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A Deferred Proofs

Proof of Theorem 1. For (a), we first observe that we
may assume without loss of generality that the com-
ponents in G are pairwise disjoint: iteratively, for any
two components G0, G1 that are not pairwise disjoint,
replace them with G′0, G′1 such that, for i ∈ {0, 1},

G′i := (Gi \G1−i) ∪ {x ∈ G0 ∩G1 | G(x) = Gi}.

The result is a representation with the same number
of components as G that are pairwise disjoint, and all
the responses of the teacher in the interaction protocol
remain the same.

Let c∗ be a concept that agrees with c̄ on all but the
k exceptions, such that |M(c∗,G)| = 0. We prove the
upper bound by induction on k. Suppose that for some
value of k, for any concept c′ such that |M(c′,G)| = k,
there is a representation G′ of size m′ ≤ m+ dk that
satisfies |M(c′,G′)| = 0. This trivially holds for k = 0.

Now, consider a concept c̄ such that |M(c̄,G)| = k + 1.
Let c′ be a concept which agrees with c∗ on all but
k elements, and agrees with c̄ on all but one element.
Let G′ = {G′1, . . . , G′m′} be the representation assumed
by the induction hypothesis for c′, and let x be the
single element such that c̄(x) 6= c′(x). We construct a
representation Ḡ for c̄.

Under the disjointness assumption, there is a single
component which includes x. Suppose it isG′1. For each
j ∈ [d], define the components Ḡ(j) as follows. Define
P xj := {z ∈ X | φj(z) 6= φj(x)}. Let Ḡ(j) := G′1 ∩ P xj .

Define an additional singleton component Ḡx = {x}.
Note that {Ḡ(j))}j∈[d]∪{Ḡx} exactly covers G′1. Define

Ḡ := {Ḡ(j)}j∈[d] ∪ {G′2, . . . , G′m′} ∪ {Ḡx}.

For any Ḡ ⊆ G′1 such that Ḡ 6= Ḡx, set `(Ḡ) :=
`(G′1). In addition, set `(Ḡx) := c̄(x). Ḡ is a legal
representation, with |M(Ḡ, c̄)| = 0. The legality of Ḡ
can be observed by noting that the union of Ḡ is X ,
that the labels of all components agree with c̄, and that
any two components in Ḡ with a different label can be
separated by a single feature: If Ḡ1 ⊆ G′i and Ḡ2 ⊆ G′j
for i 6= j and their labels disagree, then the same
feature that separates G′i and G′j separates Ḡ1 and Ḡ2.

If Ḡ1, Ḡ2 ⊆ G′1 and `(Ḡ1) 6= `(Ḡ2), then necessarily
one of the components is Ḡx and the other is Ḡ(j) for
some j. In this case, the feature j separates the two
components. The size of Ḡ is m′ + d ≤ m+ d(k + 1),

as required by the upper bound. Note that while Ḡ is
not pairwise disjoint, it can be converted to a pairwise-
disjoint representation by the process described above.
This completes the proof of the upper bound.

To prove the lower bound (b), it suffices to consider
the following example, defined over X = {0, 1}d, where
φj(x) is the value of coordinate j in x. Let G = {X},
`(X ) = 0. Let c̄ be a concept that agrees with c∗ ≡ 0,
except on z0 = (0, . . . , 0). Let G′ be a representation
that has |M(c̄,G′)| = 0. We claim that |G′| ≥ d + 1.
Consider the vectors e1, . . . , ed. Suppose that some
G ∈ G′ has ei, ej ∈ G for i 6= j. Then no single feature
can separate G from the component that includes z0.
Therefore, there are at least d components for each of
ei, and a separate one for z0. This gives a lower bound
of d+ 1.

Proof of Theorem 2. Let Pm be the set of pairs (i, j)
such that i, j ∈ [m] and i < j. Define a set of features
Φ := {φpi,j | i, j ∈ [m], i 6= j, p ∈ {0, 1}}. Define a fam-

ily of 2|Pm| possible representations {GS}S⊆Pm . The
representation GS includes m components G1, . . . , Gm,
such that for i < j, component Gi is separated

from component Gj using the feature φ
Si,j

i,j , where
Si,j := I[(i, j) ∈ S]. In other words, for each pair
of components, one of two possible features φ0i,j , φ

1
i,j

separates them. We further define that in Gi the sep-
arating feature is positive, while it is negative in Gj .
For simplicity, we denote φj,i := ¬φi,j . Formally, Gi in
representation GS is the set of examples which satisfy(∧

j:i<j φ
Si,j

i,j

)∧(∧
j:i>j ¬φ

Si,j

i,j

)
. In all the represen-

tations, the label of the examples in Gi is set to i.1

Define an example xi,j for (i, j) ∈ Pm as follows: For
all l 6= i, j and z ∈ {0, 1}, all the features φzi,l and
φzj,l get the value that excludes them from Gl. The

feature φ0i,j is set to positive, and φ1i,j is set to negative.
Thus, in all representations S, xi,j ∈ Gi ∪ Gj , and
xi,j ∈ Gi if and only if (i, j) ∈ S. Now, consider a
stream of examples that presents xi,j for (i, j) ∈ Pm
in a uniformly random order and labels them using a
representation GS selected uniformly at random over
S ⊆ Pm, so that the label of xi,j is i if (i, j) ∈ S and j
otherwise.

The stream of examples is the same for all representa-

1A similar example with only two labels can be shown,
at the cost of a smaller multiplicative factor in the mistake
bound.
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tions. Thus, the only information on S can be obtained
from the discriminative features. There are

(
m
2

)
pos-

sible elements in S, and each discriminative feature
feedback in this problem reveals whether (i, j) ∈ S for a
single pair (i, j). Moreover, if this is unknown for some
pair (i, j) when xi,j is revealed, then both values of Si,j
are equally likely conditioned on the run so far. In this
case, any algorithm will provide the wrong label with a
probability at least a half. Now, after less than |Pm|/2
mistakes, there is a probability of at least a half to ob-
serve such an example in the next iteration. Therefore,
in the first |Pm|/2 examples of the stream, there is a
probability of at least 1/4 that the algorithm makes
a mistake on the next example. Thus, the expected
number of mistakes is at least |Pm|/8 = Ω(m2).

To prove Lemma 13, we use the following concentration
inequality.

Lemma 15. Let δ ∈ (0, 1/e2), let k be an integer
and let p ∈ [ 12 , 1). The probability that a sum of k
independent geometric random variables with probabil-
ity of success p is larger than 1

p min(2k log(1/δ), (k +

4
√
k log3/2(1/δ))) is at most δ.

Proof. This lemma follows from Hoeffding’s inequal-
ity, by noting that the number of successes in N ex-
periments with success probability p is distributed as
Binom(N, p), and having

P[Binom(N, p) < k] ≤ exp(−2N(p− k/N)2).

First, defining N1 := 2k log(1/δ)/p, we have

k/N1 = p/(2 log(1/δ)) ≤ p(1− 1/
√

2).

Hence, p− k/N1 ≥ p/
√

2. It follows that

exp(−2N1(p− k/N1)2) ≤ exp(−N1p
2)

≤ exp(−N1p/2) = exp(−k log(1/δ)) ≤ δ.

Second, suppose that k ≥ 4 log(1/δ), and let α :=√
log(1/δ)/4k ≤ 1

4 . Defining

N2 := 2(1 + 4α)k/p =
1

p
(2k + 4

√
k log(1/δ)),

we have that

1/(p− α) = 1/p+ α/(p(p− α)) ≤ (1 + 4α)/p,

where the last inequality follows since p ≥ 1
2 and α ≤ 1

4 .
Therefore, N2 ≥ k/(p−α), hence k/N2 ≤ p− α, hence

exp(−2N2(p− k/N2)2) ≤ exp(−4(k/p)α2)

= exp(− log(1/δ)/p) ≤ δ.

The proof is completed by observing that the first
bound in the statement of the lemma is N1, and the
second bound is always larger than N2, and for k ≤
4 log(1/δ), it is larger than N1.

We now prove Lemma 13.

Proof of Lemma 13. Denote by Lt the set of rules L
at the end of round t of the run of StRoDFF. Let

Lt = {x ∈ X | ∃C ∈ Lt such that x satisfies C},

and denote pt := P[X ∈ Lt], where X is a random
example drawn according to the distribution creating
the input stream. We now prove the main claim: that
with a high probability, a rule is not created by StRoDFF

at round t unless pt−1 ≤ 1−2ε. The claim is proved by
induction on the sequence of rules created by StRoDFF.
For the basis of the induction, observe that p0 = 0,
since L0 is empty. Therefore, the first rule created by
StRoDFF certainly satisfies the claim for any ε < 1

2 . For
the induction step, suppose that the claim holds for the
first l rules created by StRoDFF. Let t0 be the round
in which the l’th rule was created, and condition on
the stream prefix ending in t0. We show that the next
rule also satisfies the claim.

First, for any round t ≥ t0 until a new rule is created,
pt is monotonic non-increasing. This is because the
possible transformations, other than creating a new
rule, are to restrict a rule or to delete a rule, both of
which can never increase the set of examples covered
by L. Therefore, if pt0 ≤ 1− 2ε, then regardless of the
round t in which the next rule is created, it satisfies
pt−1 ≤ 1 − 2ε. Thus, assume below that pt0 > 1 −
2ε ≥ 1

2 . pt0 is the probability that a random example
observed immediately after round t0 is satisfied by some
rule in Lt0 . Now, consider the first round after t0 that
an example in Lt0 arrives. Denote this round t1. The
value T1 := t1− t0 is a geometric random variable with
a success probability pt0 . By Lemma 15 with k := 1,
p := pt0 , with a probability at least 1− δ/(8t20),

T1 ≤
1

pt0
(1 + 4 log3/2(8t20/δ))) < γ(ε, 1, t0).

In the last inequality we used p0 > 1 − 2ε and the
definition of γ. Assume below that this event holds.

Now, consider Nlr, which counts in StRoDFF the num-
ber of examples since the creation of the last rule,
for which the default prediction (x0, y0) was provided.
These are the examples that were not satisfied by any
rule in L when they appeared. We prove by induction
on the rounds that a new rule is not created at least un-
til round t1. If a new rule was not created until round
t ∈ {t0 + 1, . . . , t1 − 1}, then Lt = Lt0 (since the set of
rules does not change until t1 when an example falls in
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Lt0). In addition, Nlr = t− t0, since the examples until
round t1 are not in Lt = Lt0 , thus they get the default
prediction. Therefore, t− t0 −Nlr = 0. It follows that
in round t,

Nlr ≤ T1 < γ(ε, 1, t0) ≤ γ(ε, t− tlr −Nlr + 1, t).

This means that the condition in line 21 does not hold.
Thus, under the event above, a new rule will not be
created at round t. Since this holds by induction for
all t ∈ {t0 + 1, . . . , t1− 1}, it follows that if p0 > 1− 2ε
then a new rule is not created at least until the first
example in Lt0 arrives.

Now, Lt1 is the set of rules after this example arrives,
and the probability mass of examples in Lt1 is pt1 . More
generally, let ti be the first round after ti−1 in which
an example in Lti−1

appears. If no new rule is created
between t0 and ti, then in round ti, the set of rules
changes from Lti−1

to Lti . The number of rounds Ti :=
ti−ti−1 between each two such examples is a geometric
random variable with success probability pti−1 . Let r
be the number of examples satisfied by L which appear
in the stream until the next rule after t0 is created, and
suppose for contradiction that ptr > 1− 2ε. For q ≤ r,
define the random variable Sq :=

∑q
i=1 Ti. This is a

sum of q independent geometric random variables, each
with a probability of success larger than 1− 2ε (since
ptq ≥ ptr for all q ≤ r). Thus, Sq is dominated by a
sum of independent geometric random variables with a
success probability of 1− 2ε. Therefore, by Lemma 15,
with a probability at least δ/(8(t0 + q − 1)2)),

Sr ≤
1

1− 2ε
(q + 4

√
q log3/2(8(t0 + q − 1)2/δ))

< γ(ε, q, t0 + q − 1) + q − 1.

Assume below that this event holds for all q ≤ r. We
now prove that under the assumption on ptr , a new
rule is not created until tr, which is a contradiction.
Suppose for induction that since round t0 until round
t ≤ tr − 1, a new rule was not created. Let q ≤ r such
that t ∈ {tq−1 + 1, . . . , tq − 1}. We have tq = t0 + Sq.
Therefore, at round t, Nlr = t−t0−(q−1) < Sq−(q−1).
It follows that under the assumed event, in round t

Nlr < γ(ε, q, t0 + q − 1) ≤ γ(ε, t− tlr −Nlr + 1, t).

Here, we used the fact that t0 + q − 1 ≤ t. It follows
that the condition in line 21 does not hold in round
t, thus a new rule is not created in this round. By
induction, this holds for all t ≤ tr−1, which contradicts
the assumption that a rule was created until round tr.
Thus, if ptr > 1 − 2ε then a new rule is not created
at least until round tr. Since this analysis holds for
any value of r, we conclude that if all the events above
hold simultaneously, then a new rule is never created in
round t unless pt−1 ≤ 1− 2ε. By a union bound on the

created rules and the sequence of examples between
rule-creations, this is true with a probability at least
1− δ/4.

Proof of Theorem 9. First, we upper bound the num-
ber of mistakes on examples that are not satisfied by
any rule when they are observed. Let t1, t2, . . . , tR,
which sum to n, be the lengths of times between cre-
ations of new rules (where t1 is time of the first rule and
tR is the time between the last rule and the end of the
stream). We have by Lemma 14 that R ≤ R(m, δ) + 1.
We have 1/(1− 2ε) = 1 + 2ε/(1− 2ε) ≤ 1 + 4ε, where
the last inequality follows since ε ≤ 1

4 . Hence,

γ(ε, r, t) ≡ 1

1− 2ε
(r + 4

√
r log3/2(8t2/δ))− r + 1

≤ 8εr + 8
√
r log3/2(8t2/δ).

The number of mistakes resulting from examples not
satisfied by any rule is upper-bounded by

R∑
i=1

γ(ε, ti, n) ≤ 8εn+ 8

R∑
i=1

√
ti log3/2(8n2/δ)

≤ 8εn+ 8
√
Rn log3/2(8n2/δ).

In addition, any existing rule may generate at most
(m−1)(q(σ, n)+2)+q(ε, n)+1 mistakes (since it would
be deleted after that). Note that R = O(m log(1/δ)),
and q(ε, n) = O(εn + log(n/δ) +

√
n log(n/δ)). The

total upper bound is thus O
(
εn +

√
mn log2(n/δ) +

m log(1/δ)(εn+m(σn+ log(n/δ) +
√
n log(n/δ)

)
. Di-

viding by n and reorganizing, we get the error rate in
the statement of the lemma.


