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Abstract

Spin glass models, such as the Sherrington-
Kirkpatrick, Hopfield and Ising models, are
all well-studied members of the exponential
family of discrete distributions, and have
been influential in a number of application
domains where they are used to model cor-
relation phenomena on networks. Conven-
tionally these models have quadratic suf-
ficient statistics and consequently capture
correlations arising from pairwise interac-
tions. In this work we study extensions
of these to models with higher-order suf-
ficient statistics, modeling behavior on a
social network with peer-group effects. In
particular, we model binary outcomes on a
network as a higher-order spin glass, where
the behavior of an individual depends on a
linear function of their own vector of covari-
ates and some polynomial function of the
behavior of others, capturing peer-group
effects. Using a single, high-dimensional
sample from such model our goal is to re-
cover the coefficients of the linear func-
tion as well as the strength of the peer-
group effects. The heart of our result is
a novel approach for showing strong con-
cavity of the log pseudo-likelihood of the
model, implying statistical error rate of
v/d/n for the Maximum Pseudo-Likelihood
Estimator (MPLE), where d is the dimen-
sionality of the covariate vectors and n is
the size of the network (number of nodes).
Our model generalizes vanilla logistic re-
gression as well as the models studied in
recent works of |Chatterjee et al.| (2007));
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Ghosal and Mukherjee| (2018]); [Daskalakis
et al.| (2019), and our results extend these
results to accommodate higher-order inter-
actions.

1 INTRODUCTION

Did you choose red rather than blue because some
inherent attributes of yours biased you towards red,
or because your social environment biased you to-
wards that color? Of course, the answer is typi-
cally “both.” Indeed, a long line of literature in
econometrics and the social sciences has substanti-
ated the importance of peer effects in network be-
havior in topics as diverse as criminal activity (see
e.g.|Glaeser et al.| (1996))), welfare participation (see
e.g. Bertrand et al. (2000)), school achievement (see
e.g. [Sacerdote| (2001)), participation in retirement
plans (see e.g. |Duflo and Saez (2003)), and obe-
sity (see e.g. [Trogdon et al.| (2008)); |Christakis and
Fowler| (2013)). On the other hand, estimating the
mechanisms through which peer and individual ef-
fects drive behavior in such settings has been quite
challenging; see e.g. Manski (1993); Bramoullé et al.
(2009)).

From a modeling perspective, a class of probabilis-
tic models that are commonly used to model binary
behavior in social networks are spin glass models,
such as the well-studied Sherrington-Kirkpatrick,
Hopfield and Ising models. In these models, a
vector of binary behaviors y € {—1,1}V across
all nodes of some network G = (V,E) is sam-
pled jointly according to the Gibbs distribution,
p(y) = 4 exp(—En(y)), defined by some energy
function En(y) of the aggregate behavior, where
the functional form of En(-) typically depends on
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bility Theory, Markov Chain Monte Carlo, Com-
puter Vision, Computational Biology, Game Theory,
and, related to our focus, Economics and the So-
cial Sciences [Levin et al| (2009); Chatterjee| (2005);
Felsenstein| (2004); Daskalakis et al.| (2011); Geman,
and Graffigne| (1986); Ellison| (1993); [Montanari and

Saberi (2010)).

Closely related to our work, a series of recent works
have studied estimation of spin glass models incor-
porating both peer and individual effects as drivers
of behavior |Chatterjee| (2007)); Bhattacharya et al.
(2018); |Ghosal and Mukherjee| (2018)); Daskalakis
et al| (2019). Generalizing the classical logistic re-
gression model, these works consider models of bi-
nary behavior on a network, conforming to the fol-
lowing general class of models. Suppose that the
nodes of a social network G = (V, E) have individual
characteristics x; € R?, i € V, and sample binary
behaviors y € {£1}V according to some measure
that combines individual and peer effects, taking the
following form:

Prly] = Z:ﬁexp (Z(GTXi)% + 8- f(Y)> ., (1)

eV

where a linear function 6'x; of node i’s individ-
ual characteristics determines the “external field” on
that node, i.e. the direction and strength of the “lo-
cal push” of that node towards —1 or +1, and some
function f(y) of the nodes’ joint behavior expresses
what configurations in {1}V are encouraged by
peer-group effects. In particular, setting 8 = 0 re-
covers the standard logistic regression model, where
nodes choose their behaviors independently, but set-
ting 8 > 0 incorporates peer-group effects, as ex-
pressed by f. Without loss of generality, f can be
taken to be a multi-linear function (Theorem 1.1
of |O’Donnell| (2014)), and we can take E to con-
tain a hyperedge for each monomial in f, i.e. take

f(Y) = ZeeE WeYe Where ye = HiEe Yi-

Given a collection x1,...,%x, € R¢ of covariates,
some function f : {+1}V — R, and a single sam-
ple y drawn from a model conforming to , the
afore-cited works of |Chatterjee (2007), Ghosal and|
[Mukherjee (2018) and |Daskalakis et al| (2019)) pro-
vide computationally and statistically efficient algo-
rithms for estimating 6 and (. Specifically, these
works study the restriction of model to the case
where f contains only pair-wise effects, i.e. where
function f is a multilinear function of degree 2. In
particular, |Chatterjee (2007)) studies the case where
@ = 0 and f is bilinear, |Ghosal and Mukherjee

(2018) the case where d = 1, all x;’s equal 1, and 9

f is bilinear, while |Daskalakis et al.| (2019) the gen-
eral bilinear case. Extending these works, the goal of
our work is to provide computationally and statisti-
cally efficient estimation methods for models where
f has peer effects of higher-order. As such, our new
methods can accommodate richer models, capturing
a much broader range of social interactions, e.g. set-
tings where nodes belong in various groups, and dis-
like fragile majorities in the groups they belong to.
Our main result is the following.

Theorem 1.1 (Informal). Let G = (V,E,w : E —
R) be a weighted hypergraph with edges of cardinal-
ity at least two and at most some constant m, and
let f(y) = Y ecpWeYe. Assume that each wvertex
has bounded degree (Assumption and the hyper-
graph is dense enough (Assumpt. Moreover,
assume that the true parameters 0y, By and the fea-
ture vectors have bounded {5 norm, and the empiri-
cal covariance matriz of the feature vectors has sin-
gular values upper and lower bounded by constants
(Assumption . Then, there ezists a polynomial-
time algorithm, which, given a single sample from
model , outputs an estimate (é, B) such that

) _ . i . a7
H(&ﬂ) (90,ﬁ0)H2 is O <\/:>, with probability at
least 99%, where n = |V|.

Discussion of Main Result. First, let us discuss
the assumptions made in our statement. Note that
the assumptions about 6 and the x;’s are standard,
and are commonly made even for vanilla logistic re-
gression without peer effects (8 = 0). The assump-
tion about the boundedness of § and the degree of
the hypergraph is needed so that the peer-group ef-
fects do not overwhelm the individual effects, mak-
ing 6 non-identifiable. Finally, the assumption on
the density of the hypergraph is needed so that the
individual effects do not overwhelm the peer-group
effects, making 8 non-identifiable. Our assumptions
about 8 and the hypergraph are generalizations of
corresponding assumptions made in prior work. As
such, our main result is a direct generalization of
prior work to accommodate higher-order peer ef-
fects.

We should also discuss the importance, in both
our work and the work we build upon |Chatterjee
(2007); |Ghosal and Mukherjee] (2018)); [Daskalakis

et al| (2019), of estimating the parameters of our
model using a single sample, which stands in con-
trast to other recent work studying estimation of
Ising models and more general Markov Random
Fields from multiple samples; see e.g. Bresler et al.
(2014); Bresler| (2015a); Bresler and Karzand, (2016);




Vuffray et al| (2016)); [Klivans and Mekal (2017);
Bresler et al| (2019); [Hamilton et al. (2017). The
importance of estimating from a single sample arises
from the applications motivating our work, where it
is more common than not that we really only have a
single sample of node behavior across the whole net-
work, and cannot obtain a fresh independent sample
of behavior tomorrow or within a reasonable time-
frame.

Techniques. Towards obtaining Theorem we
encounter several technical challenges. A natural
approach is to use our single sample to perform
Maximum Likelihood Estimation. However, this ap-
proach faces two important challenges. First, it has
been shown that the single sample Maximum Like-
lihood Estimator is not necessarily consistent |[Chat-
terjee| (2007)). Second, the likelihood function in-
volves the partition function Zy g, which is generally
computationally intractable to compute. In view of
these issues, we follow instead the approach followed
in prior work. Rather than maximizing the likeli-
hood of the sample, we maximize its pseudolikeli-
hood, defined as [], Pr[y; | y—;]. This concave func-
tion of our parameters 6 and (8 is computationally
easy to optimize, however we need to show that its
maximum is consistent. To argue this we establish
two main properties of the log-pseudolikelihood: (i)
the log-pseudolikelihood is strongly concave in the
neighborhood of its maximum; and (ii) its gradient
at the true model parameters is bounded. As both
the Hessian and the gradient of log-pseudolikelihood
are functions of the vector of variables y, which are
jointly sampled, to argue (i) and (ii) we need to con-
trol functions of dependent random variables. To do
this we use exchangeable pairs, adapting the tech-
nique of |Chatterjee and Dembo (2016|), combined
with a parity argument on G and f’s partial deriva-
tives. In turn, (i) and (ii) suffice to establish the
consistency of the Maximum Pseudolikelihood Esti-
mator (MPLE).

1.1 More Related Work

Learning and testing questions on Ising models have
been widely studied in diverse contexts. A popu-
lar instantiation of the learning problem is structure
learning, where given access to multiple i.i.d. sam-
ples from the model we wish to infer the underlying
graph’s structure. This was first studied for tree
graphical models by |[Chow and Liu| (1968) and has
since then seen a lot of work both in terms of up-
per bounds and lower bounds side [Santhanam and
Wainwright| (2012). More recently, Bresler| (2015b))
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gave a striking algorithm for structure learning in
bounded degree graphs which required samples only
logarithmic in the number of nodes of the graph.
The running time and sample complexity of this ap-
proach was improved in later works of [Vuffray et al.
(2016)); Klivans and Meka, (2017); [Hamilton et al.
(2017). The works of [Klivans and Meka| (2017));
Hamilton et al.| (2017)) provide learning results for
MRFs with higher-order interactions on alphabet of
sizes larger than 2. Property testing questions on
Ising models have also been studied by |Daskalakis
et al.| (2018]). All of the above works, however, make
use of access to many independent samples from a
Ising model. Closer to the model we consider in
this paper is the line of work initiated by |Chat-
terjee et al. (2007) and extensions in the works of
Bhattacharya et al.| (2018); |Ghosal and Mukherjee
(2018)); Daskalakis et al. (2019) wherein we try to
infer an Ising model described by a few parameters
using a single sample from the model. Bresler and
Nagaraj| (2018); Mukherjee et al. (2018) study hy-
pothesis testing questions on the Ising model from a
single sample.

2 PRELIMINARIES

We use bold letters such as x,y to denote vectors
and capital letters A, W to denote matrices. All vec-
tors are assumed to be column vectors, i.e. dim x 1
(except when we refer to the parameters as (6, 8) in-
stead of (07, B)). We will refer to W;; as the (i, )"
entry of matrix W. We will use the following matrix
norms. For a n X n matrix W,

(2)
3)
(4)

W1l = maxz,=1 Wz,
W]l oo = max;ep) >ory Wil

”WHF —\/ Z:‘l:l Z?:l szj

When W is a symmetric matrix we have that
Wi, < Wl < [Wllp < vrlWl, < VoW,
and in general we have ||WH§ < W] W5

We use A to denote eigenvalues of a matrix and o to
denote its singular values. An, refers to the small-
est eigenvalue and Apax to the largest, and similar
notation is used for the singular values. We use e
or a collection {z1, ..., 2, } to denote a hyperdge and

moreover its weight is denoted by we or w;, .. ..)-

We will say an estimator 0,, is consistent with a rate
r(n) (or equivalently r(n)-consistent) with respect
to the true parameter 6y if there exists an integer ng
and a constant C' > 0 such that for every n > ny,



with probability at least 99%,

2.1 Ising Model and Inference

T -
2

r(n)’

The Ising model is a well-studied binary graphical
model. We provide a description here.

1. Ising Model (simple): Given a weighted
undirected graph G(V, E) with |V| = n, n X
n weight matrix W, assignment o V —
{—1,+41}, an Ising model is the following prob-
ability distribution on the 2™ configurations of

o:
exp (X ,ey Po0o + BT Wo
Pr{y _ O’} _ ( cv ~ )
G
(5)
where
Za = Zexp (Z hyG, + ﬁ&TW5>
g veV

is the partition function of the system (or renor-
malization factor). Moreover the term ), hyo,
is called the external field and 3 is called the
inverse temperature. It can be observed that,
without loss of generality, we can restrict the
matrix W to have zeros on its diagonal.

2. Ising Model (Hypergraph): Given a hyper-
graph graph G(V, E) (each edge e has at most
m incident vertices and at least two), weights
we and assignment o : V' — {—1,+1}, an Ising
model is the following probability distribution
on the 2" configurations of o:

exp (3, cv hoow + Bf(0))
Za

Pr{y =0} = , (6)
where f(0) = Y ocpg) Wele and oe =
[[,ce 0v- Observe that f(o) is a multilinear
polynomial of degree m (since y2 = 1 for all
v and every realization, weighted hypergraphs
capture all distributions with f a multilinear
function).

Inference of Ising models with Hypergraphs:
In this paper we focus on the following modification
of the Ising model for hypergraphs. It is assumed
that we are given one sample from the following
distribution:

exp(Bf(0) + 32, (%, 0)0v)

Prly = o] = 7(5.0) :

4

where (3,0 are unknown parameters, f
{-1,41} — R is a polynomial (multilinear)
function and each summand is of degree at most m
and at least two (Zg(B,0) is the renormalization
factor). The goal is to estimate the parameters [
and #. This problem is a generalization of the lo-
gistic regression model with dependent observations
problem as appeared in Daskalakis et al.|(2019) (for
m = 2), applied to hypergraphs.

e Observe that for each index v we can write
f(Y> = Yo fo(y—v)+ ffv(yfv) (bOth J—v, fv are
multilinear functions that do not depend on y,,).
It is easy to see that f,(y_,) = % Each
hyperedge e is a collection of at most m ver-
tices v € V. One may write yo = [],cq %0 and
moreover f(y) = ZeEE WeYe and yva (yfv)

ecE,vce WeYe-

e For all vertices v and o, € {£1}, conditioning
on a realization of the response variables y_,:

1
Pr[yv = Uv] =

1 + GXp (72 (QTXU + ﬂfv(y—v)) Uv) .
(7)

e Interpretation: The probability that the con-
ditional distribution of y, assigns to +1 is de-
termined by the logistic function applied to
2 (QTxU + Bfy (y_U)) instead of 26" x,.

2.2 Assumptions

Our Assumptions can be listed below:

Assumption 2.1 (Bounded degree).

> lwel <1,

e:iice

(8)

for all vertices i, where e captures the hyperedges.
The number one on the R.H.S can be replaced with
any constant. This assumption is mainly used in our
concentration bounds.

Assumption 2.2 (Enough weight at the hyper-
edges).
Z w? is Q(n),

ecE,
le|=m

(9)

This assumption is mainly used to prove strong con-
cavity of the pseudolikelihood for the estimation of
8.

Assumption 2.3 (Parameters and features). The
true parameter By belongs in some interval (—B, B)
and ||6p]l, < © for some known constants B,© that



are independent of n,d. We denote by B C R4+1,
B = {(0,8) € R |8 < B,||¢], < ©} (ie., the
closure of the set that the parameters may belong

to).

Moreover for every feature wvector x, we have
Ixully, < M (for some known constant M inde-
pendent of n,d). Finally, the covariance matriz
(of size d x d) of the feature vectors, i.c., XX
where X T = (x1 Xa...X,) has minimum and maz-
imum eigenvalues bounded by constants (indepen-
dent of n,d) and the projection matric F = I —
X(XTX)"1XT satisfies ||, is bounded by a con-
stant (one with loss of generality).

2.3 Pseudo-Likelihood - Gradient and
Hessian

The pseudolikelihood as defined by Chatterjee in
Chatterjee et al.| (2007)) for a simpler model and in-
stantiated in our model is given by the following ex-
pression:

n 1/n
PL(0, ) = (_H Pr[yi|y_i]> (10)

_ ﬁ exp(tiyi) o
=1 exp(t;) + exp(—t;) ’

where t; = 0" x; + Bfi(y_;). Taking the log, the log
pseudolikelihood for a specific sample y is given by:

n

LPLO,B) =~ Y lwbfily-) +u@Tx) (1)

—Incosh(Bfi(y_i) +0"x;)] —In2, (12)

The first order conditions give:

OLPL(0,8) _

B
> iy [Yifi(y—i) = fi(y—) tanh(t;)] = 0,
BLPL(0,8)
90,

% Z?:1 [yixip — ik tanh(t;)] = 0.

The solution to equation is called Maximum
Pseudolikelihood Estimator (Hessian is negative

semidefinite, see below) and is denoted by (6, B) or

(13)

(éMPIn B]VIPL)-

The Hessian H g g) of the log-pseudolikelihood is
given by:

9*LPL(.B) _ 1 s 2 y—4)
032 - n i=1 cosh?(t;)’
P’LPL(O,8) _ _ 15w zikfily—s) (14)
0300, —  n £=i=1 cosh?(t;)
?LPL(0,B) = 1 ~n  TiiTik
00,00, — T n i=1 coshQ(ti) )

5

Writing the Hessian differently we get

n

1 1
Hygg =—— X x|
@0 n ; cosh?(Bfi(y—i) +07x;)

where X; = (x;, fi(y_i))". Thus —H is a positive
semidefinite matrix and LPL is concave. Moreover
if (0, 8) satisfies Assumptions and it follows
that

(xr, xix))

1\ T
coshZ(B+M-0O) = —Hp = (E Zi:l XiX; ) .

(15)
Remark 2.1 (LPL is smooth). Since ||Xz||§ =
Ixil3 + f2(y_i) < ©% + 1 (assuming Assump-
tion trivially holds |fi(y—:)| < 1) it holds that
Amax(_I{(e,B)) < @2 +1 fO'f' all (976) S Rd+1 which
satisfy Assumption hence —LPL is a ©2 + 1-
smooth function, i.e. —NV LPL is ©% + 1-Lipschitz.

We conclude this section with an important lemma
that explains the reason we need the technical lem-
mas in Section 3 and involves the gradient and
the Hessian of the log-psudolikelihood (appeared in
Daskalakis et al.| (2019))).

Lemma 2.1 (Consistency of the MPLE Daskalakis
et al| (2019))). Let (0o, o) be the true parameter.
We define (0, B) = (1 —1)(0o, Bo) +t(OrmpL, BrpL)
and let D € [0,1] be the largest value such that
(0p, Bp) € B (if it does not intersect the boundary of
B, then D = 1), where B is defined in Assumption

[2-3 Then,

IVLPL(0o, Bo)ll, =

D i )\min —H H 0 _é ’ - H
Jin (—=H,5)) ||(6o — Orrpr, Bo — Brrpr) ,

= in_ Apin (—H 0o — Op, - :
(0%1)%3 (=H.5)) |(60 — 0p, Bo — Bp)ll,

To prove the main result, we apply Lemma by
showing: (in the rest of the paper)

1. A concentration result for ||VLPL(6y, 50)||§
around d/n (Section which in words gives
that the gradient of the log-pseudolikelihood at

the true parameter is small (note that it is zero
at the MPLE) (I).

2. A lower bound (positive constant that de-
pends on the degree of polynomial f) for

min( gyes Amin (—H(gﬁ)) (Section with
high probability (IT).

We combine the above with the observation that
D =1 for n sufficiently large. This is true because



|(6p — 60, Bp — Bo)ll, — 0 as n — oo (is of order
% and that any point on the boundary of B has a
fixed (independent of n) positive distance to (6o, o)
since (6o, Bp) lies in the interior of B.

This gives the desired rate of consistency which we
show in Section [3.21

3 MPLE: CONCENTRATION AND
STRONG CONCAVITY

In this section, we prove Theorem In words,
we show consistency of the MPLE which we prove
via bullets (I), (II) and then applying Lemma as
stated in the previous section. Our main result is
formally given below:

Theorem 3.1 (Main (Formal)). Consider the model
of (l) with Assumptions m . - and denote
Mazimum Pseudo-Likelihood Estimate (MPLE) with

(Orrpr, Bripr). With probability 99.9% it holds that

‘ (Ornpr, Brpr) — (007ﬂ0)H2 <0 <\/g> 90(m)

and we can compute an estimate with the same order
of consistency in O(Inn) iterations of projected gra-
dient descent (in supplementary full version) where
each iteration takes polynomial (in n) time.

3.1 Strong Concavity of
log-Pseudolikelihood (II)

Schur’s complement. Let X' = (x; Xo...X,),
which is the matrix of the covariates (of size d x n).
Using Equation (the negative Hessian of log-
Pseudolikelihood dominates the matrix below) we

get —H > -~ WG where
ixTx L1xTf
G = ( %fTX %||f||§ ) fi=(fily-1), - fuly-

We set Q = %X T X and use the properties of Schur
complement on the matrix

Q— M 1XTf )
G-\ = <
ATX ||f||2 —A
to get that
det (G — \I) =det (Q — M) x

det (1fT <I 1y Q—-A)"'X
n n

))

Therefore the minimum eigenvalue of G is at least a
positive constant as long as the minimum eigenval-
ues of

Q and lfT (1 — 1XQ1XT> f
n n

are at least positive constants independent of n,d.
Recall from our assumptions (Assumption we
have that A\pin(Q) > ¢1 always where ¢; is a positive
constant independent of n,d. Hence, it remains to
show that

Amin (11-‘T (I -
n

for a positive constant c¢g with high probability (with
respect to the randomness in drawing y).

Denoting FF = I-X (X "X)'XT =I-1XxQ7'XT,
observe that F has the property F? = F (i.e. is
idempotent) and hence all the eigenvalues of F' are
0,1 (since is of rank n — d, it has d eigenvalues zero
and n — d eigenvalues one). Our goal is to show that

IXQ—le) f) > ¢y
n

Lemma 3.1.
fTFf = ||Ff\|§ > con  with probability 1 — o(1),
(16)
where the probability is with respect to the random-
ness in drawing y.

Lower bound on the “expectation”. Our first
key lemma, is to prove a lower bound on the condi-
tional expectation of each summand of the quantity
|Ff|2 = S2,(Ff)? which is captured in Corollary
and is a consequence of the lemma below.

Lemma 3.2 (Parity Lemma). Fiz a sequence of in-
dices z1, ..., Zm—1 and an index t. It holds that

Eet),ﬁo [(Ff)12|y—Z1,... >

7—Zm—1]

(7

e~ (B+M-©)(m—1)

2
g ijwj,zl,...,z,,m) :

In case j = z; for somet < m then wj ., . ...
Proof.

Eeoﬂo [(Ff

—zmal

ZFijfj(Y—j)

)12|Y—Z1,---7

= ]an,ﬂo Y—zl,...

yTREm—1

= Eg,,5,

(yzlz Y FijweYe\(jen)t

Jj#z1 ej,z1€e



2. 2

J ej€ezide

2
FijweYe\{j} =+ Fi21 le>

It is clear that the square above is at least
(e Doeijzyce FijWeYer(jz1))?  depending  on
Yz, = 1. Thus using the fact that |f,,| < 1 we
conclude

, o~ (B+M-©)
Bay o (F21Y oy e ]2 S (10
2
Eoo.80 Z Z Fijweye\{j,zl} |y*21,~~~,*zm71
Jj#z1 ej,z1€e
(18)
Now observe that (and since gg <= 0)
Z1

_ of;
2 jtn 2uejmce FijWeYe\(jmy = 225 Fij g, hence

E90,50 [(Ff)? ‘Y—zl ,‘..7—zm,1] >
(19)
o~ (B+M-0©)

g Eoy 5o [(FE)I |y 1 m2a]s

f — (24 Ofn
where f = (ayz1 s ayﬂ).

ment we may conclude that

By an induction argu-

EBOWBO [(Ff)22|Y—Zl,...,—zm,1] 2
(20)
o~ (B+M-©) m—1 R
(f) E00 ﬁO [(Ff)z |y*21 ..... 7zm_1];
where f = oM "'ty _
B0z, 00, 1" Dyay Oe
( o™ f o™ g ) _
59107, 00n 1" Oyndy; Ve
(wLZl »»»»» Zm—19 0 Wn 2y ooz, 1 O

Corollary 3.1 (Tower property). For each vertex
i and distinct vertices v, z1, ..., Zm—2 (note i is not
necessarily different from v) it holds

Eeoﬁo [(Ff)? ‘y,v] >

B+M-0©)(m—1)

2
—(
e
ST ZFijw{v,zl,--.,zm—2}u{j}

J

In what follows, we define an “adjacency” matrix
A which enables us to reduce the general degree m
polynomial case to the case where m = 2.

Reduction to “simple graphs”. To prove
strong concavity of the Hessian of the log-
pseudolikelihood, we need to show that |Ff ||§ is

y_zlv---a_z7n1‘| .

7

at least cyn with high probability. To do this,
we reduce the general problem to the case m =
2 by defining the appropriate matrix below and
then use the machinery of [Daskalakis et al.| (2019))
to show that \|Ff||§ is concentrated around its
conditional expectation (see Lemma . Let
z = (z1,22,...,2m—2). Let A be the following
n X n matrix: For each column i of A, let (z*)
be argmax, H(w(m,m,szz,i,l)a '--’w(Zl,.».,szw,n))Hg'
The j-th entry of column i of A is given by
W(r . zx )+ Intuitively, matrix A induces a sub-
graph of the original hypergraph G. Nevertheless,

"matrix A contains “enough edges” to infer 6y, By.

Lemma 3.3 (A has big Frobenius norm). There
exists a constant C such that

JAI% > Cn. (21)
Moreover, A satisfies the bounded degree condition
and this is captured by the lemma below.

Lemma 3.4 (Bounding ||Al|__, [|All,). It holds that
Al |All <m —1.

Note that from Lemma and we get ||FA||§?
is also Q(n). This is true, since |4, <

VAT AN, < m—1 (Lemmal3.4), thus | FA|3. >

|A||% — d(m — 1)%. To proceed, we use a selection
index procedure that appeared in [Daskalakis et al.
(2019) (we mention it below for completeness) and
which will be useful in the later part of the proof.

An Index Selection Procedure [Daskalakis
et al.| (2019): Given a matrix W, we define h :
[n] — [n] as follows. Consider the following iterative
process. At time t = 0, we start with the n x n
matrix, W' = W. At time step ¢ we choose from
W the row with maximum ¢ norm (let 4; the in-
dex of that row, ties broken arbitrarily) and also let
ji = argmax;[W/ .| (again ties broken arbitrarily).
We set h(i;) = j; and W't is W by setting zeros
the entries of it" row and column j{". We run the
process for n steps to define the bijection h. The
following lemma is from [Daskalakis et al.| (2019)).
Lemma 3.5 (Daskalakis et al.| (2019)). Assume that
|FA|, < ¢y an ||FA||§, > cpn for some posi-
tive constant coo, cr and [|Ally, || Al , [|A]l; are also
bounded. We run the process described above on F A
and get the function h. There ezists a constant C
(depends on cp,co) such that

Z [(FA)in) |2 > Cn.

'Recall F=7-X(X"TX)"'XT.



Combining Corollary (summing over all ¢) with
Lemma there exists a constant C (independent
of n,d) such that the following inequality is true (al-
ways)

—(B+M-©)(m—1)
om—1

Zi Egoﬁo[(Ff)?‘Y—h(i)] > €
(22)

67(B+M-@)('m,71)

e

X S(FAY, ) > C x

Equation gives us the linear in n lower bound
that we want for the sum of conditional expec-
tations of the terms (Ff)?.  Finally we need
to show that the term Y ,(Ff)? is not far from
> Eog, 50 [(FE)2|y_n()] with high probability, thus
it is also at least linear in n and Lemma Bl would
follow. This is captured in the following lemma.

Lemma 3.6 (Bounding the “conditional” variance).
1t holds that

EGO,BO (Z(Ff)? - ZEQO,BO [(Ff)z2|yh(z)]>

i=1 i=1

< (80n + 16Bn)(m — 1).

3.2 Concentration Results for Gradient (I)

The first main technical Lemma is to show that the
norm of the gradient of the log-pseudolikelihood is
small enough at the true parameters (Corollary [3.2).
This is necessary because we are working with the
finite sample pseudolikelihood (empirical). In what
follows we show that the difference between sum of
yif(y—i) (or y;x;) and the sum of their conditional
expectations is small.

Lemma 3.7 (Variance Bound 1). It holds that

. 2
Eg,, 50 (Z yifi(y—i) — fily—s) taﬂh(h‘))
< (12+4B)(m — 1)n,

where t; = Bofi(y—_i) + 04 Xi.
Lemma 3.8 (Variance Bound 2). It holds that

d n 2
Z <Z xi,kyi — ac“c tanh(tﬁ) ‘|
k

=1 \i=1
< (1+ B)4M? - (m — 1)dn,
(

Eq, sBo

4
where t; = Bo fi(y—i) + 04 Xi-

We are now ready to prove bullet (I) which is an ap-
plication of Lemmas and Markov’s inequal-
ity.

Corollary 3.2. For each 6 > 0 and n sufficiently
large, with probability 1 —§ for some constant C > 0

it holds that
07 O p— .

Putting it all together

Pr
00,80

Proof of Theorem[5.1. We can prove now our main
result, the approach is similar to [Daskalakis et al.
(2019). From Corollary [3.2] we get that (for some
constant C1)

Cid
r[IvzPz@n s < 5 2 1-0 e

for any constant §. Next, we have from Lemma [3.1
and the analysis in the beginning of Section [3.1] that,
mingg, g)eB Amin (7H(976)) > (5 for some constant
Cs independent of n,d. Plugging into Lemma [2.1

(6D — 6o, Bp — Bo)ll, (24)

=D H(éMPL — 00, Burpr — 50)”2 (25)
IVLPL(6o, Bo)ll,

 mingg g)er Amin (—H(o,p))

(26)

Now we have from the above that
|(6p — 6o, Bp — So)||; = 0 as n — oo and also holds
that [[(6p — 6o, Bp — Bo)|l; — 0 which implies that
D =1 for sufficiently large n. Therefore

(26) = H(éMPL — 00, Burpr — 50)“2 (27)

< IVEPLG.B)la o\ [9)  (ag)
min g, g)cp Amin (*H(9,5)) "

with probability > 1 — §. The analysis of Projected
Gradient Descent can be found in the supplementary
material (full version). O

4 CONCLUSION

In this paper, we focused on the problem of param-
eter estimation from one sample of a high dimen-
sional discrete distribution that can be viewed as an
instantiation of Logistic Regression from dependent
observations or Inference on Ising models, with high-
order peer effects. There are a few open questions:

e In the consistency rate, there is an exponen-
tial dependence on the degree m of the polyno-
mial function f (m now is considered a constant
number). Can this be improved?

e Analyze more complicated settings where the
function f is Lipschitz.
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