
Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

A Lower Bound in ADGT

In this section, we provide the construction of the lower bounds on the minimum function value f(x∗) that are
used in our analysis. By µ-strong convexity of f, we have that, ∀x ∈ X :

f(x∗) ≥ f(x) + 〈∇f(x),x∗ − x〉+
µ

2
‖x− x∗‖2. (A.1)

Further, if x∗ belongs to the interior of X , then ∇f(x∗) = 0, and L-smoothness of f implies, ∀x ∈ X :

f(x∗) ≥ f(x)− L

2
‖x− x∗‖2. (A.2)

Let {xi}ki=0 be a sequence of points from some feasible set X and let {ai}ki=0 be a sequence of positive numbers
with a0 = 1. Define Ak

def
=
∑k
i=0 ai.

Assume first that x∗ belongs to the interior of the feasible set X . Then, taking a convex combination of Eq. (A.2)
with x = x0 and Eq. (A.1) with x = xi, 1 ≤ i ≤ k, we get:

f(x∗) ≥
∑k
i=0 aif(xi) +

∑k
i=1 ai(〈∇f(xi),x

∗ − xi〉+ µ
2 ‖xi − x∗‖2)− L

2 ‖x0 − x∗‖2

Ak

+
µ

2Ak
‖x0 − x∗‖2 − µ

2Ak
‖x0 − x∗‖2

≥
∑k
i=0 aif(xi) + minu∈Rd{

∑k
i=1 ai(〈∇f(xi),u− xi〉+ µ

2 ‖xi − u‖2) + µ
2 ‖x0 − u‖2}

Ak

− L+ µ

2Ak
‖x0 − x∗‖2.

The last expression corresponds to the lower bound used in the proof of Lemma B.2.

Now assume that x∗ is not necessarily from the interior of X . Take a convex combination (with weights ai/Ak) of
Eq. (A.1) for x = xi, 0 ≤ i ≤ k. Let Ck be any convex subset of X that contains x∗. Then, we have:

f(x∗) ≥
∑k
i=0 aif(xi) +

∑k
i=0 ai(〈∇f(xi),x

∗ − xi〉+ µ
2 ‖xi − x∗‖2)

Ak

+
µ0

2Ak
‖x0 − x∗‖2 − µ0

2Ak
‖x0 − x∗‖2

≥
∑k
i=0 aif(xi) + minu∈Ck{

∑k
i=0 ai(〈∇f(xi),u− xi〉+ µ

2 ‖xi − u‖2) + µ0

2 ‖x0 − u‖2}
Ak

− µ0

2Ak
‖x0 − x∗‖2.

The last expression corresponds to the lower bound used in the proof of Lemma 3.2.

B Omitted Proofs from Section 3

B.1 Proofs and Results for Warm-up: Optimum in the Interior of X

Starting at point xk, the Frank-Wolfe step xFW
k+1 is defined via:

vk = argmin
u∈X

〈∇f(xk),u〉 ,

xFW
k+1 = (1− ηk)xk + ηkvk,

(B.1)

where

ηk = argmin
η∈[0,1]

{
f(xk) + 〈∇f(xk), ηk(vk − xk)〉+

L

2
ηk

2‖xk − vk‖2
}
.

Locally Accelerated Conditional Gradients

On the other hand, the accelerated step x̂k+1 is defined as:

yk+1 =
1

1 + θ
xk +

θ

1 + θ
wk,

wk+1 = (1− θ)wk + θ
(
yk+1 −

1

µ
∇f(yk+1)

)
,

x̂k+1 = (1− θ)xk + θwk+1,

(B.2)

where θ =
√

µ
L and wk and xk are appropriately initialized. We now proceed to describe the algorithm.

Algorithm 2 Preliminary Locally Accelerated Frank-Wolfe for x∗ ∈ int(X)

Input: x0 ∈ X , µ, L, X
Initialization: w0 = x0, θ =

√
µ/L

1: for k = 0 to N − 1 do
2: Compute xFW

k+1 based on Eq. (B.1) and x̂k+1 based on Eq. (B.2)
3: if x̂k+1 ∈ X then
4: xk+1 = argmin{f(xFW

k+1), f(x̂k+1)}
5: else
6: xk+1 = xFW

k+1

7: wk+1 = xk+1

Note that the “else” branch in Algorithm 2 effectively restarts the accelerated sequence.

Let us now argue about the convergence of the algorithm. Observe first that the algorithm makes at least as
much progress as Frank-Wolfe, since, whatever the step is, f(xk+1) ≤ f(xFW

k+1). We thus have the following simple
proposition, which bounds the length of the so-called burn-in phase.

Proposition B.1. Assume that r > 0. Then, after at most K0 = bLD
2

µr2 c steps of Algorithm 2, f(xK0
)− f(x∗) ≤

2µr2. Further, in every subsequent iteration k ≥ K0, ‖xk − x∗‖ ≤ 2r.

Proof. As in every iteration the algorithm makes at least as much progress as standard Frank-Wolfe (since
f(xk+1) ≤ f(xFW

k+1)), by standard Frank-Wolfe guarantees (see e.g., Jaggi (2013)), we have that after K0 steps
f(xK0

)− f(x∗) ≤ 2LD2

K0+4 , which gives the first part of the lemma. Since none of the iterations of the algorithm
can increase the function value, we have that in every subsequent iteration f(xk) − f(x∗) ≤ 2µr2. By strong
convexity and ∇f(x∗) = 0, this implies ‖xk − x∗‖ ≤ 2r.

We can conclude that if r > 0, for k > K0 = bLD
2

µr2 c Algorithm 2 never enters the else branch, as B(x∗, 2r)∩aff(X) ⊆
X . This is precisely what allows us to obtain accelerated convergence in the remaining iterations. This is formally
established by the following lemma.

Lemma B.2. Assume that r > 0 and let K0 = bLD
2

µr2 c. Then, for all k ≥ K0 :

f(xk)− f(x∗) ≤ 2
L+ µ

µ
r2

(
1−

√
µ

L

)k−K0

.

Proof. Let k0 ≤ K0 be the last iteration in which Algorithm 2 enters the “else” branch – as already argued, for
k > K0, this cannot happen. Then, from Algorithm 2, we have that wk0 = xk0 , and for all iterations k ≥ k0 + 1 :

yk =
1

1 + θ
xk−1 +

θ

1 + θ
wk−1,

wk = (1− θ)wk−1 + θ
(
yk −

1

µ
∇f(yk)

)
,

x̂k = (1− θ)xk−1 + θwk,

xk = argmin{f(x̂k), f(xFW
k)}.

(B.3)

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

To analyze the convergence of (B.3), we use the approximate duality gap technique, as described in Section 2.2.
Let ak0 = Ak0 = 1 and Ak =

∑k
i=k0

ai,
ak
Ak

= θ for k ≥ k0 + 1. Recall that the approximate duality gap Gk is
defined as the difference between a lower bound on f(x∗), Lk and an upper bound on the algorithm output, Uk.
Define Uk = f(xk) and Lk via (see Appendix A):

Lk
def
=

∑k
i=k0

aif(yi) + minu∈Rd{
∑k
i=k0+1 ai(〈∇f(yi),u− yi〉+ µ

2 ‖u− yi‖2) + µ
2 ‖u− xk0‖2}

Ak

− L+ µ

2Ak
‖x∗ − xk0‖2.

(B.4)

We claim that:

wk = argmin
u∈Rd

{ k∑
i=k0+1

ai(〈∇f(yi),u− yi〉+
µ

2
‖u− yi‖2) +

µ

2
‖u− xk0‖2

}

=
xk0 +

∑k
i=k0+1 ai(yi −

1
µ∇f(yi))

Ak
.

(B.5)

Indeed, Eq. (B.5) implies that wk0 = xk0 , while for k > k0 it gives: Akwk = Ak−1wk−1 + ak(yk − 1
µ∇f(yk)). As

Ak = Ak−1 + ak and ak
Ak

= θ, (B.5) implies that wk = (1− θ)wk−1 + θ(yk − 1
µ∇f(yk)), which is equivalent to

the definition from Eq. (B.3).

Further, observe from (B.3) that xk−1 = (1 + θ)yk − θwk−1, which, combined with wk = (1− θ)wk−1 + θ(yk −
1
µ∇f(yk)) and θ =

√
µ/L, implies

x̂k = yk −
1

L
∇f(yk). (B.6)

The rest of the proof bounds the initial gap Gk0 and shows that for k > k0, Gk ≤ (1− θ)Gk−1. Note that, by
construction, f(xk)− f(x∗) ≤ Gk.

The initial gap equals Gk0 = L+µ
2 ‖x

∗ − xk0‖2. This follows by simply evaluating Uk0 − Lk0 .

Now let k > k0. As f(xk) ≤ f(x̂k) and using (B.6):

AkUk −Ak−1Uk−1 ≤ Akf(x̂k)−Ak−1f(xk−1)

= akf(yk) +Ak(f(x̂k)− f(yk)) +Ak−1(f(yk)− f(xk−1))

≤ akf(yk)− Ak
2L
‖∇f(yk)‖2 +Ak−1(f(yk)− f(xk−1)). (B.7)

To bound the change in the lower bound, denote by:

mk(u) =

k∑
i=k0+1

ai(〈∇f(yi),u− yi〉+
µ

2
‖u− yi‖2) +

µ

2
‖u− xk0‖2

the function inside the minimum in the definition of Lk. Hence:

mk(wk) = mk−1(wk) + ak 〈∇f(xk),wk − yk〉+ ak
µ

2
‖wk − yk‖2.

As wk−1 minimizes mk−1(·), expanding mk−1(wk) around wk−1, we have:

mk−1(wk) = mk−1(wk−1) + 〈∇mk−1(wk−1),wk −wk−1〉+
Ak−1µ

2
‖wk −wk−1‖2,

leading to:

mk(wk)−mk−1(wk−1) = ak 〈∇f(yk),wk − yk〉+ ak
µ

2
‖wk − yk‖2 +

Ak−1µ

2
‖wk −wk−1‖2

≥ ak 〈∇f(yk),wk − yk〉+
Akµ

2

∥∥∥wk −
Ak−1

Ak
wk−1 −

ak
Ak

yk

∥∥∥2

,

Locally Accelerated Conditional Gradients

where the second line is by Jensen’s inequality. As ak
Ak

= θ =
√
µ/L, using the definition of wk, we have:

mk(wk)−mk−1(wk−1) ≥ ak 〈∇f(yk),wk − yk〉+
Ak
2L
‖∇f(yk)‖2.

Combining with the definition of Lk, we thus have:

AkLk −Ak−1Lk−1 ≥ akf(yk) + ak 〈∇f(yk),wk − yk〉+
Ak
2L
‖∇f(yk)‖2. (B.8)

Combining (B.7) and (B.8), we have:

AkGk −Ak−1Gk−1 ≤ Ak−1(f(yk)− f(xk−1))− ak 〈∇f(yk),wk − yk〉 −
Ak
L
‖∇f(yk)‖2

≤ 〈∇f(yk), Akyk −Ak−1xk−1 − akwk〉 −
Ak
L
‖∇f(yk)‖2

= Ak 〈∇f(yk),yk − x̂k〉 −
Ak
L
‖∇f(yk)‖2

= 0,

where the second line is by convexity of f (namely, by f(yk)− f(xk) ≤ 〈∇f(yk),yk − xk〉), the third line is by
the definition of x̂k and θ = ak

Ak
, and the last line is by (B.6).

As Ak−1

Ak
= 1− θ, we have that Gk ≤ (1− θ)k−k0Gk0 = (1− θ)k−k0 L+µ

2 ‖x
∗ − xk0‖2, and, thus:

f(xk)− f(x∗) ≤
(

1−
√
µ

L

)k−k0 L+ µ

2
‖x∗ − xk0‖2.

By the same arguments as in the proof of Proposition B.1, f(xk0)− f(x∗) ≤ 2LD2

k0+4 . By strong convexity of f, this

implies that also µ‖xk0 − x∗‖2 ≤ 4LD2

k0+4 . To complete the proof, it remains to argue that
(
1−

√
µ
L

)K0−k0
µ‖xk0 −

x∗‖2 ≤
(
1−

√
µ
L

)K0−k0 4LD2

k0+4 ≤ 4r2. This simply follows by arguing that for the choice of k0 from the statement

of the lemma and k0 ≤ K0, we have
(
1−

√
µ
L

)K0−k0 1
k0+4 ≤

1
K0+4 , while the rest follows from Proposition B.1.

This is not hard to show and is omitted.

Finally, we have the following bound on the convergence of Algorithm 2.
Theorem 3.1. Let xk be the solution output by Algorithm 2 (Appendix B.1) for k ≥ 1. If:

k ≥ min

{
2LD2

ε
,
LD2

µr2
+

√
L

µ
log

(
2(L+ µ)r2

µε

)}
,

then f(xk)− f(x∗) ≤ ε.

Proof. Follows directly by applying the standard convergence bound for FW, Proposition B.1, and Lemma B.2.

Note that in the argument in Proposition B.1 we could have also used the Away-Step Frank-Wolfe algorithm
achieving linear convergence for the burn-in phase. However, for the easy of exposition we used the simpler bound
for the warm-up; we will use the Away-Step Frank-Wolfe algorithm in Section 3.2.

B.2 Proofs and Results for Optimum in the Relative Interior of a Face of X from Section 3.2

In this section we provide full technical details for the results in Section 3.2 and we also restate material from
that section here once again to facilitate reading.

We will now formulate the general case that subsumes the case from above. We assume that, given points
x1, ...,xm and a point y, the following problem is easily solvable:

min
u=

∑m
i=1 λixi,

λ∈∆m

1

2
‖u− y‖2. (3.1)

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

In other words, we assume that the projection onto the convex hull of a given set of vertices can be implemented
efficiently; however, we do not require access to a membership oracle anymore. Solving this problem amounts
to minimizing a quadratic function over the probability simplex. The size of the program m from Eq. (3.1)
corresponds to the size of the active set of the CG-type method employed within LaCG. Note that m is never
larger than the iteration count k, and is often much lower than the dimension of the original problem. Further,
there exist multiple heuristics for keeping the size of the active set small in practice (see, e.g., Braun et al. (2017)).
The projection from Eq. (3.1) does not require access to either the first-order oracle or the linear optimization
oracle. Finally, due to Lemma 3.2 stated below, we only need to solve this problem to accuracy of the order ε√

µL
,

where ε is the target accuracy of the program.

For simplicity, we illustrate the framework using AFW as the coupled CG method. However, the same ideas can
be applied to other active-set-based methods such as PFW in a straightforward manner. Unlike in the previous
subsection, the assumption that X is a polytope is crucial here, as the linear convergence for the AFW algorithm
established in Lacoste-Julien and Jaggi (2015) relies on a constant, the pyramidal width, that is only known to
be bounded away from 0 for polytopes. For completeness, we provide the pseudocode for one iteration of AFW
(as stated in Lacoste-Julien and Jaggi (2015)) in Algorithm 3 below. In the following, the vector λk ∈ ∆m with
m = |Sk| denotes the barycentric coordinates of the current iterate xk over the active set Sk.

Algorithm 3 Away-Step Frank-Wolfe Iteration: AFW(λ,S,x)

1: Set FW direction: s = argminu∈X 〈∇f(x),u〉 , dFW = s− x
2: Set Away direction: v = argmaxu∈S 〈∇f(x),u〉 , dA = x− v
3: if

〈
−∇f(x),dFW

〉
≥
〈
−∇f(x),dA

〉
then

4: d = dFW, γmax = 1
5: else
6: d = dA, γmax = λ(v)

1−λ(v)

7: γ′ = argminγ∈[0,γmax] f(x + γd)
8: x′ = x + γ′d; update λ (to λ′)
9: S ′ = {u ∈ S ∪ {s} : λ′(u) > 0}
10: return x′, S ′, λ′

We will need the following fact that establishes the existence of a radius r (and hence iteration Kr) from which
onwards all active sets Sk maintained by our algorithm ensure that x∗ ∈ co(Sk) for all k ≥ Kr.

Fact B.3 (Active set convergence). There exists r > 0 such that for any subset S ⊆ vert(X) and point x ∈ X
with x ∈ co(S) and ‖x− x∗‖ ≤ r it follows x∗ ∈ co(S).

Proof. Let S ⊆ vert(X) be an arbitrary subset of vertices, so that x∗ 6∈ co(S). As S is closed, there exists
0 < rS

def
= minx∈S ‖x− x∗‖. Let 2r be the minimum over all such S, which is bounded away from 0 as there are

only finitely many such subsets. It follows that if ‖x− x∗‖ ≤ r then x∗ ∈ co(Sk).

Let r0 denote the critical radius from Fact B.3 and K0 the critical iteration so that ‖x∗ − xk‖ ≤ r0 is ensured for
all k ≥ K0. The next proposition bounds the magnitude of K0.

Proposition B.4 (Finite burn-in with linear rate). Denote by δ the pyramidal width of the polytope X , as defined
in Lacoste-Julien and Jaggi (2015). Then for all k ≥ K0 it holds x∗ ∈ co(Sk) and for any algorithm that makes
in each iteration at least as much progress as the Away-Step Frank-Wolfe Algorithm, we have the bound

K0 ≤
8L

µ

(
D

δ

)2

log

(
2(f(x0)− f(x∗))

µr0
2

)
.

Proof. Since the algorithm makes at least as much progress as the Away-Step Frank-Wolfe algorithm, we can use
the convergence rate of Lacoste-Julien and Jaggi (2015) to bound the primal gap at step k. Using the µ-strong
convexity of f , we have that f(xk)− f(x∗) ≥ µ/2‖xk − x∗‖, allowing us to relate the primal gap to the distance
to the optimum.

Locally Accelerated Conditional Gradients

To achieve local acceleration, we couple the AFW steps with a modification of the µAGD+ algorithm (Cohen
et al., 2018) that we introduce here. Unlike its original version (Cohen et al., 2018), the version provided
here (Lemma 3.2) allows coupling of the method with an arbitrary sequence of points from the feasible set, it
supports inexact minimization oracles, and it supports changes in the convex set (which correspond to active sets
from AFW) on which projections are performed. These modifications are crucial to being able to achieve local
acceleration without any additional knowledge about the polytope or the position of the minimizer x∗. Further,
we are not aware of any other methods that allow changes to the feasible set as described here, and, thus, the
result from Lemma 3.2 may be of independent interest.

Lemma 3.2. (Convergence of the modified µAGD+) Let f : X → R be L-smooth and µ-strongly convex, and
let X be a closed convex set. Let x∗ = argminu∈X f(x), and let {Ci}ki=0 be a sequence of convex subsets of X
such that Ci ⊆ Ci−1 for all i and x∗ ∈

⋂k
i=0 Ci. Let {x̃i}ki=0 be any (fixed) sequence of points from X . Let a0 = 1,

ak
Ak

= θ for k ≥ 1, where Ak =
∑k
i=0 ai and θ =

√
µ

2L . Let y0 ∈ X , x0 = w0, and z0 = Ly0−∇f(y0). For k ≥ 1,
define iterates xk by:

yk =
1

1 + θ
xk−1 +

θ

1 + θ
wk−1,

zk = zk−1 − ak∇f(yk) + µakyk,

x̂k = (1− θ)xk−1 + θwk,

xk = argmin{f(x̂k), f(x̃k)}

(3.2)

where, for all k ≥ 0, wk is defined as an εmk -approximate solution of:

min
u∈Ck

{
− 〈zk,u〉+

µAk + µ0

2
‖u‖2

}
, (3.3)

with µ0
def
= L− µ. Then, for all k ≥ 0, xk ∈ X and:

f(xk)− f(x∗) ≤ (1− θ)k (L− µ)‖x∗ − y0‖2

2

+
2
∑k−1
i=0 ε

m
i + εmk

Ak
.

Proof. We first show by induction on k that xk ∈ X . The claim is true initially, by the statement of the lemma.
Assume that the claim is true for the iterates up to k− 1. Then, x̂k must be from X , as it is a convex combination
of xk−1 ∈ X (by the inductive hypothesis) and wk ∈ Ck ⊆ X . By assumption, x̃k ∈ X , for all k. Thus, it must be
xk ∈ X .

The rest of the proof relies on showing that AkGk ≤ Ak−1Gk−1 + εmk + εmk−1 and on bounding A0G0, where Gk is
an approximate duality gap defined as Gk = Uk − Lk. Here, the upper bound is defined as Uk = f(xk), while the
lower bound on Lk ≥ f(x∗) can be defined as (see Appendix A):

Lk
def
=

∑k
i=0 aif(yi) + minu∈Ck mk(u)− µ0

2 ‖x
∗ − y0‖2

Ak
,

where µ0 = L− µ and

mk(u)
def
=

k∑
i=0

ai 〈∇f(yi),u− yi〉+

k∑
i=0

ai
µ

2
‖u− yi‖2 +

µ0

2
‖u− y0‖2.

It is not hard to verify that:

argmin
u∈Ck

{
− 〈zk,u〉+

µAk + µ0

2
‖u‖2

}
= argmin

u∈Ck
mk(u), ∀k.

Let us start by bounding A0G0. Recall that a0 = A0 = 1 and x0 = w0. By smoothness of f,

U0 = f(x0) = f(w0) ≤ f(y0) + 〈∇f(y0),w0 − y0〉+
L

2
‖w0 − y0‖2. (B.9)

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

On the other hand, as µ0 = L− µ and w0 is an εm0 -approximate minimizer of argminu∈Cm0(u0), we have:

min
u∈C0

m0(u) ≥ m0(w0)− εm0 = 〈∇f(y0),w0 − y0〉+
L

2
‖w0 − y0‖2 − εm0 . (B.10)

Combining Eqs. (B.9) and (B.10) with the definition of Lk, we have that:

A0G0 ≤
µ0‖x∗ − y0‖2

2
+ εm0 =

(L− µ)‖x∗ − y0‖2

2
+ εm0 .

To complete the proof, it remains to show that Gk ≤ Ak−1

Ak
Gk−1 = (1− θ)Gk−1. Observe first, as f(xk) ≤ f(x̂k),

that we can bound the change in the upper bound as:

AkUk −Ak−1Uk−1 = Akf(xk)−Ak−1f(xk−1)

≤ akf(yk) +Ak(f(x̂k)− f(yk)) +Ak−1(f(yk)− f(xk−1)).

Using smoothness and convexity of f, we further have:

AkUk −Ak−1Uk−1 ≤akf(yk) + 〈∇f(yk), Akx̂k −Ak−1xk−1 − akyk〉+
AkL

2
‖x̂k − yk‖2. (B.11)

By the definition of Lk, the change in the lower bound is:

AkLk −Ak−1Lk−1 = akf(yk) +mk(w∗k)−mk−1(w∗k−1), (B.12)

where w∗k = argminu∈Ck mk(u).

To bound mk(w∗k)−mk−1(w∗k−1), observe first that:

mk(w∗k)−mk−1(w∗k−1) ≥ mk(wk)−mk−1(w∗k−1)− εmk . (B.13)

aswk ∈ Ck is an εmk -approximate minimizer ofmk. Further, observe thatmk(u) = mk−1(u)+ak 〈∇f(yk),u− yk〉+
ak

µ
2 ‖u− yk‖2. Hence, we have:

mk(wk)−mk−1(w∗k−1)

= ak 〈∇f(yk),wk − yk〉+ ak
µ

2
‖wk − yk‖2 +mk−1(wk)−mk−1(w∗k−1).

(B.14)

As mk(u) can be expressed as the sum of µAk+µ0

2 ‖u‖2 and terms that are linear in u, it is (µ0 + µAk)-strongly
convex. Observe that, as w∗k−1 minimizes mk−1 over Ck−1 and wk ∈ Ck ⊆ Ck−1, by the first-order optimality
condition, we have

〈
∇mk−1(w∗k−1),wk −w∗k−1

〉
≥ 0. Thus, it further follows that:

mk−1(wk) ≥ mk−1(w∗k−1) +
µ0 + µAk−1

2
‖wk −w∗k−1‖2. (B.15)

Next, observe that, as mk−1 is (µ0 +µAk−1)-strongly convex, w∗k−1 minimizes mk−1, and wk−1 is an approximate
minimizer, we have:

µ0 + µAk−1

2
‖wk−1 −w∗k−1‖2 ≤ mk−1(wk−1)−mk−1(w∗k−1) ≤ εmk−1. (B.16)

Using Young’s inequality ((a+ b)2 ≤ 2a2 + 2b2 and so a2 ≥ (a+b)2

2 − b2), we have, using Eq. (B.16), that:

µ0 + µAk−1

2
‖wk −w∗k−1‖2 ≥

µ0 + µAk−1

4
‖wk −wk−1‖2 −

µ0 + µAk−1

2
‖wk−1 −w∗k−1‖2

≥ µ0 + µAk−1

4
‖wk −wk−1‖2 − εmk−1.

Combining the last inequality with Eqs. (B.13)–(B.15), we have:

mk(w∗k)−mk−1(w∗k−1) ≥ak 〈∇f(yk),wk − yk〉+ ak
µ

2
‖wk − yk‖2

+
µ0 + µAk−1

4
‖wk −wk−1‖2 − εmk−1 − εmk .

Locally Accelerated Conditional Gradients

Using that µ0 ≥ 0, θ = ak
Ak
, and applying Jensen’s inequality to the last expression,

mk(w∗k)−mk−1(w∗k−1)

≥ ak 〈∇f(yk),wk − yk〉+
µAk

4
‖wk − (1− θ)wk−1 − θyk‖2 − εmk − εmk−1.

It is not hard to verify that x̂k − yk = θ(wk − (1− θ)wk−1 − θyk). Hence, combining the last inequality with
Eq. (B.12):

AkLk −Ak−1Lk−1 ≥ akf(yk) + ak 〈∇f(yk),wk − yk〉+
µAk
4θ2
‖x̂k − yk‖2 − εmk − εmk−1. (B.17)

Finally, combining Eqs. (B.11) and (B.17), we have:

AkGk −Ak−1Gk−1 ≤〈∇f(yk), Akx̂k −Ak−1xk−1 − akwk〉+
Ak
2

(
L− µ

2θ2

)
‖x̂k − yk‖2

+ εmk + εmk−1

≤εmk + εmk−1,

as x̂k = Ak−1

Ak
xk−1 + ak

Ak
wk and θ =

√
µ

2L , completing the proof.

A simple corollary of Lemma 3.2 that will be useful for our analysis is as follows. It shows that if the algorithm
from Lemma 3.2 is not restarted too often, we do not lose more than a constant factor (two) in the final bound
on the iteration count.

Corollary B.5. Define a restart of the method from Lemma 3.2 as setting ak = Ak = 1, yk = xk−1, wk = yk,
and zk = Lyk −∇f(yk). Let εmi = ai

2 ε̄, for some εm ≥ 0. If the method is restarted no more frequently than every
2
θ log(1/(2θ2)− 1) iterations, where θ =

√
µ/(2L), then:

f(xk)− f(x∗) ≤ L− µ
µ

(
1− θ

)k/2
(f(x0)− f(x∗)) + 2ε̄.

Proof. Denote H = 2
θ log(1/(2θ2)− 1). Let the iterations at which the restarts happen be denoted as k0 = 0, k1,

k2, ..., and note that, by assumption, ki ≥ ki−1 +H, for all i ≥ 1. Assume w.l.o.g. that each ki is even. We first
claim that we have the following contraction between the successive restarts:

f(xki)− f(x∗) ≤ (1− θ)(ki−ki−1)/2(f(xki−1
)− f(x∗)) + ε̄. (B.18)

To prove the claim, observe first using ki − ki−1 ≥ H that:

L− µ
µ

(1− θ)ki−ki−1 ≤
(1

2θ2
− 1
)

(1− θ)
1
θ log(1

2θ2
−1)(1− θ)

ki−ki−1
2 ≤ (1− θ)

ki−ki−1
2 . (B.19)

Applying Lemma 3.2 with xki−1
as an initial point and using strong convexity of f (which implies f(xki−1

)−f(x∗) ≥
µ
2 ‖xki−1 − x∗‖2), we have:

f(xki)− f(x∗) ≤ L− µ
µ

(1− θ)ki−ki−1(f(xki−1)− f(x∗)) + ε̄.

Thus, combining the last inequality with (B.19), inequality (B.18) follows.

Applying Eq. (B.18) recursively and using that ki − ki−1 ≥ H, we further have:

f(xki)− f(x∗) ≤ (1− θ)ki/2(f(x0)− f(x∗)) + ε̄

i∑
j=0

(1− θ)jH/2

≤ (1− θ)ki/2(f(x0)− f(x∗)) + 2θ2ε̄.

(B.20)

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

To complete the proof, fix an iteration k and let ki be the last iteration up to k in which a restart happened.
Applying Lemma 3.2 with ki as the initial point, we get:

f(xk)− f(x∗) ≤ L− µ
µ

(
1− θ

)k−ki
(f(xki)− f(x∗)) + ε̄

≤ L− µ
µ

(
1− θ

)k/2
(f(x0)− f(x∗)) + (1 + 2θ2)ε̄.

It remains to note that θ2 = µ/(2L) ≤ 1/2.

To obtain locally accelerated convergence, we show that from some iteration onwards, we can apply the accelerated
method from Lemma 3.2 with Ck being the convex hull of the vertices from the active set and the sequence x̃k
being the sequence of the AFW steps. The pseudocode for the LaCG-AFW algorithm is provided in Algorithm 1
(Algorithm 4 in the appendix). For completeness, pseudocode for one iteration of the accelerated method (ACC),
which is based on Eq. (3.2) is provided in Algorithm 5.

Algorithm 4 Locally Accelerated Conditional Gradients with Away-Step Frank-Wolfe (LaCG-AFW)

1: Let x0 ∈ X be an arbitrary point, SAFW
0 = {x0}, λAFW

0 = [1]
2: Let y0 = x̂0 = w0 = x0, z0 = −∇f(y0) + Ly0, C1 = co(SAFW

0), a0 = A0 = 1, θ =
√

µ
2L , µ0 = L− µ

3: H = 2
θ log(1/(2θ2)− 1) . Minimum restart period

4: rf = false, rc = 0 . Restart flag and restart counter initialization
5: for k = 1 to K do
6: xAFW

k , SAFW
k , λAFW

k = AFW(xAFW
k−1 , SAFW

k−1 , λAFW
k−1) . Independent AFW update

7: Ak = Ak−1/(1− θ), ak = θAk
8: if rf and rc ≥ H then . Restart criterion is met
9: yk = argmin{f(xAFW

k), f(x̂k)}
10: Ck+1 = co(SAFW

k) . Updating feasible set for the accelerated sequence
11: ak = Ak = 1, zk = −∇f(yk) + Lyk . Restarting accelerated sequence
12: x̂k = wk = argminu∈Ck+1

{− 〈zk,u〉+ L
2 ‖u‖

2}
13: rc = 0, rf = false . Resetting the restart indicators
14: else
15: if SAFW

k \ SAFW
k−1 6= ∅ then . If a vertex was added to the active set

16: rf = true . Raise restart flag
17: if rf = true then
18: Ck = Ck−1 . Freeze the feasible set
19: x̂k, zk, wk = ACC(x̂k−1, zk−1,wk−1, ak, Ak, Ck) . Run AGD+ uncoupled from CG.
20: else
21: Ck = co(SAFW

k) . Update the feasible set
22: x̂k, zk, wk = ACC(xk−1, zk−1,wk−1, ak, Ak, Ck) . Run AGD+ coupled to CG.
23: xk = argmin{f(xAFW

k), f(x̂k), f(xk−1)} . Choose the better step + monotonicity
24: rc = rc + 1 . Increment the restart counter

Algorithm 5 Accelerated Step ACC(xk−1, zk−1,wk−1, µ, µ0, ak, Ak, Ck)
1: θ = ak/Ak
2: yk = 1

1+θxk−1 + θ
1+θwk−1

3: zk = zk−1 − ak∇f(yk) + µakyk, wk = argminu∈Ck{− 〈zk,u〉+ µAk+µ0

2 ‖u‖2}
4: x̂k = (1− θ)xk−1 + θwk

5: return x̂k, zk,wk

Main Theorem 3.3. (Convergence analysis of Locally Accelerated Conditional Gradients) Let xk be the solution

Locally Accelerated Conditional Gradients

output by Algorithm 1 and r0 be the critical radius (see Fact B.3 in Appendix B.2). If:

k ≥ min

{
8L

µ

(D
δ

)2

log
(f(x0)− f(x∗)

ε

)
,

K0 +H + 2

√
2L

µ
log

(
(L− µ)r0

2

2ε

)}
,

where H = 2
√

2L/µ log(L/µ− 1) and K0 = 8L
µ

(
D
δ

)2
log
(

2(f(x0)−f(x∗))
µr02

)
, then:

f(xk)− f(x∗) ≤ ε.

Proof. The statement of the theorem is a direct consequence of the following observations about Algorithm 1
(Algorithm 4 in the appendix). First, observe that the AFW algorithm is run independently of the accelerated
sequence, and, in particular, the accelerated sequence has no effect on the AFW-sequence whatsoever. Further,
in any iteration, the set Ck that we project onto is the convex hull of some active set SAFW

i ⊆ X for some
0 ≤ i ≤ k − 1 implying x̂k ∈ X – each x̂k is hence feasible.

Now, as in any iteration k the solution outputted by the algorithm is xk = argmin{f(xAFW
k), f(x̂k)}, the

algorithm never makes less progress than AFW. This immediately implies (by a standard AFW guarantee;
see Lacoste-Julien and Jaggi (2015) and Proposition B.4) that for k ≥ 8L

µ

(
D
δ

)2
log
(f(x0)−f(x∗)

ε

)
, it must be that

f(xk)− f(x∗) ≤ ε, which establishes the unaccelerated part of the minimum in the asserted rate.

Further, there exists an iteration K ≤ K0 such that for all k ≥ K it holds x∗ ∈ co(SAFW
k) (see Proposition B.4).

Let K be the first such iteration. Then, the AFW algorithm must have added a vertex in iteration K as otherwise
x∗ ∈ co(SAFW

k−1), contradicting the minimality of K. Due to the restarting criterion from Algorithm 1, a restart
must happen by iteration K0 +H. Thus, for k ≥ K0 +H, it must be x∗ ∈ Ck.

Further, the restarting criterion implies that we perform at least H = 2
θ log(1/(2θ2) − 1) iterations between

successive restarts of the accelerated sequence {x̂k} and, unless a restart happens, we also have that Ck ⊆ Ck−1.
Thus, starting from iteration K0 +H, Lemma 3.2 and Corollary B.5 apply and {xk} converges to to x∗ at an
accelerated rate. The remaining 2

√
L
µ log

(
(L−µ)r20

2ε

)
part of the minimum in the asserted rate follows now by

Corollary B.5.

Remark B.6 (Inexact projection oracles.). For simplicity, we stated Theorem 3.3 assuming exact minimization
oracle (εmi = 0 in Lemma 3.2). Clearly, it suffices to have εmi = ai

8 ε and invoke Theorem 3.3 for target accuracy
ε/2.

Remark B.7 (Further improvements to the practical performance.). If in any iteration the Wolfe gap of the
accelerated sequence on Ck, maxu∈Ck 〈∇f(xk),xk − u〉 , is smaller than the target accuracy of the projection
subproblem (order- ε√

µL
), then f cannot be reduced by more than order- ε√

µL
on Ck, and one can safely perform

an early restart without affecting the theoretical convergence guarantee.

Remark B.8 (Running Algorithm 1 when x∗ ∈ int(X)). Usually we do not know ahead of time whether
x∗ ∈ int(X) or whether x∗ is in the relative interior of a face of X . However, we can simply run Algorithm 1
agnostically, as in the case where x∗ ∈ int(X) we still exhibit local acceleration with an argumentation and
convergence analysis analogous to the one in Section 3.1. In particular, the assumptions of Section 3.2 are only
needed to establish a bound for the estimation in Proposition B.4.

Remark B.9 (Variant relying exclusively on a linear optimization oracle). Similar as in the Conditional Gradient
Sliding (CGS) algorithm (Lan and Zhou, 2016) we can also solve the projection problems using (variants of) CG.
The resulting algorithm is then fully projection-free similar to CGS. In fact, a variant of CGS is recovered if we
ignore the AFW steps and only run the accelerated sequence with such projections realized by CG.

C Computational Results

We provide a detailed comparison of the performance of different LaCG variants relative to other state of the art
algorithms, comparing the primal gap and dual gap evolution both in terms of the iteration count and in terms of

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

wall-clock time. For the example over the Birkhoff polytope, the MIPLIB instance and the probability simplex we
use the stepsize rule γt = min

{
〈∇f(xt),xt−vt〉
L‖xt−vt‖2

, γmax

}
for all the algorithms that do not have a fixed step size rule,

where γmax is the maximum step size that can be taken without leaving the polytope. In the video colocalization
and the traffic network example we use exact linesearch for all the algorithms whenever possible (as was done in
the video colocalization case in Lacoste-Julien and Jaggi (2015) and Joulin et al. (2014)). Regarding the linear
optimization oracle for the MIPLIB and video-colocalization instance, we used Gurobi to solve the MIP problem
with linear cost function and the shortest path problem over the DAG respectively.

Note that when the algorithm starts running, the CG variant will add a vertex to its active set in the first
iteration, at which point the set Ck will be frozen and will contain only two vertices until the next restart happens.
For this reason, the convergence in the first H iterations is driven by the CG steps, and due to the low overhead
of computing the accelerated steps over Ck with |Ck| = 2, the wall-clock performance in the first H iterations will
be approximately equal to that of the CG variant running by itself.

C.1 Computational Enhancements to Algorithm 1

In order to speed up the convergence of the algorithm when the burn-in phase has not been completed we can
substitute Line 23 in Algorithm 1 (or Line 23 in Algorithm 4) with the following:

Algorithm 6 LaCG Enhancement

1: if f(xk−1) ≤ f(xAFW
k) and f(xk−1) ≤ f(x̂k) then

2: xk = xk−1

3: if f(xk) ≤ f(xAFW
k) and Ck+1 ⊆ SAFW

k+1 then
4: SAFW

k+1 = vert (Ck+1)

5: xAFW
k = xk

6: else
7: xk = argmin{f(xAFW

k), f(x̂k)}

Note that although this means that the AFW sequence is not independent of the accelerated steps anymore, this
does not affect the theoretical guarantees shown in Theorem 5. The previous operation leads to greater progress
during the burn-in phase, as after a restart the accelerated sequence active set Ck+1 is usually frozen, and the
accelerated steps tend to converge to the function minimizer over Ck+1 with relative ease, progressing very quickly
before stagnating (as little further progress can be made over Ck+1). If this happens and f(x̂k) ≤ f(xAFW

k) along
with Ck+1 ⊆ co(SAFW

k+1) (this is equivalent to the AFW steps not having dropped a vertex contained in Ck+1) the
AFW steps can pick up progress from where the accelerated sequence is located.

C.2 Solving Problem (3.3)

At each iteration, LaCG has to solve the following subproblem to accuracy εai
8 :

wk = argmin
u∈Ck

{
−〈zk,u〉+

µAk + µ0

2
‖u‖2

}
,

where zk ∈ Rn, µ, µ0, and Ak are given. This problem over the convex hull of Ck can transformed to one over the
probability simplex by noting that u = Vkλ, where Vk is the matrix that contains the elements in Ck as column
vectors and λ ∈ ∆|Ck|, where |Ck| is the cardinality of the set Ck. Rewritting the previous subproblem leads to:

λk = argmin
λ∈∆|Ck|

{
−〈Vkzk,λ〉+

µAk + µ0

2
λTVTk Vkλ

}
, (C.1)

where now the solution to our problem is provided by wk = Vkλk. We begin by noting that whenever the AFW
step adds a vertex to Sk, the set Ck is frozen and remains fixed until the next restart happens. This effectively
means that the term VTk Vk in Equation C.1 remains fixed and only the term Vkzk changes over iterations until
the next restart happens. If, on the other hand, the AFW step removes a vertex from Sk and the set Ck is not

Locally Accelerated Conditional Gradients

frozen, both VTk Vk and Vkzk have to be updated at that iteration. In our experiments, the AFW step usually
adds a vertex to Sk immediately after a restart has happened and so the set Ck remains frozen for most of the
iterations, and we only need to update Vkzk at each iteration, which has a complexity of O(|Ck|n)

At each iteration, we solve Problem C.1 using Nesterov accelerated gradient descent (Nesterov, 2018) for smooth
convex or strongly convex functions. In order to do so, we calculate the largest and smallest eigenvalue of the
matrix VTk Vk when these are updated, and this is done with scipy’s ARPACK package, which for symmetric
matrices uses a variant of the Lanczos method. As an initial point for Nesterov accelerated gradient descent, we
use the solution to the problem from the previous iteration, i.e., λk−1, if Ck = Ck−1, which allows the algorithm
to find a suitable solution after only a few iterations.

In order to project onto the simplex, we use the O (n log n) algorithm described in Duchi et al. (2008, Algorithm
1). An alternative would be to use a negative entropy regularizer in the implementation of Nesterov method, for
which Bregman projection steps can be computed in closed form. However, we found in our experiments that
Euclidean projections using Duchi et al. (2008, Algorithm 1). were faster, and thus opted for using them despite
their slightly worse theoretical guarantee.

C.3 LaCG over the Probability Simplex

The probability simplex is a simple polytope for which efficient projection operators exist, with complexity
O(n log n). Due to the existence of these operators and the O(

√
L/µ log 1/ε) global convergence guarantee of

accelerated projected methods, CG methods are seldom used over this feasible region (despite the O(n) complexity
for the linear optimization oracle over the simplex).

Despite being a toy-example, the structure of this polytope lends itself well to several computational simplifications.
As we mentioned earlier, there is no need to maintain an active set in this case, as a single pass over the current
iterate (which has complexity O(n)) allows us to recover the active set by retrieving the non-zero components of
the current point, whose corresponding standard orths correspond to the elements in the active set. This means
that the away step oracle simply returns the largest gradient component over the non-zero coordinates of the
current iterate.

Furthermore, if we consider the subproblem that needs to be solved at each iteration of the LaCG algorithm,
shown in Equation (C.1), and we note that VTk Vk = I, we see that the subproblem can be rephrased as follows:

λk = argmin
λ∈∆|Ck|

{
−〈Vkzk,λ〉+

µAk + µ0

2
λTλ

}

= argmin
λ∈∆|Ck|

∥∥∥∥λ− Vkzk
µAk + µ0

∥∥∥∥2

2

,

where the term Vkzk can be efficiently computed in O(n) time, and a single call to the simplex projection over
∆|Ck| will return the solution to the subproblem in barycentric coordinates.

C.3.1 Going from the `1-ball to the probability simplex

Lasso regression is a problem of interest in the benchmarking of many first-order methods, where the goal is to
solve a quadratic problem with f(x) = ‖Ax− b‖22 = xTQx

2 + cTx over a scaled `n1 -ball in Rn, where Q is positive
semidefinite. It would be advantageous if all the computational simplifications that applied to the simplex could
be extended to the `1-ball. In fact, there is a simple change of variables that allows us to write a problem over the
simplex that is equivalent to that of the lasso. Consider z ∈ ∆2n, and define xi = zi − zn+i for all i ∈ J1, nK, then:

min
x∈`n1

xTQx

2
+ cTx = min

z∈∆2n

zT
[

Q −Q
−Q Q

]
z +

[
c
−c

]T
z (C.2)

In order for the LaCG algorithm to be useful, we need the objective function to be positive definite, in order
to achieve acceleration. But the equivalent problem over the simplex is only convex, as the determinant of the
block-matrix on the right-hand side of Equation (C.2) is equal to zero. Therefore, the LaCG algorithm has to be

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

applied directly to the problem over the `1-ball, shown on the left-hand side. This means that there is no way of
rewriting the lasso problem as a strongly convex problem over the probability simplex.

Note that the DICG algorithm in Garber and Hazan (2016) is applicable to 0/1 polytopes (such as the probability
simplex) with L-smooth and µ-strongly convex objective functions. If we perform this change of variables to
go from a lasso regression problem over the `1-ball to one over the probability simplex, the resulting objective
function over the simplex will no longer be strongly convex, and therefore the theoretical guarantees in Garber
and Hazan (2016) no longer hold in this case. However, the DICG algorithm for general polytopes (Bashiri and
Zhang, 2017) can be applied to the lasso regression problem, and its theoretical guarantees hold true.

C.4 On the Evolution of C and S

0 250 500 750 1000
t[s]

100

101

102

103

104

|
A

FW
|

AFW

PFW

AFW (L)

LaCG-AFW

LaCG-AFW (L)

(a) Cardinality of the AFW active set for the Birkhoff
example (n = 1600).

0 1000 2000 3000 4000
t[s]

100

101

102

103

104

|
A
FW
|

(b) Cardinality of the AFW active set for the MIPLIB
example (n = 504).

Figure 5: Comparison of the evolution of the cardinality of the active set SAFW
k+1 for two of the examples.

The LaCG algorithm benefits from having a sparse active set. This is due to the fact that finding the away vertex
in the AFW algorithm has complexity O(|Sk+1|n) and Problem (C.1) will in general be easier to solve the smaller
the cardinality of the set Ck+1. Because of this, it is often useful to cull the active sets vert(Ck+1) and Sk+1 to
promote sparsity. This can be done in conjunction with the operations in Algorithm 6. More specifically, before
Line 4, we can discard the stale vertices in the convex decomposition of x̂k over the set Ck+1, that is, we can
eliminate the vertices in Ck+1 that have a zero coefficient when x̂k is expressed as the convex combination of
the elements in Ck+1 (also referred to as barycentric coordinates). This can be easily done as the accelerated
sequence maintains a decomposition of the current point in the barycentric coordinates of Ck+1 in order to solve
the projection subproblem. This culling can be performed regardless of which CG variant is used in the LaCG
algorithm.

The evolution of the cardinality of the active set SAFW in terms of time is shown in Fig. 5(a)-5(b) for two of
the examples in the computational section. As can be seen in Fig. 5, this culling of the active set is effective in
keeping in check the tendency of the AFW steps in the LaCG algorithm to add more vertices.

C.5 Additional Experiments

We also consider the video co-localization problem, which can be shown to be equivalent to minimizing a quadratic
objective function over a flow polytope (Joulin et al., 2014). In this problem, the linear optimization oracle
corresponds to finding a shortest path in a directed acyclic graph (DAG), for which there are algorithms that
solve this problem in running time O(E + V), where E and V are the number of edges and vertices of the graph,
respectively. We solve this problem over a directed acyclic graph with 3180 edges and 227 nodes that mimics
the structure shown in shown in Joulin et al. (2014), i.e., it has a source node connected to a layer of 15 nodes,
and each layer is fully connected with directed edges to the next layer, to make a total of 15 layers (of 15 nodes
per layer). The last layer of nodes is connected to a node that acts as a sink. The quadratic was generated

Locally Accelerated Conditional Gradients

in the same way as in the Birkhoff polytope example, i.e. f(x) = xT M
TM+I

2 x, with M having 1% non-zero
entries drawn from a standard Gaussian distribution. The matrix MTM has 27% non-zero entries. The condition
number in this instance is L/µ = 140.

100 101 102 103 104

k

10−3

10−1

101

f(
x
k
)
−
f*

AFW

PFW

DICG

LaCG-AFW

LaCG-PFW

(a) Iteration

0 250 500 750 1000
t[s]

10 3

10 1

101

(b) Wall-clock time

100 101 102 103 104

k

10 3

10 1

101

f(x
k)

f*

AFW
PFW
DICG
LaCG-AFW
LaCG-PFW

(c) Iteration

0 250 500 750 1000 1250
t[s]

10 3

10 1

101

(d) Wall-clock time

Figure 6: Video co-localization: Algorithm comparison in terms of (a),(c) iteration count and (b),(d) wall-clock
time.

In this example, DiCG is much more efficient than any of the active set based methods. Even though DiCG
exhibits a slower convergence rate than LaCG variants, it greatly benefits from not maintaining an active set,
which makes its iterations much more efficient. However, as discussed before, DiCG is not broadly applicable.
Moreover, even in cases where it is applicable, DiCG can still be slower than LaCG variants once the linear
optimization oracle is not very fast or the active sets do not get too large. It is an interesting open question
whether local acceleration can be achieved with decomposition invariant methods.

