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Abstract

We establish a fundamental connection be-
tween Bayesian experimental design and deter-
minantal point processes (DPPs). Experimen-
tal design is a classical task in combinatorial
optimization, where we wish to select a small
subset of d-dimensional vectors to minimize a
statistical optimality criterion. We show that
a new regularized variant of DPPs can be
used to design efficient algorithms for finding
(1 4 €)-approximate solutions to experimental
design under four commonly used optimal-
ity criteria: A-, C-, D- and V-optimality. A
key novelty is that we offer improved guar-
antees under the Bayesian framework. Our
algorithm returns a (1 + €)-approximate solu-
tion when the subset size k is Q(d?A + bgﬁ%/e),
where da < d is an effective dimension de-
termined by prior knowledge (via a precision
matrix A). This is the first approximation
guarantee where the dependence on d is re-
placed by an effective dimension. Moreover,
the time complexity of our algorithm signifi-
cantly improves on existing approaches with
comparable guarantees.

1 Introduction

Consider a collection of n experiments parameterized
by d-dimensional vectors X1, ...,X,, and let X denote
the n x d matrix with rows x]. The outcome of the
ith experiment is a random variable y; = x/w + &,
where w is the parameter vector of a linear model with
prior distribution AV(0,02A 1), and & ~ N(0,02) is
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independent noise. In experimental design, we have
access to the vectors x, for ¢ € {1,...,n} = [n],
but we are allowed to observe only a small number
of outcomes y; for experiments we choose. Suppose
that we observe the outcomes from a subset S C [n] of
|S| = k experiments. The posterior distribution of w
given yg (the vector of outcomes in 5) is:

wlys ~ N(p, %),
where p = (XiXs + A) ' Xiys,
> =0}(XiXs+A)h

Here, X5 is the k& x d matrix with rows x| for i € S.

In Bayesian experimental design (Chaloner and
Verdinelli, 1995), the prior precision matrix A is used
to encode prior knowledge and our goal is to choose
S so as to minimize a function (a.k.a. an optimality
criterion) measuring the “size” of the posterior covari-
ance matrix Xy, = 0%(X;Xs + A)~!. Note that
Swlys is well defined even if A is not invertible (i.e.,
an “improper prior”). In particular, it includes classical
experimental design as the special case A = 0, as well
as the ridge-regularized case for A = AI. Denoting X
as the subset covariance X §Xg, we will use fa (%) to
represent the following standard Bayesian optimality
criteria (Chaloner and Verdinelli, 1995; Pukelsheim,
2006):

1. A-optimality: fa (%) =tr((X+A)71);

2. C-optimality: fa(X)=c"(Z+A) lcfor c € R

3. D-optimality: fa(X) = det(Z + A)~/4;

4. V-optimality: fa(X) = %tr(X(E + A)_1XT).

Applications including clinical trials (Ryan et al., 2015;
Ding et al., 2008; Spiegelhalter et al., 2004; Berry et al.,
2002; Stangl and Berry, 1998; Flournoy, 1993), medical
imaging (Owen et al., 2016), materials science (Frazier
and Wang, 2016; Ueno et al., 2016; Terejanu et al.,
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2012), and biological process models (Ryan et al., 2016)
all use these optimality criteria and thus stand to ben-
efit from our contributions.

The general task we consider is the following combinato-
rial optimization problem, where [n] denotes {1,...,n}:

Bayesian experimental design. Given an n X d
matrix X, a criterion fa(-) and k € [n], efficiently
compute or approximate

argmin fa (X5Xs)
SCin]

subject to |S| = k.

We denote the value at the optimal solution as OPT}.
The prior work around this problem can be grouped
into two research questions. The first question asks
when does there exist a polynomial time algorithm for
finding a (1 + €)-approximation for OPT}. The second
question asks what we can infer about OPT just from
the spectral information about the problem, which is
contained in the data covariance matrix 3x = X" X.

Question 1:  Given X, fa and k, can we efficiently
find a (1 + €)-approximation for OPT}?

Question 2:  Given only ¥x, fa and k, what is the
upper bound on OPT}?

A key aspect of both of these questions is how large
the subset size k has to be for us to provide useful
answers. As a baseline, we should expect meaningful
results when k is at least Q(d) (see discussion in Allen-
Zhu et al., 2017), and in fact, for classical experimental
design (i.e., when A = 0), the problem becomes ill-
defined when k < d. In the Bayesian setting we should
be able to exploit the additional prior knowledge to
achieve strong results even for k < d. Intuitively, the
larger the prior precision matrix A, the fewer degrees of
freedom we have in the problem. To measure this, we
use the statistical notion of effective dimension (Alaoui
and Mahoney, 2015).

Definition 1 For d x d positive semi-definite (psd)
matrices A and X, let the A-effective dimension of 3
be defined as da (%) = tr(B(Z + A)™!) < d. We will
use the shorthand da when referring to da(Xx).

Goel and Klivans (2017) showed that da can be orders
of magnitude smaller than the actual dimension d when
the eigenvalues of 3x exhibit fast decay, which is often
the case in real datasets (Gittens and Mahoney, 2016).
Recently, Derezinski and Warmuth (2018) obtained
bounds on Bayesian A /V-optimality criteria for k& > da,
suggesting that da is the right notion of degrees of
freedom for this problem.

1.1 Main results

Our main results provide new answers to Questions
1 and 2 by proposing a novel algorithm for Bayesian
experimental design with strong theoretical guarantees.

Answer to Question 1. We propose an efficient
(1 + €)-approximation algorithm for A/C/D/V-optimal
Bayesian experimental design:

Theorem 1 Let fa be A/C/D/V-optimality and X be
nxd. Ifk=0Q(% + bgﬁ%/e) for some ¢ € (0,1), then
we can find in polynomial time a subset S of size k s.t.

fa(X5Xs) < (1+¢) - OPTy.

Remark 1 The algorithm referred to in Theorem 1
first solves a convex relaxation of the task via a semi-
definite program (SDP) to find a weight vector p €
[0,1]™, then uses our new randomized algorithm to
round the weights to {0,1}, obtaining the subset S.
The expected cost after SDP is O(ndk + k*d?).

A number of recent works studied (1 + ¢)-approximate
SDP-based algorithms for classical and Bayesian ex-
perimental design (see Table 1 and Section 2 for a
comparison). Unlike all prior work on this topic, we
are able to eliminate the dependence of the subset size
k on the dimension d, replacing it with the potentially
much smaller effective dimension da. Our result also
improves over the existing approaches in terms of the
computational cost of the rounding procedure that is
performed after solving the SDP. A number of different
methods can be used to solve the SDP relaxation (see
Section 5). For example, Allen-Zhu et al. (2017) sug-
gest using an iterative optimizer called entropic mirror
descent, which is known to exhibit fast convergence
and can run in O(nd?T) time, where T is the number
of iterations.

Answer to Question 2. By performing a careful
theoretical analysis of the performance of our algo-
rithm, we are able to give an improved upper bound
on OPTy. In the below result, we use a more refined
notion of effective dimensionality for Bayesian exper-
imental design, dza (where the precision matrix A
is scaled by factor 7), which is smaller than da and

therefore leads to a tighter bound.

Theorem 2 Let fa be A/C/D/V-optimality and X
be n x d. For any k such that k > 4dxza,

ln(k/kd%A) ) fa(rEx).

Remark 2 We give a (randomized) algorithm which
(with probability 1) finds the subset S that certifies this
bound and has expected time complezity O(ndk + k?d?).

dﬁA
OPT; < 1+8$+8
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Criteria Bayesian | k Cost after SDP
Wang et al. (2017) AV X d*/e | n?-d
Allen-Zhu et al. (2017) || A,C,D,E,G,V d/62 n - kd?
Nikolov et al. (2019) AD X d/e | n* k%d
this paper A.CD,V da/e | n-kd+ k*d?

Table 1: Comparison of SDP-based (1 + €)-approximation algorithms for classical and Bayesian experimental
design (X-mark means that only the classical setting applies). In the cost analysis, n could be replaced by the

1

number of non-zero weights in the SDP solution. For simplicity we omit the log terms and assume that € = Q(E)
Our approach beats other methods both in terms of the runtime and the dependence of k on d (when da = o(d)).

In particular, this means that if & > 4d%A then
there is S of size k which satisfies fa(X{Xg) =
O(1) - fa(£X¥x). This not only improves on Derez-
inski and Warmuth (2018) in terms of the supported
range of sizes k, but also in terms of the obtained bound
(see Section 2 for a comparison). In Section 5, we we
provide numerical evidence suggesting that for many
real datasets the quantity fA(%Ex) provides a good
estimate for OPT} to within a factor of 2.

Theorem 2 suggests that the right notion of degrees of
freedom for Bayesian experimental design can in fact
be smaller than da. Intuitively, since da is computed
using the full data covariance 3x, it is not in the same
scale as the smaller covariance X{Xg based on the
subset S of size k < n. In our result this is corrected
by increasing the regularization on ¥x from A to A
and using dn a = d%A(EX) as the degrees of freedom.
Note that d%A < da and this gap can be very large for
some problems (see discussion in Appendix B).

1.2 Technical contributions

To establish Theorems 1 and 2, we develop a theoretical
framework for a new sampling distribution which can
be seen as a reqularized variant of a determinantal
point process (DPP). DPPs are a well-studied family of
distributions with numerous applications in sampling
diverse subsets of negatively correlated elements (see
Kulesza and Taskar, 2012).

Given a psd matrix A and a weight vector p =
(P1, -+, pn) € [0,1]", we define DPPR, (X, A) as a dis-
tribution over subsets S C [n] (of all sizes) such that
(see Definition 2):

Pr(S) x det(X5Xs + A) - Hpi : H(1 —pi).
€S igS

A number of regularized DPPs have been proposed
recently (Dereziniski, 2019; Derezinski and Warmuth,
2018), mostly within the context of Randomized Nu-
merical Linear Algebra (RandNLA) (Mahoney, 2011;
Drineas and Mahoney, 2016, 2017). To our knowledge,

ours is the first such definition that strictly falls under
the umbrella of traditional DPPs (Kulesza and Taskar,
2012). We show this in Section 3, where we also prove
that regularized DPPs can be decomposed into a low-
rank DPP plus i.i.d. Bernoulli sampling (Theorem 3).
This decomposition reduces the sampling cost from
O(n?) to O(nd?), and involves a more general result
about DPPs defined via a correlation kernel (Lemma 3),
which is of independent interest.

In Section 4 we demonstrate a fundamental connection
between an A-regularized DPP and Bayesian experi-
mental design with precision matrix A. For simplicity
of exposition, let the weight vector p be uniformly equal
(%,..,E). If S ~ DPP2,(X,A) and fa is any one of

n)n

the A/C/D/V-optimality criteria, then:
E[fa(X5Xs)] < fa(£%x) and E[|S|] < dza + k.

The proof of Theorem 2 relies on these two inequali-
ties and a concentration bound for the subset size |S|,
whereas to obtain Theorem 1 we additionally use the
SDP relaxation to find the optimal weight vector p.
When A = 0, then DPP[ (X, A) bears a lot of sim-
ilarity to proportional volume sampling which is an
(unregularized) determinantal distribution proposed by
Nikolov et al. (2019). Our algorithm not only extends
it to the Bayesian setting but also offers a drastic time
complexity improvement from the O(n?dk?logk) re-
quired by Nikolov et al. (2019) down to the O(nd?)
required for sampling from DPP[,(X,A), and re-
cent advances in RandNLA for DPP sampling (Derez-
inski et al., 2018, 2019; Derezinski, 2019) suggest that
O(ndlogn + poly(d)) time is also possible.

2 Related work

A number of works proposed (1+¢)-approximation algo-
rithms for experimental design which start with solving
a convex relaxation of the problem, and then use some
rounding strategy to obtain a discrete solution (see
Table 1 for comparison). In this line of work we wish to
find the smallest k& for which a polynomial time approx-
imation algorithm is possible. For example, Wang et al.
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(2017) gave an approximation algorithm for classical
A /V-optimality with k = Q(d;)7 where the rounding is
done in a greedy fashion, and some randomized round-
ing strategies are also discussed. Nikolov et al. (2019)
suggested proportional volume sampling for the round-
ing step and obtained approximation algorithms for
classical A /D-optimality with k = Q(<+ loge%/e) Their
approach is particularly similar to ours (when A = 0).
However, as discussed earlier, while their algorithms
run in polynomial time, they scale very poorly with
the number of experiments n (see Table 1). Allen-Zhu
et al. (2017) proposed an efficient algorithm with a
(1 + e)-approximation guarantee for a wide range of op-
timality criteria, including A /C/D/E/V /G-optimality,
both classical and Bayesian, when k = Q(%). Our
results (in Theorem 1) improve on this work in two
important ways:

e In terms of the dependence on ¢ for A/C/D/V-
optimality,

e In terms of the dependence on the dimension (by
replacing d with da) in the Bayesian setting.

A lower bound shown by Nikolov et al. (2019) implies
that our Theorem 1 cannot be directly extended to
E-optimality, but a similar lower bound does not exist
for G-optimality. We remark that the approximation
approaches relying on a convex relaxation can generally
be converted to an upper bound on OPT}, akin to our
Theorem 2, however, unlike our bound, none of them
apply to the regime of k < d.

Non-trivial bounds for the classical A-optimality cri-
terion (i.e., OPTy; with A = 0) were first given by
Avron and Boutsidis (2013), where they show that for
any k > d, OPTy < (14 :%527) - fo(£2x) and the
subset S attaining the bound can be found in polyno-
mial time. The result was later extended (Derezinski
and Warmuth, 2017, 2018; Derezinski and Warmuth,
2018) to the case where A = AI, proving that for any

k > dar, we have OPT), < (1+ p21—) - fa(£2x),
and also a faster O(nd?) time algorithm was provided.
In comparison, our results (in Theorem 2) offer the

following improvements for upper bounding OPT}:

e We cover a wider range of subset sizes, because
daxr < da,

e Our upper bound can be much tighter because
fAI(%EX) < fg,\l(%zx)

Additionally, Derezinski et al. (2019) propose a new no-
tion of minimazr experimental design, which is related
to A/V-optimality. They also use a determinantal dis-
tribution for subset selection, however, due to different
assumptions, their bounds are incomparable.

Purely greedy approximation algorithms have been
shown to provide guarantees in a number of special
cases for experimental design. One example is classi-
cal D-optimality criterion, which can be converted to
a submodular function (Bouhtou et al., 2010). Also,
greedy algorithms for Bayesian A /V-optimality crite-
ria have been considered by Bian et al. (2017) and
Chamon and Ribeiro (2018). These methods can only
provide a constant factor approximation guarantee (as
opposed to 1+ ¢€), and the factor is generally problem
dependent (which means it could be arbitrarily large).
Finally, a number of heuristics with good empirical
performance have been proposed, such as Fedorov’s
exchange method (Cook and Nachtrheim, 1980). How-
ever, in this work we focus on methods that provide
theoretical approximation guarantees.

3 A new regularized determinantal
point process

In this section we develop the theory for a novel regular-
ized extension of determinantal point processes (DPP)
which we use as the sampling distribution for obtaining
guarantees in Bayesian experimental design. DPPs
form a family of distributions which are used to model
repulsion between elements in a random set, with many
applications in machine learning (Kulesza and Taskar,
2012). Here, we focus on the setting where we are
sampling out of all 2" subsets S C [n]. Traditionally,
a DPP is defined by a correlation kernel, which is an
n X n psd matrix K with eigenvalues between 0 and 1,
i.e., such that 0 < K < I. Given a correlation kernel
K, the corresponding DPP is defined as

S ~DPPe(K) iff Pr(T C S) = det(Kr.1) Vo,

where Kr 1 is the submatrix of K with rows and
columns indexed by 7. Another way of defining a
DPP, popular in the machine learning community, is
via an ensemble kernel L. Any psd matrix L is an
ensemble kernel of a DPP defined as:

S ~ DPP,s(L) iff Pr(S) x det(Lg,s).

Crucially, every DPP,,s is also a DPP.,, but not
the other way around. Specifically, DPP,,s(L) =
DPP,,, (K) when:

(a) L=K(I-K)™*, (b) K=I-(I+L)"",

but (a) requires that I — K be invertible which is not
true for some DPPs. (This will be important in our
analysis.) The classical algorithm for sampling from a
DPP requires the eigendecomposition of either matrix
K or L, which in general costs O(n?), followed by a
sampling procedure which costs O(n|S|?) Hough et al.
(2006); Kulesza and Taskar (2012).
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We now define our regularized DPP and describe its
connection with correlation and ensemble DPPs.

Definition 2 Given matric X € R"¥¢, a sequence

p=(p1,...,pn) €[0,1]" and a psd matriz A € R¥*4
such that Y7, pixix] + A is full rank, let DPPL, (X, A)

be a distribution over S C [n]:

det(XTXg + A)

Pr(S) =
H(8) = det(z DiXiX] —|—A

sz H (1-pi). (1)

i€S iZS

The fact that this is a proper distribution (i.e., that it
sums to one) can be restated as a determinantal expec-
tation formula: if b; ~ Bernoulli(p;) are independent
Bernoulli random variables, then

Z det(XiXs + A) sz' H(1 — pi)

SCln] i€S ¢S

=F {det ( Z bix;ix; + A)} © det ( Z E[b;]xix] + A),

where (x) follows from Lemma 7 of Derezinski and
Mahoney (2019).

The main theoretical contribution in this section is the
following efficient algorithm for DPPf, (X, A) which
reduces it to sampling from a correlation DPP and
unioning with i.i.d. Bernoulli samples:

Theorem 3 For any X € R"*¢ p € [0,1]" and a psd
matriz A s.t. Y, pix;x; + A is full rank, let

T ~ DPPe, (D/*X(A + X'D,X)'X"D}/2),

where D, = diag(p).

If b; ~ Bernoulli(p;) are independent random variables,
then T U {i:b;=1} ~ DPPL (X, A).
Remark 3 Figure 1 illustrates how to exploit this re-
sult to build an efficient sampling algorithm. Since the
correlation kernel matriz has rank at most d, the pre-
processing cost of eigendecomposition is O(nd?). Then,
each sample costs only O(n |T|?).

We prove the theorem in three steps. First, we express
DPP[,(X,A) as an ensemble DPP, which requires
some additional assumptions on A and p to be possi-
ble. Then, we convert the ensemble to a correlation
kernel (eliminating the extra assumptions), and finally
show that this kernel can be decomposed into a rank
d kernel plus Bernoulli sampling. In the process, we
establish several novel theoretical properties regarding
the representation, decomposition, and closure proper-
ties of regularized DPPs which may be of independent
interest.

Sampling S ~ DPPL,(X,A)
Input: X € R"*¢ psd AcR¥< pelo,1]"
Compute Z + A + XD, X
Compute SVD of B = D}/*XZ '/
Sample T' ~ DPP.,(BBT)

Sample b; ~ Bernoulli(p;) for ¢ € [n]
return S=TU{i:b; =1}

(Hough et al., 2006)

Figure 1: Algorithm which exploits Theorem 3 to sam-
ple S ~ DPP? (X, A) in O(nd?) time.

reg

Lemma 1 Given X, A and D,
sume that A and I —D,, are invertible.

as in Theorem 3, as-
Then,

DPPrzég(Xv A) = DPPens (ﬁ + ﬁl/zXA_leﬁl/Q)’

where D = D,(I-D,) "

Proof Let S ~ DPP[,(X,A). By Definition 2 and

the fact that det(AB + I) = det(BA +1I),

Pr(S) o det(XiXs + A) - Hpi : H(1 — pi)
i€S  igs

= det(Xg’XS + A) .

o det (A(AT'X{X s + 1)) det(Dys,s)
= det(A) det(A'X5Xg + I) det(Dg,s)
x det(XgA™'X +T) det(Dg.s)

— det([D'*XA'X" D+ D] 4 o),

which matches the definition of the L-ensemble DPP.
|

At this point, to sample from DPP[, (X, A), we could
simply invoke any algorithm for sampling from an en-
semble DPP. However, this would only work for in-
vertible A, which in particular excludes the important
case of A = 0 corresponding to classical experimen-
tal design. Moreover, the standard algorithm would
require computing the eigendecomposition of the en-
semble kernel, which (at least if done naively) costs
O(n?). Even after this is done, the sampling cost would
still be O(n |S]?) which can be considerably more than
O(nd?). We first address the issue of invertibility of ma-
trix A by expressing our distribution via a correlation
DPP.

Lemma 2 Given X, A, and D, as in Theorem 3
(without any additional assumptions), we have

DPPZ, (X, A) = DPP,,, (D, +

(I-D,)"?D}/*X(A+X"D,X) !X "D /2(I-D,)"?).
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When A and I — D,, are invertible, then the proof
(given in Appendix A) is a straightforward calculation.
Then, we use a limit argument with p. = (1 — ¢)p and
A, = A + eI, where € — 0.

Finally, we show that the correlation DPP arrived at in
Lemma 2 can be decomposed into a smaller DPP plus
Bernoulli sampling. In fact, in the following lemma we
obtain a more general recipe for combining DPPs with
Bernoulli sampling, which may be of independent in-
terest. Note that if b; ~ Bernoulli(p;) are independent
random variables then {i : b;= 1} ~ DPP..;(D,).

Lemma 3 Let K and D be n X n psd matrices with
etgenvalues between 0 and 1, and assume that D is
diagonal. If T ~ DPP.(K) and R ~ DPP,, (D),
then

TUR ~DPPeo (D + (I— D)"2K(I — D)l/z)_

The lemma is proven in Appendix A. Theorem 3 now
follows by combining Lemmas 2 and 3.

4 Guarantees for Bayesian
experimental design

In this section we prove our main results regarding
Bayesian experimental design (Theorems 1 and 2).
First, we establish certain properties of the regular-
ized DPP distribution that make it effective in this
setting. Even though the size of the sampled subset
S ~ DPPF, (X, A) is random and can be as large as n,
it is also highly concentrated around its expectation,
which can be bounded in terms of the A-effective di-
mension. This is crucial, since both of our main results
require a subset of deterministically bounded size. Re-
call that the effective dimension is defined as a function
da () = tr(2(A + X)7!). The omitted proofs are in
Appendix A.

Lemma 4 Given any X € R™*? p € [0,1]" and a psd
matriz A s.t. Y, pixix; + A is full rank, let S = TU{i :
b; = 1} ~ DPPL, (X, A) be defined as in Theorem 3.
Then

E[)sI] < E[IT)) +E[ Y4
= dA(ZPiXinT> + Zpi'

Next, we show two expectation inequalities for the
matrix inverse and matrix determinant, which hold
for the regularized DPP. We use them to bound the
Bayesian optimality criteria in expectation.

Lemma 5 Whenever S ~ DPPL,(X,A) is a well-
defined distribution it holds that

-1

E[(XiXs+4) 7] 2 (Xpxxi+4) L @

E [det (XX + A)fl} < det (Z Pixix, + A>_1. (3)

Corollary 1 Let fa be A/C/D/V-optimality. When-
ever S ~ DPPE (X, A) is well-defined,

reg

E[fa(X3Xs)] < fa (Yo pixx]).

Proof In the case of A-; C-, and V-optimality, the
function fa is a linear transformation of the matrix
(XIXs + A)~! so the bound follows from (2). For
D-optimality, we apply (3) as follows:

E[fa(XEXs)] = E[ det (X5Xs + A) "]

d1'/4
T —1/a
gE[(det(xSXs+A) ) ]
_111/4
— E|det(X5Xs + A) ']
—1/a
< det( ZpiXiXD )
which completes the proof. |

Finally, we present the key lemma that puts everything
together. This result is essentially a generalization of
Theorem 2 from which also follows Theorem 1.

Lemma 6 Let fa be A/C/D/V-optimality and X be
n x d. For some w = (wy,...,wy) € [0,1]7, let &, =
Yo, wixix; and assume that Y, w; =k € [n]. If k>
4da(X,), then a subset S C [n] of size k can be found
in O(ndk + k*d?) time that satisfies

fa(X5Xs)

< < 1+8 dA(kE”) +38 ln(k/d‘;(z“’)) ) - fa(Zw).

Proof Let p = (p1,...,p,) be defined so that p; = {2,
and suppose that S ~ DPPF,(X,A). Then, using
Corollary 1, we have

Pr(|S| < K) B[ fa(X5Xs) | [S] < K]
<E[fa(X5Xs)]

< fA(Zp¢X¢XZ)
< (1+e)~fA(Zwixix;).
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Using Lemma 4 we can bound the expected size of S
as follows:

E[|S]] < da(Zw) +Zpi

k
:dA(Ew)+1+€
- dA(Ew) €
=k (14 k _1+e)'

Let dy = da(Ey) and o = 149 — 1 If1 > ¢ > 20w
then a <1+ 7 —§ =1- 7. Since DPP{,(X,A) is a

determinantal point process, |\S| is a Poisson binomial

r.v. so for € > 6\/@7

_ (k—ak)?

Pr(|S| > k) <e " E

For any € > 4% +6\/%, we have

E[fa(X5Xs) | [S] < k]

! +d6 : fA(Ew)

1 e
§<1+'5+

17
dw n w
< <1+7k+8 ”kéd)) Fa(Sw).

_ b0 < o5 ‘%

<

a-‘g&

) - fa(Zw)

x-‘g&

Denoting E[fa(X5Xs) | |S] < k| as Fy,, Markov’s
inequality implies that

1
Pr(fa(XiXs) = (1+0)F, | |8 <k) < 5.

Also, we showed that Pr(|S| < k) > 1 — 4 > 3

Setting § = % for sufficiently large C' we obtain that
with probability Q(%«), the random set S has size at

most k and

fa(X§Xs)
dy duyw In(k/dw)
< <1+Ck>~(1+7k+8 k)fA(Ew)
dw n w
< <1+8k+8 1““2‘“)  Fa(Dw).

We can sample from DPP,(X,A) conditioned on
|S] < k and fa(XiXg) bounded as above by rejec-
tion sampling. When |S| < k, the set is completed to
k with arbitrary indices. On average, O(%) samples

from DPP?_ (X, A) are needed, so the cost is O(nd?)

reg
for the eigendecomposition, O(% ‘nd?) = O(ndyk) for
sampling and O(ﬁ - kd?) for recomputing fa (X;Xs).
|

To prove the main results, we use Lemma 6 with ap-
propriately chosen weights w.

Proof of Theorem 1 As discussed by Allen-Zhu
et al. (2017) and Boyd and Vandenberghe (2004), the
following convex relaxation of experimental design can
be written as a semi-definite program and solved using
standard SDP solvers:

w* = argmin fA<Zw¢XiX¢T)» (4)

i=1
subject to  V; 0 <w; <1, Zwi =k (5

The solution w* satisfies fa (Ew*) < OPTyg. If we use

*

w* in Lemma 6, then observing that da (X,+) < da,
and setting k > C (dTA + loge%/f) for sufficiently large C,
the algorithm in the lemma finds subset S such that

fA(XgXS) <146 fa(Zu) <(1+4+¢) - OPTy.

Note that we did not need to solve the SDP exactly, so

approximate solvers could be used instead. |
Proof of Theorem 2 Let w = (£,..., £) in Lemma 6.

Then, we have X,, = %Ex and also da(3y,) = dza.
Since for any set S of size k, we have OPT;, <
fa(X5iXg), the result follows. [ |

5 Experiments

We confirm our theoretical results with experiments
on real world data from libsvm datasets (Chang and
Lin, 2011) (more details in Appendix C). For all our
experiments, the prior precision matrix is set to A =
n~1T and we consider sample sizes k € [d,5d]. Each
experiment is averaged over 25 trials and bootstrap
95% confidence intervals are shown. The quality of our
method, as measured by the A-optimality criterion,

fA(Xg«XS) =tr ((XE'XS + A)il) ,

is compared against several baselines and recently pro-
posed methods for A-optimal design that have been
shown to perform well in practice. Note that none of
these algorithms come with theoretical guarantees as
strong as those offered by our approach. The list of
implemented methods is as follows:

Our method (with SDP) uses the efficient algo-
rithms developed in proving Theorem 1 to sample
DPP[, (X, A) constrained to subset size k with
p = w*, see (5), obtained using a recently devel-
oped first order convex cone solver called Split-
ting Conical Solver (SCS, see O’Donoghue et al.,

2016). We chose SCS because it can handle the
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Figure 2: (left) A-optimality value obtained by the various methods on the mg_scale dataset (Chang and Lin,

2011) with prior precision A = 10751,

(right) A-optimality value for our method (with and without SDP)

divided by fA(QEX), the baseline estimate suggested by Theorem 2.

SDP constraints in (5) and has provable termina-
tion guarantees, while also finding solutions faster
(O’Donoghue et al., 2016) than alternative off-
the-shelf optimization software libraries such as
SDPT3 and Sedumi.

Our method (without SDP) samples
DPP?, (X, A) with uniform probabilities p =

k
reg n’
Greedy bottom-up adds an index ¢ € [n] to the
sample S maximizing the increase in A-optimality
criterion (Bian et al., 2017; Chamon and Ribeiro,
2017).

Uniform samples every size k subset S C [n] with
equal probability.

Predictive length sampling (Zhu et al., 2015) sam-
ples each row x; of X with probability o ||x;]|.

Figure 2 reveals that our method (without SDP) is su-
perior to both uniform and predictive length sampling,
producing designs which achieve lower A-optimality
criteria values for all sample sizes. As Theorem 3
shows that our method (without SDP) only differs
from uniform sampling by an additional DPP sample
with controlled expected size (see Lemma 4), we may
conclude that adding even a small DPP sample can
improve a uniformly sampled design.

Consistent with prior observations (Wang et al., 2017;
Chamon and Ribeiro, 2017), the greedy bottom up
method achieves surprisingly good performance, de-
spite the limited theoretical guarantees it offers. How-
ever, if our method is used in conjunction with an
SDP solution, then we are able to match and even
slightly exceed the performance of the greedy bottom

up method. Furthermore, the overall run-time costs
(see Appendix C) between the two are comparable. As
the majority of the runtime of our method (with SDP)
is occupied by solving the SDP, an interesting future
direction is to investigate alternative solvers such as in-
terior point methods as well as terminating the solvers
early once an approximate solution is reached.

Figure 2 (right) numerically evaluates the tightness of
the bound obtained in Theorem 2 by plotting the ratio:

fa(X§Xs)
fa(E3x)

for subsets returned by our method (with and without
SDP). Note that the line for our method with SDP on
Figure 2 (right) shows that the ratio never goes below
0.5, and we saw similar behavior across all examined
datasets (see Appendix C). This evidence suggests that
for many real datasets OPT}, is within only a small
constant factor away from fA(%ZX), matching the
upper bound of Theorem 2.

6 Conclusions

We proposed a new algorithm for finding (1 + ¢)-
approximate Bayesian experimental designs by leverag-
ing a fundamental connection with determinantal point
processes. Compared to the state-of-the-art approaches,
our method provides stronger theoretical guarantees
in terms of the allowed range of subset sizes, as well
as offering significantly better time complexity guaran-
tees. At the same time, our experiments show that on
the task of A-optimal design the proposed algorithm
performs as well as or better than several methods that
are used in practice.
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