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A Properties of regularized DPPs

In this section we provide proofs omitted from Sections 3 and 4. We start with showing the fact that the
regularized DPP distribution DPPp

reg(X,A) is a correlation DPP.

Lemma 7 (restated Lemma 2) Given X, A, and Dp as in Theorem 3, we have
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Proof First, we show this under the invertibility assumptions of Lemma 1, i.e., given that A and I�Dp are
invertible. In this case DPPp

reg(X,A) = DPPens(L), where
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Converting this to a correlation kernel K and denoting eX = D
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where (⇤) follows from Fact 2.16.19 in Bernstein (2011). Note that converting from L to K got rid of the inverses
A�1 and (I�Dp)�1 appearing in (6). The intuition is that when A or I�Dp is non-invertible, then DPPp

reg(X,A)
is not an L-ensemble but it is still a correlation DPP. To show this, we use a limit argument. For ✏ 2 [0, 1], let
p✏ = (1� ✏)p and A✏ = A+ ✏I. Observe that if ✏ > 0 then A✏ and I�Dp✏ are always invertible even if A and
I�Dp are not. Denote K✏ as the above correlation kernel with p replaced by p✏ and A replaced by A✏. Note that
all matrix operations defining kernel K✏ are continuous w.r.t. ✏ 2 [0, 1], including the inverse, since A+ eX> eX is
assumed to be invertible. Therefore, the following equalities hold (with limits taken point-wise and ✏ > 0):

DPPp
reg(X,A) = lim

✏!0
DPPp✏

reg(X,A✏) = lim
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DPPcor(K✏) = DPPcor(K),

where we did not have to assume invertibility of A or I�Dp.

We now prove a lemma about combining a determinantal point process with Bernoulli sampling, which itself is a
DPP with a diagonal correlation kernel.

Lemma 8 (restated Lemma 3) Let K and D be n⇥ n psd matrices with eigenvalues between 0 and 1, and

assume that D is diagonal. If T ⇠ DPPcor(K) and R ⇠ DPPcor(D), then
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Proof For this proof we will use the shorthand KA for KA,A. If D has no zeros on the diagonal then det(DA) > 0
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where (⇤) follows from a standard determinantal identity used to compute the L-ensemble partition function
(Kulesza and Taskar, 2012, Theorem 2.1). If D has zeros on the diagonal, a similar limit argument as in Lemma 2
with D✏ = D+ ✏ I holds.

Next, we give a bound on the expected size of a regularized DPP.

Lemma 9 (restated Lemma 4) Given any X 2 Rn⇥d
, p 2 [0, 1]n and a psd matrix A s.t.
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Proof For correlation kernels it is known that the expected size of DPPcor(K) is tr(K). Thus, using Dp = diag(p),
we can invoke Lemma 2 to obtain
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from which the claim follows.

Next, we show two expectation inequalities for the matrix inverse and matrix determinant.

Lemma 10 (restated Lemma 5) Whenever S ⇠ DPPp
reg(X,A) is a well-defined distribution it holds that
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Proof For a square matrix M, define its adjugate, denoted adj(M), as a matrix whose i, j-th entry is
(�1)i+j det(M�j,�i), where M�j,�i is the matrix M without jth row and ith column. If M is invertible,
then adj(M) = det(M)M�1. Now, let bi ⇠ Bernoulli(pi) be independent random variables. As seen in previous
section, the identity E[det(

P
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i + A) gives us the normalization constant for

DPPp
reg(X,A). Moreover, as noted in a different context by Dereziński and Mahoney (2019), when applied

entrywise to the adjugate matrix, this identity implies that E[adj(
P
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denote the set of all subsets S ✓ [n] such that X>
SXS +A is invertible. We have
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Note that if I contains all subsets of [n], for example when A � 0, then the inequality turns into equality. Thus,
we showed (7), and (8) follows even more easily:
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where the equality holds if I consists of all subsets of [n].

B Comparison of different effective dimensions

In this section we compare the two notions of effective dimension for Bayesian experimental design considered in
this work. Here, we let X be the full n⇥ d design matrix and use k to denote the desired subset size. Recall that
the effective dimension is defined as a function of the data covariance matrix ⌃X = X>X and the prior precision
matrix A: It is given by dA = tr

�
⌃X(A+⌃X)�1

�
. In Dereziński and Warmuth (2018) it was suggested that dA

should also be used as the effective dimension for the experimental design problem. Theorem 2 suggests it may
not reflect the true degrees of freedom of the problem because it does not scale with subset size k. Instead we
propose to use the scaled effective dimension dn

kA
. Thus, the two definitions we are comparing can be summarized

as follows:

Full effective dimension dA = tr
�
⌃X(A+⌃X)�1

�
,

Scaled effective dimension dn
kA

= tr
�
⌃X(nkA+⌃X)�1

�
.

Here, we demonstrate that these two effective dimensions can be very different for some matrices and quite similar
on others. For simplicity, we consider two diagonal data covariance matrices as our examples: identity covariance,
⌃1 = I, and an approximately low-rank covariance, ⌃2 = (1� ✏)ds IS + ✏I, where IS is the diagonal matrix with
ones on the entries indexed by subset S ✓ [d] of size s < d and zeros everywhere else. The second matrix is
scaled in such way so that tr(⌃1) = tr(⌃2). We use d = 100, s = 10 and ✏ = 10�2. The prior precision matrix
is A = 10�2 I. Figure 3 plots the scaled effective dimension dn

kA
as a function of k, against the full effective

dimension for both examples. Unsurprisingly, for the identity covariance the full effective dimension is almost d,
and the scaled effective dimension goes up very quickly to match it. On the other hand, for the approximately
low-rank covariance, dA ⇡ 55 is considerably less then d = 100. Interestingly, the gap between the dn

kA
and dA

for moderately small values of k is even bigger. Our theory suggests that dn
kA

is a valid indicator of Bayesian
degrees of freedom when k � C · dn

kA
for some small constant C (Theorem 2 has C = 4, but we believe this can

be improved to 1). While for the identity covariance the condition k � dn
kA

is almost equivalent to k � dA, in
the approximately low-rank case, k � dn

kA
holds for k as small as 20, much less than dA.
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Figure 3: Scaled effective dimension compared to the full effective dimension for two diagonal data covariance
matrices, with A = 10�2 I.

C Additional details for the experiments

This section presents additional details and experimental results omitted from the main body of the paper. In
addition to the mg_scale dataset presented in Section 5, we also benchmarked on three other data sets described
in Table 2.

Table 2: Datasets used in the experiments (Chang and Lin, 2011).

mg_scale bodyfat_scale mpg_scale housing_scale

n 1385 252 392 506
d 6 14 7 13

The A-optimality values obtained are illustrated in Figure 4. The general trend observed in Section 5 of our
method (without SDP) outperforming independent sampling methods (uniform and predictive length) and our
method (with SDP) matching the performance of the greedy bottom up method continues to hold across the
additional datasets considered.

The relative ranking and overall order of magnitude differences between runtimes (Figure 5) are also similar
across the various datasets. An exception to the rule is on mg_scale, where we see that our method (without
SDP) costs more than the greedy method (whereas everywhere else it costs less).

The claim that fA( kn⌃X) is an appropriate quantity to summarize the contribution of problem-dependent factors
on the performance of Bayesian A-optimal designs is further evidenced in Figure 6. Here, we see that after
normalizing the A-optimality values by this quantity, the remaining quantities are all on the same scale and close
to 1.
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Figure 4: A-optimality values achieved by the methods compared. In all cases considered, we found our method
(without SDP) to be superior to independent sampling methods like uniform and predictive length sampling.
After paying the price to solve an SDP, our method (with SDP) is able to consistently match the performance of
a greedy method which has been noted (Chamon and Ribeiro, 2017) to work well empirically.

Figure 5: Runtimes of the methods compared. Our method (without SDP) is within an order of magnitude
of greedy bottom up and faster in 3 out of 4 cases. The gap between our method with and without SDP is
attributable to the SDP solver, making investigation of more efficient solvers and approximate solutions an
interesting direction for future work.



Bayesian experimental design using regularized DPPs

Figure 6: The ratio controlled by Lemma 6. This ratio converges to 1 as k ! n and is close to 1 across all real
world datasets, suggesting that fA( kn⌃X) is an appropriate problem-dependent scale for Bayesian A-optimal
experimental design.


