
Appendix:
Invertible Generative Modeling using Linear Rational Splines

A MONOTONIC LINEAR RATIONAL SPLINES

A.1 Derivative Computation

Using the quotient rule for derivatives, the derivative of a linear rational spline function (as g(φ) in Eq. (5)) can
be computed as:

dg(φ)

dφ
=



λ(k)w(k)w(m)
(
y(m) − y(k)

)(
w(k)

(
λ(k) − φ

)
+ w(m)φ

)2 0 ≤ φ ≤ λ(k)

(
1− λ(k)

)
w(m)w(k+1)

(
y(k+1) − y(m)

)(
w(m)(1− φ) + w(k+1)

(
φ− λ(k)

))2 λ(k) ≤ φ ≤ 1

(7)

To calculate the derivative with respect to x, we only need to divide Eq. (7) by δ(k) = x(k+1) − x(k). As can be
seen, the derivative of the function g(x) never changes sign, even outside the interval

[
x(k), x(k+1)

]
.

A.2 Inverse Computation

Unlike rational quadratic splines which require computing the root of a degree two polynomial, linear rational
splines have a straightforward closed-form inverse. This function is again a linear rational spline, but with
different parameters. The inverse of Eq. (5) can be computed as:

g−1(y) =



λ(k)w(k)
(
y(k) − y

)
w(k)

(
y(k) − y

)
+ w(m)

(
y − y(m)

) y(k) ≤ y ≤ y(m)

λ(k)w(k+1)
(
y(k+1) − y

)
+ w(m)

(
y − y(m)

)
w(k+1)

(
y(k+1) − y

)
+ w(m)

(
y − y(m)

) y(m) ≤ y ≤ y(k+1)

(8)

Again, this function gives us the value of φ in each interval. We should calculate x = δ(k)φ + x(k) to translate
this into the interval

[
x(k), x(k+1)

]
.

A.3 Inverse Derivative Computation

The derivative of the inverse can be computed using the following relationship:

dg−1(y)

dy
=



λ(k)w(k)w(m)
(
y(m) − y(k)

)(
w(k)

(
y(k) − y

)
+ w(m)

(
y − y(m)

))2 y(k) ≤ y ≤ y(m)

(
1− λ(k)

)
w(m)w(k+1)

(
y(k+1) − y(m)

)(
w(k+1)

(
y(k+1) − y

)
+ w(m)

(
y − y(m)

))2 y(m) ≤ y ≤ y(k+1)

(9)

This function captures the change of inverse with respect to φ in each interval. To translate this into x, we
should multiply this derivative by δ(k). As in the forward pass, we can see that the derivative of the inverse does
not change its sign even outside the interval 0 ≤ φ ≤ 1.



Invertible Generative Modeling using Linear Rational Splines

B DETAILS OF SIMULATION RESULTS

B.1 Synthetic Density Estimation

For the density estimation task on the Rings dataset in Figure 2, we generated a set of 350,000 data points.
Then, we used batches of size 512 to train our model, which is a linear rational spline (LRS) flow in the coupling
layer mode. The number of coupling layers is 2. For the LRS function of each layer, we used 64 bins and a
tail bound of 5. For optimization, we used the Adam (Kingma and Ba, 2015) optimizer, with a learning rate
of 0.0005 and cosine annealing (Loshchilov and Hutter, 2017). Finally, a 2-d standard normal was used as the
starting probability distribution.

Note that sometimes, it is common to use an infinite data generator, which generates a different set of data at
each iteration. We performed our simulation under this condition, too. The results of our method after only
50,000 iterations are depicted in Figure 4.

Data Samples Estimated Density Model Generated Samples

Figure 4: Density estimation on synthetic 2-d data samples using an infinite data generator.

For the results depicted in Figure 3, we used almost the same setup as for the Rings dataset. Here, however,
we used a set of 1M data samples and 1.5M iterations. Also, we used a uniform random variable as the starting
probability distribution.

B.2 Density Estimation of Real-world Data

In the density estimation of the UCI tabular datasets and BSDS300 (Martin et al., 2001), we used the config-
urations of Tables 4 and 5 to train our model. Note that here, we used a residual network (He et al., 2016) to
determine the parameters of a rational linear spline. Like Durkan et al. (2019b), the Adam optimizer and cosine
annealing of the learning rate were used in the optimization of all datasets, except for cases with a † superscript
where we used RAdam (Liu et al., 2019) with no annealing. Unlike (Durkan et al., 2019b), which uses a fixed
value to clip the norm of gradients, we considered changing it here to see if any of the results would be improved.
This value has been shown in the tables under Maximum Gradient Value row. Also, batch normalization (Ioffe
and Szegedy, 2015) and dropout (Srivastava et al., 2014) were found to be useful in some of the cases.

Also, in Table 6 we have included the results of our model under the hyper-parameters set for rational quadratic
spline flows (Durkan et al., 2019b).

B.3 Generative Modeling of Image Datasets

For the generative modeling tasks, we used the Adam optimizer with cosine annealing of the learning rate. The
initial learning rate was set to 0.0005. For all datasets, we used batches of size 256, and trained the model
for 200k iterations. We followed the multi-scale architecture of Dinh et al. (2017) as used in rational quadratic
splines (Durkan et al., 2019b) and Glow (Kingma and Dhariwal, 2018). As in Glow, each layer consists of
multiple stacked steps of basic transformations, which are built by using an actnorm, a 1x1 convolution, and a
coupling layer. Here, we used rational linear spline functions to build the coupling layer transformation of each



Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie

Table 4: Hyper-parameters used for simulations of coupling (C) layer transformations using linear rational splines
(Table 1).

PARAMETER POWER GAS HEPMASS MINIBOONE BSDS300†

Learning Rate 0.0005 0.0005 0.0005 0.0001 0.0005
Batch Size 512 512 256 128 512
Number of Learning Iterations 400k 400k 400k 200k 500k

Transformation Layers 10 10 20 10 20
Tail Bound 3 3 3 8 3
Number of Bins 8 8 8 4 8
ResNet Layers 2 2 1 1 1
ResNet Hidden Features 256 256 128 32 128

Maximum Gradient Value 5 5 5 25 5
Dropout Probability 0.0 0.1 0.2 0.5 0.5
Batch Normalization N N Y Y Y

Table 5: Hyper-parameters used for simulations of autoregressive (AR) transformations using linear rational
splines (Table 1).

PARAMETER POWER GAS HEPMASS† MINIBOONE† BSDS300†

Learning Rate 0.0005 0.0005 0.0005 0.0001 0.0005
Batch Size 512 512 512 128 512
Number of Learning Iterations 400k 400k 500k 150k 500k

Transformation Layers 10 10 10 10 10
Tail Bound 3 3 5 5 3
Number of Bins 8 8 8 8 8
ResNet Layers 2 2 1 2 2
ResNet Hidden Features 256 256 128 64 512

Maximum Gradient Value 5 5 20 20 5
Dropout Probability 0.0 0.1 0.5 0.5 0.5
Batch Normalization N Y N Y Y

Table 6: Test set log-likelihood in nats (higher is better) for four UCI datasets plus BSDS300 (Martin et al.,
2001) under parameters set for rational quadratic splines in (Durkan et al., 2019b)

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

LRS Flows (C) 0.65± 0.01 12.99± 0.02 −14.88± 0.03 −9.91± 0.53 157.56± 0.28

LRS Flows (AR) 0.66± 0.01 13.05± 0.02 −14.37± 0.03 −10.63± 0.47 157.50± 0.28

layer. Moreover, a ResNet with batch normalization was used to determine the parameters of each layer’s linear
rational spline functions. The detailed configuration used for the simulation of each dataset is given in Table 7.

B.4 Variational Auto-Encoders

For variational auto-encoders, we follow the same procedure as neural spline flows (Durkan et al., 2019b). First,
a linear warm-up multiplier is used for the KL-divergence term in the cost function. This multiplier starts at the
value 0.5, and then linearly increases to 1 as 10% of the training set passes. A ResNet with 2 blocks determines
the parameters of the linear rational splines used in either coupling (C) or autoregressive (AR) transformations.
The dimension of the latent space is set to 32, and 64 context features are computed by the encoder.

As before, the Adam optimizer with cosine annealing of an initial 0.0005 learning rate is used for optimization.



Invertible Generative Modeling using Linear Rational Splines

Table 7: Hyper-parameters used for invertible generative modeling simulations of Section 4.3 (Table 2).

PARAMETER MNIST CIFAR-10 IMAGENET 32 IMAGENET 64

Learning Rate 0.0005 0.0005 0.0005 0.0005
Batch Size 256 256 256 256
Number of Learning Iterations 200k 200k 200k 200k
Validation Frac. of Train. Set 2% 1% 2% 1%

Multi-scale Transform Levels 2 3 4 4
Num. of Trans. per Layer 7 7 7 7
ResNet Blocks 3 3 3 3
ResNet Hidden Channels 128 96 128 96
Tail Bound 3 3 3 3
Number of Bins 32 4 32 8

Dropout Probability 0.2 0.1 0.2 0.0

We use batches of size 256, and train the model for 150k iterations. Model selection is made using a validation
set of 10k and 20k samples for MNIST and EMNIST, respectively.



Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie

C IMAGE SAMPLES

C.1 Random Image Samples Generated by Models Trained for Section 4.3

MNIST CIFAR-10

ImageNet 32x32 ImageNet 64x64

Figure 5: Random image samples generated by trained linear rational spline flows.



Invertible Generative Modeling using Linear Rational Splines

C.2 Randomly Generated VAE Samples

MNIST

EMNIST

Figure 6: Randomly generated VAE image samples. Linear rational spline flows were used as the prior and
approximate posterior in these models.



Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie

D Further Simulation Results

To highlight the improvements in the current work, we perform a new set of image generation experiments on
the MNIST (LeCun, 1998) dataset. Other than using a different family of splines, all of the hyperparameters of
the models (summarized in Table 8) are fixed to be the same. For a given depth, the experiment is performed
for 8 different seeds. We then train the model and repeat the same procedure for 5 various depths. In each of
the experiments we pick the best flow model using a validation set. Finally, we measure the log-likelihood on
the test set in BPD.

Table 8: Hyper-parameters used for invertible generative modeling simulations of Fig. 7.

PARAMETER MNIST

Learning Rate 0.001
Batch Size 256
Number of Learning Iterations 50k
Validation Frac. of Train. Set 2%

Multi-scale Transform Levels 1
Num. of Trans. per Layer 2, 4, 8, 16, 32
ResNet Blocks 2
ResNet Hidden Channels 96
Tail Bound 3
Number of Bins 4

Dropout Probability 0.2

Figure 7 shows the simulation results. The top-left figure shows the average of log-likelihood on the 8 seeds.
As shown, linear rational splines consistently perform better than rational quadratic splines despite using lower
degree polynomials. The top-right figure shows the standard deviation of the results across different seeds. As
the figure shows, the standard deviation of linear rational splines consistently decreases as the depth increases.
However, the results of rational quadratic splines show fluctuations, and for the depth of 32 their standard
deviation gets worse. This might be an indication of the fact that since they are using higher degree polynomials,
they require more numerical accuracy as the depth increases. In contrast, as a composition of linear rational
splines is still a linear rational spline, the standard deviation of our method’s results consistently decreases.
Finally, you can see the number of parameters, and its relative change in percentages for these simulations in
the bottom figures. As the figures show, the increase in number of parameters is only 0.23% for this set of
simulations which is negligible.



Invertible Generative Modeling using Linear Rational Splines

Figure 7: Comparison of linear rational and rational quadratic splines for image generation task on MNIST.


	MONOTONIC LINEAR RATIONAL SPLINES
	Derivative Computation
	Inverse Computation
	Inverse Derivative Computation

	DETAILS OF SIMULATION RESULTS
	Synthetic Density Estimation
	Density Estimation of Real-world Data
	Generative Modeling of Image Datasets
	Variational Auto-Encoders

	IMAGE SAMPLES
	Random Image Samples Generated by Models Trained for Section 4.3
	Randomly Generated VAE Samples

	Further Simulation Results



