones, notice that for any u,v € V these
matrices’ corresponding entries can be written as

(MTM)yp = {w: w ~ u and w ~ v}|, (1)
(MMT7)yp = {w: u ~ w and v ~ w}|, (2)

(M™ + MMT7)y = {w: w ~ v and w ~ v}
+ [{w: u~ wand v~ w}. (3)

By definition, MTM keeps track of the common “par-
ents” between two vertices, M MT of the common “off-

"More precisely, we recommend setting £ = k — 1 when
k is odd, since in this case F' is always rank-deficient.

spring”, while their sum of both. To draw a direct
comparison, we study the matrix A2, since A and A2
share the same eigenvectors and A2 is easier to analyse.
By definition, we have that

A% = |{w: (w~ v and w ~ v)
or (u~ w and v ~ w)}|
— {w: (v~ w and w ~ v)

or (w~ u and v ~ w)},

which implies that A keeps track of both common par-
ents and offspring of two vertices u, v, while assigning
a penalty for every node w that is simultaneously a
parent of v and an offspring of v, or vice versa. Hence,
A implicitly assigns a positive weight between a pair of
vertices who have more common parents and offspring
than “mismatched” relations with a third vertex, and
a negative weight otherwise. This peculiar behaviour
is at the heart of the better performances of our algo-
rithm on some real-world data sets compared to the
state-of-the-art. Moreover, it is worth mentioning that
A can implicitly keep track of both common parents
and offspring without the need to perform expensive
matrix multiplications as in the case of MTM + MMT.

Normalisation of A. When dealing with real-world
data sets, a proper normalisation of the graph ad-
jacency matrix is usually required. For a diago-
nal matrix D, with D;; = Zé\;l |Aj¢|, we define
Ayw = DA, which is similar to the Hermitian ma-
trix Agym = D™/2AD~'/2 and has N real eigenvalues.
The operator A,,, was studied in the context of angular
synchronisation and the graph realisation problem (Cu-
curingu et al., 2012), and by Singer and Wu (2012),
which introduced Vector Diffusion Maps for nonlinear
dimensionality reduction. We also notice that these
Hermitian operators have been successfully used in
the ranking literature. In particular, Cucuringu (2016)
formulated the ranking problem as an instance of the
group synchronisation problem, considered an angular
embedding of M — MT and relied on the top eigenvector
of A,y to recover anordering of the players.

4 Analysis

We now analyse the performance of Algorithm 1 on
the DSBM. Let G ~ G (k,n,p,q, F) with Hermitian
adjacency matrix A. For simplicity, we assume that
p = q. We remark this condition does not simplify
the problem, since in this case edge densities do not
give us any information on the cluster-structure of
the graph, which is entirely determined by the edge
orientations. We first study the expected adjacency
matrix EA. For any v € C; and v € Cy, we have
(EA)u,v = p(Fjj — F&j) = p(QFjJ — 1) - 1. Hence,
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EA is Hermitian and can be decomposed into k x k
blocks. Moreover, the rank of EA is at most k. To
analyse the spectral property of EA, we define the
matrix F' = (2F — 1jxy)-i. Observe that, if A € Ris an
eigenvalue of F with the corresponding eigenvector ]7 €
CF, then Apn is an eigenvalue of EA with eigenvector
f € C* where f(u) = f(j) for any u € Cj.

Now we explain why Algorithm 1 works for graphs
generated from the DSBM. Note that, if A is close
to EA, which is the case for most instances, then the
projection on the top eigenspaces of A will be close to
le(ﬁ)®1n><m where PIm(ﬁ) is the projection on Im(F).
Therefore, it suffices to ensure that PIm( 7 is actually
able to distinguish different clusters. Because of this, we
introduce the notion of #-distinguishing image to ensure

that the rows of PIm( ) are not similar to each other.

Formally, for any 6 € [0,1], we say that F has a 0-
distinguishing image, if it holds for any 0 < j # ¢ < k—1
that lem(ﬁ) () = Py (6 || = 6. Moreover, we say

that F' has a nondistinguishing image if the previous
equation holds only for = 0. Proposition 1 below
shows that F' has a nondistinguishing image if and only
if F' has two identical rows. When p = ¢, this condition
implies every graph generated from the DSBM has two
statistically indistinguishable clusters.

Proposition 1. Let G ~ G (k,n,p,q, F). Then, the
matriz F defined by F= (2F — 1k k) - © has a nondis-
tinguishing image if and only if there exist 0 < j # £ <
k —1 such that F(j,-) = F(¢,-).

Our analysis is based on matrix perturbation theory,
and requires that the nonzero eigenvalues of F' are far
from 0 in order to ensure that projection on the the top
eigenspaces of A is close to PIm( ﬁ)®1nxn. Hence, we de-
fine the spectral gap of F by p £ min; << {|p;|: p; #
0}, where p1,...,px are the eigenvalues of F. Note
that in the standard SBM a similar definition of spec-
tral gap governs the performance of spectral clustering
algorithms (Lei and Rinaldo, 2015, Corollary 3.2). The-
orem 2 bounds the number of misclassified vertices by
Algorithm 1 for graphs generated from the DSBM.

Theorem 2 (Main Theorem). Let G ~ G (k,n,p,q, F),
where p = q. Assume that

p=C (k/6)\/(1/pn) logn (4)
holds for a large absolute constant C and F has a
0-distinguishing image with 0 > 0. Then, with high
probability, the number of misclassified vertices by Al-
gorithm 1 is O (k*/(p* 62 p) logn).

For a family of graphs with k fixed and n growing, as
long as p is not too small, assumption (4) is always met.
It also implies that, for most cluster-structure matrices

F, p needs to be greater than k? log n/n, which is com-
parable to the connectivity threshold p > log(kn)/(kn).

Next we evaluate the theoretical guarantee by Theo-
rem 2 when G ~ G (k,n,p,q, F'), p = q, and there exists
a noise parameter 7 € [0,1/2) such that F,;, =1—1n
ifj=¢—-1 modk, Fj,=nif j=¢+1 mod k, and
F; ¢ = 1/2 otherwise. By definition, the connections
among the k clusters can be represented by a directed
cycle where each edge has weight 1 — 27, and hence we
call this particular DSBM the cyclic block model. We
believe this cyclic block model is particularly suitable
to evaluate the performance of a clustering algorithm
for digraphs due to the following reasons: (1) since
every vertex of the graph has the same in-degree and
out-degree in expectation, the vertices’ degrees provide
no information for clustering; (2) even for the case
of n = 1, i.e., all the edges between two clusters C}
and Cj41 mod k are oriented in the same direction, the
clustering task could be still very challenging because
the directions of most edges are randomly oriented.
We summarise the performance of Algorithm 1 on the
cyclic block model as follows.

Corollary 3. Let G be a graph sampled from a
cyclic block model with parameters k,n,p = q =
w (k3/((1 = 2n)* n) logn), and n € [0,1/2). Then,
with high probability, the number of misclassified ver-
tices by Algorithm 1 is O (k*/((1 — 2n)?p) logn).

5 Experiments

We compare the performance of our algorithm with
other spectral clustering algorithms for digraphs on
synthetic and real-world data sets. Since ground truth
clustering is available for graphs generated from the
DSBM, we measure the recovery accuracy by the Ad-
justed Rand Index (ARI) (Gates and Ahn, 2017), which
is closely related to and alleviates some of the issues of
the popular Rand Index (Rand, 1971). Both measures
indicate how well a recovered clustering matches the
ground truth, with a value close to 1 (resp. 0) indicat-
ing an almost perfect recovery (resp. an almost random
assignment of the vertices into clusters). For real-world
data sets, due to the lack of a ground truth clustering,
we will introduce appropriately defined new objective
functions to measure the quality of a clustering, while
taking the edge directions into account and aiming to
uncover imbalanced cuts in the partition.

Experimental setup. We compare against the three
variants of the DI-SIM algorithm (Rohe et al., 2016),
and spectral clustering for digraphs when bibliomet-
ric and degree-discounted symmetrisations are ap-
plied (Satuluri and Parthasarathy, 2011). Note that
all these algorithms follow the standard framework of
spectral clustering, but employ different eigenvectors
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Figure 3: Recovery rates for the circular pattern (top) and complete meta-graph (bottom) (N = 5,000, k = 5).

to construct the feature vectors for k-means+-+. More
specifically, DI-SIM (LEFT) (denoted by DISG-L) and
DI-SIM (RrIGHT) (DISG-R) use, respectively, the top
k eigenvectors of a regularised and normalised version
of the matrix defined in (1) and (2) as input features
for k-means; DI-SIM (LEFT+RIGHT) (DISG-LR) uses
the top k eigenvectors of a regularised and normalised
version of both matrices (1) and (2); BI-Sym and DD-
SyYM use the top k eigenvectors of the matrix in (3),
with an additional normalisation for DD-SyM.

We also consider an additional variant of our Algo-
rithm 1 based on a different normalisation of our Her-
mitian adjacency matrix. Specifically, we use HERM
and HERM-RW to represent Algorithm 1 when the
top eigenvectors of A and A, are applied as the input
matrix, respectively. We remark that Algorithm 1 is
described with respect to the non-normalised Hermi-
tian adjacency matrix, since all the vertices of a graph
generated from the DSBM have the same expected
degree and normalising A is not needed. On the other
hand, in real-world data sets, the degree distribution is
typically very skewed with large outlier degrees and, as
our experiments suggest, HERM-RW usually performs
the best among the tested algorithms.

Results for the DSBM. We perform experiments
on graphs randomly generated from the DSBM with
different values of n, p = ¢, and matrix F'. Ass spectral
techniques perform better in the SBM for large p, our
focus is to compare the performance of different algo-
rithms when p is close to the connectivity threshold
log(N)/N of a random G(N,p) graph. Our reported
results are averaged over 10 independently generated
graphs for every fixed parameter set. For ease of visu-

alisation, we assume the entries of F' have only three
different values: 1/2 (which corresponds to uniformly
random edge-directions), n, and 1 — 7.

Figure 3 reports the performance of all the tested
algorithms for input graphs from the DSBM with
N = 5,000, k = 5, and the meta-graph is a directed
cycle, or a complete graph with random orientations of
the edges. The two variants of our algorithm give simi-
lar results due to the fact that all the vertices have the
same expected degree, and they perform significantly
better than all other algorithms. While all methods
are unable to find a meaningful cluster structure when
7 is close to 0.3, our algorithm performs significantly
better, especially for smaller values of 7.

We further investigate
the performance of all 06

. -+ DIS!
algorithms for a large 05 . DISG-R

value of k. Figure 4 g% oL

reports the ARI values 031 DD-Sym

of a randomly gener- Zf ~Herm-RW

ated graph with respect Lt

to different values of 7, © e M
with N = 5,000, k = Figure 4: Complete meta-

50, p = 1%, and the un-  8raph (DSBM, k = 50).
derlying meta-graph is a complete graph. This regime
of parameters, i.e., large k and relatively small p, is
of particular interest due to its prevalence in most
real-world data sets, and clearly illustrates that our
algorithm has overwhelmingly superior performance
compared to the other algorithms.

Results for real-world data. We also detail results
on real-world data sets, showcasing the efficiency and
robustness of our algorithm for identifying structures in
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digraphs. Since no ground truth clustering is available,
we compare performance as measured by three related
objective functions (also referred to as scores), showing
that our approach favours balanced cluster sizes. We
consider a US-MIGRATION network, and a BLOG
network during the 2004 US presidential election.

For any two disjoint vertex sets X and Y, we define
the Cut Imbalance ratio between X and Y by

CI(X,Y)—Q"w(X,Y)+w(KX)’
‘ w(X,Y) 1' (5)
w(X,Y) +w(, X) 2|’

where w(X,Y) = >, cx ey w(u,v), and define the

size and volume normalised versions by

CI™(X,Y) = CI(X,Y) - min{| X, [Y]},  (6)

CI'°!(X,Y) = CI(X,Y) - min{vol(X),vol(Y)}, (7)

where vol(X) is the sum of in-degrees and out-degrees
of the vertices in X. To explain (6) and (7), notice that
CI(X,Y) € [0,1/2] quantifies the imbalance of the edge
directions between X and Y, with CI(X,Y) = 0 (resp.
CI(X,Y) = 1/2) indicating that the directions of the
edges between X and Y are completely balanced (resp.
imbalanced). Furthermore, since our objective is to
identify pairs of clusters with a large Cl-value, we scale
CI(X,Y) by the minimum of their sizes or volumes
to penalise small clusters, in the same spirit as the
normalised cut value (Shi and Malik, 2000).

US-MIGRATION Network. We consider the 2000 US
Census data, which reports the number of people that
migrated between pairs of counties in the US during
1995-2000 (Census Bureau, 2002; Perry, 2003). This
data can be expressed as a matrix M € ZY N where
N = 3107 denotes the number of counties in main-
land US, and M, denotes the total number of people
that migrated from county j to county £. We consider
the transformation M;, = M;,/(Mj¢ + Myj), which
leads to a matrix often encountered in various appli-
cations. For example, in ranking, this could capture
the fraction of games won by player j in the match
against ¢ (Negahban et al., 2012). The input matrix
to our pipeline is given by the skew symmetric matrix
G = M — MT. Figure 5 shows the CI'® values for the
top pairs for varying number of clusters. With respect
to both scores, HERM and HERM-RW are consistently
better across all top pairs, and outperform all other
methods by a large margin especially for k£ = 10, 20.

Figure 6 shows the clusterings recovered by several
methods for £ = 10, and heatmaps of the adjacency
matrices sorted by induced cluster membership, high-
lighting the fact that DISGLR and DD-SyM tend

to uncover traditional clusters of high internal edge-
density, as hinted by the prominent block-diagonal
structure. On the other hand, Herm and Herm-RW
do not exhibit such a structure, and contain block
submatrices of high intensity (denoting a large cut im-
balance) on the off-diagonal blocks. Figure 7 shows the
three pairs of clusters for which CI¥*¢(C;, Cy) is the
largest. We highlighted the two clusters in each pair in
red (source) and blue (destination), and provided the
values for their respective CI, CI**® and CI'*!. With re-
spect to the two normalised cut imbalances, HERM-RW
vastly outperforms all other methods.

BLOG Network. We consider the BLOG network from
the 2004 US presidential election, as in Adamic and
Glance (2005), who recorded the hyperlinks between
N = 1,212 political blogs and revealed that such con-
nections were highly dependent on the blog’s political
orientation. Figure 8 shows the CI'® scores of the top
pairs. We also consider the case k = 2, as the network
has an underlying structure with two clusters corre-
sponding to the Republican and Democratic parties.
The two variants of our algorithm vastly outperform
other methods, with HERM-RW as the best performer.

6 Conclusions and future work

We proposed a spectral clustering algorithm for directed
graphs that is able to uncover clusters characterised by
strong imbalances in the direction of the crossing edges.
The main theoretical gap we would like to address in
future work is to further develop a connection between
the Cut Imbalance Ratio measure defined in Section 5,
and our spectral algorithm, in the same vein as the
relation between spectral clustering and the normalised
cut (Shi and Malik, 2000). However, it is unclear if
such strong connection exists: while the normalised
cut is the sum of the conductance of each cluster, each
one a function of a single cluster, we are interested in
the pairwise interactions between all pairs of clusters,
a higher-order relation between vertices. For any k-
way partition, this gives rise to O(k?) terms, of which,
depending on the application (e.g., if the meta-graph
is sparse) only a few should be considered, making it
difficult to define a general relaxation for the problem.

Another issue with our approach is that it discards
information given by undirected edges. This is not
necessarily a drawback, since in applications where we
only care about the net-flow between clusters, undi-
rected edges do not add any information. However, it
might still be interesting to develop approaches that
can interpolate between clusters defined with respect
to undirected edge densities and clusters defined with
respect to imbalances in the orientation of the edges.



Hermitian matrices for clustering directed graphs: insights and applications

x10% <10* «10%

6 35
5 - DISG-L 3
. 4 DISG-R
2 = +DISG-LR - 25
s} =3 -Bi-Sym 2 5
2 © -o DD-Sym ©
2 --Herm 1.5
‘ . - Herm-RW 192
o= - EEEEEEEL CERES R o e
¥ R & & 05 e e
L E L S % 2 3 4 5 6 12 3 4 5 6 7 8 9 10
Q ) K T " T . T .
op pairs op pairs op pairs
(a) k =2 (b) k=3 () k=10 (d) k=20

Figure 5: Top CI'® scores attained by pairs of clusters, for the US-MIGRATION data set with varying k.
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