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Abstract

Complex phenomena in engineering and the
sciences are often modeled with computa-
tionally intensive feed-forward simulations for
which a tractable analytic likelihood does not
exist. In these cases, it is sometimes necessary
to estimate an approximate likelihood or fit
a fast emulator model for efficient statistical
inference; such surrogate models include Gaus-
sian synthetic likelihoods and more recently
neural density estimators such as autoregres-
sive models and normalizing flows. To date,
however, there is no consistent way of quanti-
fying the quality of such a fit. Here we propose
a statistical framework that can distinguish
any arbitrary misspecified model from the
target likelihood, and that in addition can
identify with statistical confidence the regions
of parameter as well as feature space where
the fit is inadequate. At the heart of our ap-
proach is a two-sample test that quantifies the
quality of the fit at fixed parameter values,
and a global test that assesses goodness-of-fit
across simulation parameters. While our gen-
eral framework can incorporate any test statis-
tic or distance metric, we specifically argue
for a new two-sample test that can leverage
any regression method to attain high power
and provide diagnostics in complex data set-
tings. Software for our approach is available
on GitHub in Python and R.

1 Introduction

The likelihood function £(x;6) links the unknown com-
ponents 6 of the data-generating mechanism with the
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observable data x and is a key component for perform-
ing statistical inference over parameters of interest. For
complex phenomena, there is often no tractable analyti-
cal form for the likelihood; many times such phenomena
are instead studied using numerical simulators derived
from the underlying physical or biological processes,
which encode, e.g, complex observational effects, se-
lection biases, etc. In situations where the likelihood
function cannot be easily evaluated, but a stochastic
numerical simulator (which serves as the ground truth)
is available, approximate inference of parameters of
interest is possible. Tools that explore feed-forward
simulations to infer # without requiring explicit likeli-
hoods are referred to as likelihood-free inference (LFI)
methods, of which Approximate Bayesian Computation
(ABC) (Beaumont et al., [2002; Marin et al., 2012) is
the best known approach. Several variations of ABC
methods exist and have resulted in many successful
applications; see |Sisson et al.| (2018)) for a review.

However, there is a growing number of disciplines where
accurate analyses require highly realistic and compu-
tationally intensive simulations. In such cases, it may
not be feasible to repeatedly generate new simulations
at different parameter settings as generally required by
ABC methods. Instead, a common practice is to run
the simulator only for a few points in parameter space,
in a format of batches or ensembles, where an ensemble
is a collection of multiple realizations (e.g., correspond-
ing to different initial conditions) of the same physical
model (i.e. they all share the same 6). For example,
modern climate and weather forecasting models (e.g.,
CESM (Hurrell et al.; 2013))) often incorporate com-
plex representations of the atmosphere, ocean, land,
ice, etc, on fine spatial and temporal resolutions across
the entire world. These models are commonly run as
an ensemble of dynamical simulations with different
initial conditions, where each simulation can take weeks
to compile on supercomputer clusters (see Baker et al.
(2015)); [Kay et al|(2015) and references within). Simi-
larly, cosmological N-body simulations, which compute
gravity between particle pairs, are equally costly and
often either created at a fixed cosmology (parameter
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value 0) (Abbott et al.,|2016; Hildebrandt et al., 2017,
or on a sparse grid of a few carefully chosen parameter
values (Kacprzak et all [2016; (Gupta et all [2018]).

Given the above scenario, a solution to make infer-
ence feasible is to approximate the computationally
expensive simulator with a faster emulator model that
can speed up probabilistic modeling by several orders
of magnitude. Some common models, which directly
approximate the likelihoodEl are Gaussian synthetic
likelihoods (Wood, 2010; Price et al.l 2018; Ong et al.
2018)), density ratio estimators (Izbicki et al. [2014
Thomas et al. [2016; Dinev and Gutmann| 2018)), and
more recently neural density estimators (NDE), such as
autoregressive models (e.g., [Uria et al.|[2014, 2016}
den Oord et al|[2016alclb) and normalizing flows (e.g.,
Dinh et al.|[2014; [Kingma et al|[2016; |Papamakarios|
et al.|2017; see [Papamakarios et al.| (2019) for a recent
review). Other related works estimate the likelihood
ratio (Tong), 2013} [Cranmer et al.l 2015} [Stoye et all
2018; [Brehmer et al., [2018) P|

Typically, machine learning-based LFI models are
assessed by computing built-in loss functions (e.g.,
Kullback-Leibler divergences in emulator networks).
Such loss functions however only return a relative mea-
sure of performance rather than a goodness-of-fit to sim-
ulated data; they do not answer the question “Should
we keep searching for better estimates for this problem
or is our fit good enough?” (see Figure [3| left, for
an example). Thus, an important challenge is that
of walidation: determining whether an approximate
likelihood or emulator model reproduces to the extent
possible the targeted simulations in distribution. If
the model is deemed inadequate, then the question
of diagnostics becomes relevant. That is, pinpointing
“how” and “where” the emulator differs from the sim-
ulator in a potentially high-dimensional feature space
across different parameters; thereby providing valuable
information for further improvements of the emulator,
and insights on which simulations to run given a fixed
budget. Up to now, popular approaches to simulation-
based validation (Cook et al., [2006; Prangle et all
12014; |Talts et all [2018) are valuable as consistency
checks, but cannot always identify likelihood models

'In this work we will use the terms emulator and approzi-
mate likelihood interchangeably to denote generative models
that directly model the relationship between observable
data x and parameters 6.

2ABC and methods that target the posterior instead of
the likelihood, e.g., some Gaussian process emulators (Ras
mussen and Williams)|, [2005}; [Wilkinson|, 2014} [Meeds and
Welling|, [2014) and approximate posterior models (Papa;
makarios and Murray}, [2016; [Gutmann et al.l 2016} [Lueck!
mann et all [2017; [Le et al. |2017; |Izbicki et all, 2018}
Jarvenpad et al., [2018} |Greenberg et al.| [2019), benefit from
validation techniques as well but we do not discuss them in
this work.

that are clearly misspecified (see Section for an
example). Furthermore, as these tools were originally
designed for checking Bayesian posterior models, they
do not capture all aspects of the estimated likelihood,
and therefore provide limited information on how to
improve the estimates.

In this paper, we propose general procedures for validat-
ing likelihood models. These procedures are inspired by
classical hypothesis testing, but generalize to complex
data in an LFI setting, and can identify statistically
significant deviations from the simulated distribution.
We use a new regression-based two-sample test
let al (2016}, 2018)) to first compare the simulator and
emulator models locally, i.e., at fixed parameters; these
local tests are then aggregated into a “global” goodness-
of-fit test that is statistically consistent (see Theorem
. Our framework can adopt any machine-learning
regression method to handle different structures in
high-dimensional data. As Theorem [2] and Figure 2]
show, this property translates to high power (for a fixed
computational budget) under a variety of practical sce-
narios.

Related Work. Hypothesis testing has recently been
used as a goodness-of-fit of generative adversarial net-
works (GANS, |Goodfellow et al|2014); e.g., Jitkrittum|
et al.| (2016} 2017, |2018) use two-sample tests to detect
features and feature space regions which discriminate
between real and generated data. Although implicit
generative models are not our main focus, our local test
has similar diagnostic capabilities (see Suppl. Mat.
and [Freeman et al.||2017). There are also close connec-
tions between classification accuracy tests (Kim et al.
[2016; [Lopez-Paz and Oquabl, [2017) and our regression
test. The main difference lies in the test statistic: clas-
sification accuracy tests are based on “global” error
rates. Hence classifier tests can tell whether two dis-
tributions are different (i.e. they are two-sample tests)
but these tests do not per se identify locally significant
differences between two distributions with statistical
confidence; for that one needs to consider the regression
or class-conditional probabilities E(Y|x) = P(Y = 1|x)
(where Y here is the indicator function that x was
generated by the emulator as opposed to the forward-
simulator), which is the basis of our regression test
statistic (Equation [1)).

Novelty. To date, there are no other validation tech-
nique in the LFT literature that can answer the following
questions in a statistically rigorous way:

(i) if one needs to improve emulators for reliable
inference from observed data, i.e., whether the
difference between the “truth” and the approx-
imation learned with the existing train data is
statistically significant; this question is answered
by our global procedure (see Figure |3, left and
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Figure [4] left);

(ii) where in parameter space one, if needed, should
propose the next batch of simulations; this ques-
tion is answered by our local procedure (see Fig-
ure [3] right) and provides insights as to which
simulations to run given a fixed budget; and

(iii) how the distributions of emulated and high-
resolution simulated data may differ in a poten-
tially high-dimensional feature space; this ques-
tion is answered by our regression test (see Figure
right, and Suppl. Mat. and offers valuable
information as to what types of observations are
under- or over-represented by the emulator and
whether such differences are statistically signif-
icant. Such insights can guide decisions as to
whether it is necessary to improve the emulator
model or generate more simulations.

Moreover, we provide theoretical guarantees that ensure
that (a) the global test is able to tell if the estimated
likelihood is wrong (i.e., no clearly misspecified models
can pass the test; Theorem , and (b) the local test
has high power as long as we have a good estimate of
the regression function (Theorem [2).

Organization. The organization of the paper is as
follows: In Section[2]we describe our validation method,
and provide theoretical guarantees as well as syn-
thetic examples that compare the performance of our
goodness-of-fit test over some popular simulation-based
calibration and distance-based tests. Then in Section
Bl we show how our tools can be used to assess and
diagnose models for cosmological parameter inference.
Proofs of theorems and details on the high-dimensional
sample comparison in feature space are provided in
Supplementary Material.

Notation. We indicate with A" the feature space and
with © the parameter settings where the simulations
from the “true” likelihood L(x;6) are available. We
denote the approximate likelihood from the emulator
model by £(x;6). Both likelihood functions are normal-
ized over X; that is, [, L(x;0)dx = [, L(x;0)dx =1
for every 6 € ©.

2 Model Validation by
Goodness-of-Fit Test

Our validation approach compares samples from the
simulator with samples from the emulator, and can
detect local discrepancies for a given parameter setting
0y € © as well as global discrepancies across parameter
settings in ©. The validation procedure is as follows:
For each 0y € O, we first test the null hypothesis
Hy : L(x;0p) = L(x;00) for all x € X. This local test
(Algorithm (1)) compares output from the approximate

likelihood /emulator model with a “test sample” from
the simulator/true likelihood (the latter sample can
be a held-out subset of a pre-generated ensemble at 6
which has not been used to fit £(x;6)). A challenging
problem is how to perform a two-sample test that is
able to handle different types of data x, and which in
addition informs us on how two samples differ in feature
space X’; in Section and Algorithm [3] we propose a
new regression test that addresses both these questions.
After the two-sample comparisons, we combine local
assessments into a global test (Algorithm for checking
if E(x;(‘)) = L(x;0) for all # € ©. The essence of
the global test is to pool p-values which, under the
null hypothesis, are uniform. Unlike many previous
works on pooling p-values for multiple testing (e.g.,
Lorenz et al| (2016))), the p-values in Algorithm |2 are
independent by construction.

The next section provides theoretical guarantees that
the global test for our LFI setting is indeed consistent.
These results apply for any sampling/weighting scheme
r(6) over © in Algorithm 2} and for any consistent local
test in Algorithm

Algorithm 1 Local Test for Fixed 6
Input: parameter value 6y, two-sample testing procedure,

number of draws from the true model, ngim,0 and from the
estimated model, Nsim,1
Output: p-value py, for testing if L(x;6p) = E(x; o) for
every x € X

1: Sample Sy = {X?“7 .. ,Xfl‘;mo} from L(x;6)).

2: Sample & = {X7,... 7Xflsim,l} from E(x; o).
3: Compute p-value py, for the comparison between

80 and Sl.

4: return pe,

Algorithm 2 Global Test Across § € ©

Input: reference distribution r(6), B, uniform testing pro-

cedure (e.g. Kolmogorov-Smirnoff, Cramér-von Mises)
Output: p-value p for testing if L(x;60) = E(x; 0) for every
x€Xand 6 € ©

1: forie{l,...,B} do

2:  sample 6; ~ r(0)

3:  compute pp, using Algorithm

4: end for
5: Compute p-value p for testing if {pp,}2, has a

uniform distribution.

6: return p

2.1 Theoretical Guarantees for Global Test

Theorem [1| shows the global test is statistically consis-
tent; i.e., it is able to detect a misspecified distribution
(as in Example 1) for large sample sizes. We provide
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sufficient assumptions for Theorem [I] in Supp. Mat. [B]
We assume (i) the set of parameter values where the
likelihood function is incorrectly estimated has positive
mass under the reference distribution, (ii) statistical
consistency of the local comparison test, and (iii) that
the test statistic in step 5 of Algorithm [2| converges to
zero when the null hypothesis is true, and to a positive
number when it is false.

Theorem 1. Let Dp ., = {py’™,...,pgo"}, where

M si.

7 ,pgg’” are the p-values obtained by Algorithm
With Nsim1 = Nsim,2 = Neim and 01, ...,0p o r(0).

Let ¢ be an a-level testing procedure based on the global
test statistic S. If the likelihood estimate and the local
and global test statistics are such that Assumptions[1HZ)]
hold, then

B, nsim—>00
e T

P (QSS(DB,HSM) = 1) 1

Corollary 1. Under Assumptions and [3, the
global tests for comparing likelihood models based on
Kolmogorov-Smirnoff and Cramér-von Mises statistics
are statistically consistent.

2.2 Two-Sample Test via Regression

Traditional approaches to comparing two distributions
(Thas|, 2010)) are often not easily generalizable to high-
dimensional and non-Euclidean data. More recent
non-parametric extensions (see |Hu and Bai (2016) for
a review), e.g., maximum mean discrepancy (MMD,
Gretton et al.| (2012)), energy distance (ED, [Székely
and Rizzo| (2004))), divergence (Sugiyama et al., 2011}
Kanamori et al.;[2012), mean embedding (Chwialkowski
et al., 2015} | Jitkrittum et all 2016) and classification
accuracy tests (Kim et al.| |2016; Lopez-Paz and Oquab
2017) have shown to have power in high dimensions
against some alternatives, specifically location and scale
alternatives. These methods, however, only provide a
binary answer of the form “reject” or “fail to reject”
the null hypothesis. Here we propose a new regression-
based approach to two-sample testing that can adapt
to any structure in X where there is a suitable regres-
sion method; Theorem [2] relates the power of the test
to the Mean Integrated Squared Error (MISE) of the
regression. Moreover, the regression test can detect
and describe local differences (beyond the usual loca-
tion and scale alternatives) in Z(x; 0o) and L(x;6p) in
feature space X'. We briefly describe the method below;
see Suppl. Mat. E and [Kim et al.| (2018) for theoretical
details, and see Sections [2.3] and [3.2] for examples based
on random forest regression.

Let Py be the distribution over X induced by £(x;0)
and let Py be the distribution over X induced by
L(x;0p). Assume that Py and P; have density func-
tions fo and f; relative a common dominating measure.

By introducing a random variable Y € {0, 1} that indi-
cates which distribution an observation belongs to, we
can view fp and fi as conditional densities f(x|Y = 0)
and f(x]Y = 1). The local null hypothesis is then
equivalent to the hypothesis Hy : fo(x) = fi(x) for
all x € &y := {x € X : f(x) > 0}, which in turn is
equivalent to

Hy: PY=1X=x)=P(Y =1), foral xeX.

We test Hy against the alternative Hy : P(Y = 1|X =
x) #P(Y =1), for some x € Xp.

By the above reformulation, we have converted the
problem of two-sample testing to a regression problem.
Depending on the choice of method for estimating the
regression function m(x) = P(Y = 1|X = x), we can
adapt to nontraditional data settings involving mixed
data types and various structures. More specifically,
let m(x) be an estimate of m(x) based on the sample
{(X;,Y;)}ey, and let 7 = 23" I(Y; = 1). We
define our test statistic as

T = (M(X;) — 7). (1)

1

n

3=

(3

Note that the difference |m(x) — 71| for each particular
value of x € X also provides information on how well
the emulator fits the simulator locally in feature space;
high values indicate a poor fit. To keep our framework
as general as possible, we use a permutation procedure
(Algorithm [3)) to compute p—valuesﬂ Theorem [2| shows
that if m, the chosen regression estimator, has a small
MISE, the power of the test is large over a wide region
of the alternative hypothesis. What this means in
practice is that we should choose a regression method
that predicts the “class membership” Y well.

Theorem 2. Suppose that the regression es-
timator m(x) is a linear smoother satisfying
supem E [ (M(x) — m(x))* dPx (x) < Cob,, where
Cy is a positive constant, 5, = o(1), &, > n~t, and M
is a class of regressions m(x) containing constant func-
tions. Let t} be the upper o quantile of the permutation
distribution of the test statistic T on validation data

3If the total number of test simulations from L£(x;6o)
is small, say ngim ~ 50, buE the cost of drawing samples
from the emulator model L£(x;6p) is negligible, then we
can instead of a two-sample permutation test perform a
goodness-of-fit test via repeated Monte Carlo sampling from
the emulator (see Algorithm [5]in Supp. Mat. [D] for details).
To cite Friedman (Friedman| [2004, Section IV), such an
approach has “the potential for increased power at the
expense of having to generate many Monte Carlo samples,
instead of just one”. Corollary [2] states that our main result
(Theorem [2)) still holds for the alternative goodness-of-fit
test.
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Algorithm 3 Two-Sample Regression Test via Permuta-
tions
Input: two i.i.d.

samples Sop and S; from distributions
with resp. densities fy and fi; number of permutations M;
a regression method m
Output: p-value for testing if fo(x) = fi(x) for every
xEeEX
1: Define an augmented sample {X;,Y;}?,, where
{Xi}?:1:80 USi, and Y; = I()(z € Sl)
2: Calculate the test statistic 7 in Equation
3: Randomly permute {Y71,...,Y,}. Refit m and cal-
culate the test statistic on the permuted data.
4: Repeat the previous step M times to obtain
(T, TODY,
¥ Approximate the permutation p-value by p =

yrem) (1 + S LT > 7\—)> :

6: return p

from sample splz'ttng] Then for any o, € (0,1/2)
and n sufficiently large, there exists a universal constant
C1 such that

Type I error: Py (7A'/ > tZ) <a

Type 1I error: sup 1 (7\'/ < tZ) <p

meM(C16y)

against the class of alternatives M(C16,) = {m €
M : [, (m(x) — m)? dPx(x) > C16,

2.3 Examples

We next use two synthetic examples to illustrate the
advantages of our global and local tests to state-of-the-
art validation techniques, in terms of consistency and
higher power respectively.

Example 1 (Consistency of Global Test). One
key property of our global goodness-of-fit test is that
it can detect any misspecified approximation of the
likelihood function (Theorem [I]). Diagnostic tools like
the Posterior Quantiles technique (PQ, |Cook et al.
(2006)) and Simulation-Based Calibration (SBC, Talts
et al.| (2018])) are often used to validate approximate
likelihood models (see e.g., Papamakarios et al.| (2018]))
by checking whether a histogram of respective statistics
is close to uniform. However, these tests are sometimes
not able to discern between the true model and a clearly
misspecified model as illustrated by the following toy
example, where #; ~ Gamma(1,1), i =1,...,500, and
Xl, ‘e 7X1000|9i ~ Beta(@i, 91)

4The proof assumes sample splitting where (for sim-
plicity) half of the data is used to estimate the regression
function and the other half is used to estlmate the test
statistic; i.e., 7' =2n 137 n/2( m(X;) —71)?, where m

is estimated using (X1,Y1),..., (X 2, Yn/2)-

Figure [1] shows the distribution of the PQ and SBC
statistics (left and middle columns, respectively) and
the distribution of our local p-values (right column) for
two different scenarios: In the top row, we consider a
case where L£(x;0) = L(x;0). All tests pass the model,
as they should. In the bottom row, we consider a
case where L(x;0) x 1, a poor approximation of the
likelihood function (see Suppl. Mat. A for examples).
Our global regression test, which is based on uniformity
of the local p-values, clearly rejects this model. PQ and
SBC, on the other hand, cannot distinguish between
the true likelihood and the misspecified model as these
by construction have the same marginal distribution
over 6 in this toy example. Similar results (Schmidt
et al., 2020 have been found for diagnostic tests of
conditional density estimates when using quantities
related to PQ and SBC (such as, PIT scores and QQ
plots).

PQ Test SBC Test

Global Regression Test

(CY

Frequency

0
000 025 050 0.75 1.00
500

Pglobal < 1€-06
400
300

(b)

200

Frequency

100

0

o
000 025 050 0.75 1.00 0
Posterior Quantiles

8

000 025 050 075 1.00

Rank Stalistic Local p-values

Figure 1: Distribution of posterior quantiles, rank statistics
and p-values for PQ, SBC and our global regression test,
respectively, for (a) the true model in Example 1, and (b)
a clearly misspecified model. Only the global regression
test correctly rejects the latter (bottom right plot). (The
grey ribbons for the PQ and SBC tests represent the 99%
confidence interval for the test of uniformity used in those
two tests. Our global test, on the other hand, is based on
formally testing whether the local p-values from Algorithmi]
are uniformly distributed.)

Example 2 (Power of Local Test). The power of
our goodness-of-fit test will much depend on how we
compare samples at fixed 6y € ©; that is, on how we
test the local null hypothesis, Hy : L(x;6y) = L(x;60p)
for every x € X. An advantage of the regression ap-
proach (Algorithm [3) is that we can use any regression
technique that efficiently explores the structure of the
data at hand; the practical implications of Theorem
is that one should choose the regression method with
the smallest MISE (a quantity that can be estimated
from data) to attain a higher test power (an unknown
quantity). We illustrate these ideas with a synthetic
example where x € R”, where D could be large. We
consider three toy settings where the approximate like-
lihood and the true likelihood only differ in the first
dimension — that is, we test against a sparse alterna-
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Ezample 2 Settings True Likelihood L(x;6) Approx. Likelihood L(x;0) | Param. Space ©
(a) Bernoulli Bern(z1; 0) [T, N (24; 0, 1) [T, N (z4;0,1) (0,1)
(b) Scaling N(21;0,0) [T, N (24;0,1) [T, N (24;0,1) (0,1)
(c) Mixture of fm(z1;6,1) H5:2 N(zg4;0,1), where HdD:1 N(zg4;0,1) (—5,5)
Gaussians fm(0,1) =1/2N(—0,1) + 1/2N(6,1)

Table 1: The three toy settings in Example 2. In each setting, the true and approximate likelihood differ only in the first
dimension, x1. (M (x;u,0?) is a 1D Gaussian with mean p and variance o; Bern(xz; 0) is a Bernoulli with parameter 6.)

Power of Local Test (D=100) Average Local Power vs. Dimension
1.00
0.75
0.50

0.25 Q&/

000, e S

0.00 0.25 050 0.75 1.00 0 50 100 150 200 250
0 Dimension

Test — Regression—-RF - Energy — MMD = Regression-NN

Figure 2: Local test power shown in the left column as
a function of § at D=100, and shown in the right column
as a function of the dimension D (averaged over 0) for the
(a) Bernoulli, (b) Scaling, and (c) Mixture of Gaussians
case. Note that distance-based tests are more powerful at
D =1 (highlighted with circles in the right column), but
their power is severely affected with increasing dimension.
Our RF regression test achieves higher power for large D
by leveraging the advantages of random forest regression in
high-dimensional settings with sparse structure.

tive; see Table [T] for details.

For each 6 € ©, we compute a local p-value by compar-
ing samples of size n = 100 from L£(x;0) and L(x;6),
respectively (Algorithm . This procedure is repeated
100 times to estimate the power function. We apply
the local test for three different test statistics; namely:
(i) the test statistic in Equation [1| using random for-
est (RF) or nearest neighbor regression (NN), (ii) the
MMD test statistic (Gretton et al., [2012] Eq. 5) with
a Gaussian kernel, and (iii) the energy test statistic
(Székely and Rizzol [2004, Eq. 5) using the Euclidean
norm. Figure [2| shows how the power function varies
with 6 at dimension D = 100 (left column) and how the
power, averaged over 6, varies with D (right column)
for each setting. When D = 1 (highlighted with cir-
cles in the right column) distance-based tests based on
RF yield higher power, but their performance quickly
degrades with increasing D. On the other hand, our
RF regression test is able to achieve higher power in

high-dimensional settings by leveraging random forest
regression ability to select features and to tell discrete
versus continuous distributions apart (as shown by the
red curves). For instance, in the Bernoulli case (top
row, a) our regression test has higher power for small
values of 0, which is when the distribution of the first
coordinate is almost degenerate at 0.

3 Applications

In this section we focus on walidating approximate
likelihood models for cosmological parameter inference
with weak lensing peak counts. Weak lensing (WL)
is a gravitational deflection effect of light along the
line of sight. We can use this effect to estimate pa-
rameters of the ACDM cosmological model, the most
well-supported model within Big Bang cosmology. In
particular we can estimate the dark matter density €2,,
and its clumpiness og through peak counts: the number
of local maxima in the WL convergence map (a 2D
image) binned by the value of the peak Dietrich and
Hartlap| (2010)).

In Section we showcase our approach on a syn-
thetic example with known likelihood and properties
similar to those of peak counts. To estimate the likeli-
hood we use two parametric models, a Gaussian and a
Poisson model, as well as a non-parametric kernel den-
sity estimator (KDE) with the bandwidth estimated
coordinate-wise according to (Wand and Jones, [1994)
and discretized to reflect the integer-valued data. (The
Gaussian model with a fixed covariance and varying
mean is the current state-of-the-art in cosmological pa-
rameter inference [Kacprzak et al.| (2016).) In Section
we provide results and insights with peak counts
data obtained from the CAMELUS simulator (Lin and
Kilbinger, 2015)), comparing the two parametric models
with a conditional masked autoregressive flow (MAF,
Papamakarios et al.|(2017)), again discretized to reflect
the integer-valued data.

3.1 Synthetic Example

Peak count data possess two important properties: (1)
data are discrete and (2) counts in different bins are
correlated to each other. The first property implies that
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Figure 3: Left panel: Median MMD distance and power of global goodness-of-fit tests (100 trials with o = 0.05 and
nsim = 200) for the synthetic example. (a) The median MMD over all trials is not informative as it does not vary with
Ntrain. However, global tests based on (b) the MMD distance and (c) the regression are able to capture that KDE improves
as Nirain increases (the power decreases with nitrain ), while the parametric models do not. Right panel: Local test p-values
for regression test by model and number of training simulations. We can identify regions where models fit poorly: e.g., the
Gaussian model fits poorly for bottom half of 8-space as low counts cannot be adequately approximated as Gaussian.

at high bin counts the data are approximately normally
distributed, but for bins with low counts this approxi-
mation breaks down. The latter property introduces
difficulties in modeling number counts as independent
Poisson variables. We mimic these two properties by

drawing X1, X, "~P Poisson(\), where A depends on
the parameter 6 = [01,02] € R?2. When 6; < 0.5, we
set A = 1, otherwise A = 10* which makes the normal
approximation appropriate due to the Central Limit
Theorem. When 65 < 0.5 we add the requirement that
X7 < X3 (which breaks independence). Our first ex-
periment is to use our global test to assess likelihood
models that are fit with different number of simulations
(Ntrain = [50,100,10000]) while holding the size of the
test samples fixed (ngm, = 200). For the likelihood
models mentioned above — KDE, Gaussian and Poisson
— we implement Algorithm [2| with a uniform reference
distribution over a grid of 100 #-values evenly spaced
in [0,1] x [0,1]. For illustrative purposes, we conduct
100 trials resampling the entire dataset to estimate the
power of the test. The fit of the likelihood models are
assessed using three criteria: (i) the median (over 100
trials) MMD distance between the two samples, (ii)
the power of a global test based on the same MMD
distances, and (iii) the power of a global regression test
with random forest. It is common practice to compare
emulator models (see, e.g., Papamakarios et al.| (2018]);
|Greenberg et al.| (2019)) by computing distances such
as MMD, which we here refer to as raw test statistics.

Figure 3] left, shows that the “Median MMD Distance”
(top, a) is not particularly informative in this example.
On the other hand, the “MMD Test Power” (center,
b) and the “Regression Test Power” (bottom, c) tell
us that both the Poisson and Gaussian models are
misspecified; these models are rejected regardless of
Ntrain, Whereas the KDE model slowly improves with
the number of simulations until ultimately achieving a
power similar to the true distribution. These results
illustrate that the local and global p-values can be more
informative than the test statistics themselves.

To better understand why the Gaussian and Poisson
models fit poorly we can turn to the local information
we calculated for each 6 via Algorithm (1] (ng;m, = 200).
The data-generating process in our synthetic example
induces four quadrants with different behaviors. Fig-
ure [3] right, showcases the utility of the local test: it
pinpoints where in the parameter space the model fits
are insufficient. More specifically: for the Poisson fits,
the p-values in the left (6; < 0.5) region are very small
as are the p-values for the lower (62 < 0.5) region for
the Gaussian fits. This is due to the independence and
Gaussian assumptions, respectively, breaking down in
these two regions. In addition, the KDE model im-
proves as the number of simulations used to train the
models increases, starting at poor fits with low p-values
at nypain = 50 and eventually achieving p-values drawn
from the uniform distribution for large values of ngrain.
Our global test makes this observation rigorous.
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3.2 Peak Count Data Example

For WL peaks, we consider a 2D parameter space
over § = (Q,,,08) and design a grid of 50 different
cosmologies # around a fiducial (probable) cosmology
0o (see Suppl. Mat. D). For each #-value, we simulate
a batch of WL maps (n¢ain = 200, ngim = 200). The
peak count data (i.e. histogram of peak intensities
in each map) is a vector x € NP where D = 7 is
the number of bins. We compare three approximate
likelihood models: Gaussian, Poisson and conditional
MAF. To assess models, we first compute the Kullback-
Leibler (KL) divergence loss for the ng;, = 200 test
simulations at each 6. According to the KL loss, the
Gaussian model performs best; however, these are only
relative comparisons. We now use a RF regression test
to find out whether the Gaussian model actually fits
the simulated data well. As indicated in Figure |4 (left,
top row), the local tests for the Gaussian model reject
the null hypothesis £(x;8) = L(x; 6) at every 6; thus
the global hypothesis is also rejected. The Poisson and
MAF models are rejected by the global test as well
but have a more uniform-looking distribution of local
p-values. Now if we increase the the number of train
simulations to n¢ain = 500 (while holding ngy, = 200
fixed), the fitted MAF model passes the global test
whereas the Gaussian and Poisson models still do not as
indicated by the bottom row (these qualitative results
stay the same for ngaim = 5000).

Finally, our local regression tests can provide insights
into how the two distributions £(x;0) and L£(x;0) differ
in feature space X; more specifically, by evaluating
how the estimate of the regression function m(x) in
Equation [1] varies with x for a fixed 6 (a significant

difference |m(x) — 7| is an indication that the model
is not well estimated at that location in feature space).
We illustrate such an analysis for our fitted Gaussian
model for nya, = 200 and 8 = 6. According to
the RF regression used to construct our test statistic,
the most influential variables correspond to bins with
low counts. In Figure [4] right, we visualize the fit on
such a bin (variable z7) by a partial dependence plot
(which shows the marginal effect of this variable on
m(x) (Friedman| |2001)). On the z-axis, we mark the
locations where the difference |m(x)—71| is statistically
significant according to a joint analysis in 7 dimensions
(see Algorithm 4 in Suppl. Mat. A for details). These
locations coincide with integer values of x7, showing
that the regression test is distinguishing between the
discrete true distribution for bin counts and the fitted
continuous Gaussian distribution (these results also
explain why the Poisson model may fare better). In
Suppl. Mat. A we provide a detailed analysis of how one
can identify and visualize areas of significant differences
in multivariate distributions for galaxy morphology
images.

4 Final Remarks

We have developed validation methods of approximate
emulator models that are able to identify a misspecified
model and give insights on how to improve such a model;
more specifically, inform the user as to what regions of
the parameter space new simulations (if needed) should
be added as well as how emulated and simulated data
may differ in a high-dimensional feature space. Future
work involves using these results to design more effi-
cient strategies for guided simulations that can balance
statistical performance with computational costs.
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