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Abstract

Ensemble classifiers are a successful and pop-
ular approach for classification, and are fre-
quently found to have better generalization
performance than single models in practice.
Although it is widely recognized that ‘diver-
sity’ between ensemble members is impor-
tant in achieving these performance gains, for
classification ensembles it is not widely un-
derstood which diversity measures are most
predictive of ensemble performance, nor how
large an ensemble should be for a particular
application. In this paper, we explore the
predictive power of several common diversity
measures and show — with extensive exper-
iments — that contrary to earlier work that
finds no clear link between these diversity
measures (in isolation) and ensemble accu-
racy instead by using the p diversity measure
of Sneath and Sokal as an estimator for the
dispersion parameter of a Polya-Eggenberger
distribution we can predict, independently of
the choice of base classifier family, the ac-
curacy of a majority vote classifier ensem-
ble ridiculously well. We discuss our model
and some implications of our findings — such
as diversity-aware (non-greedy) pruning of a
majority-voting ensemble.

1 Background

Ensembles of diverse classifiers are a successful and
popular approach for classification, and are frequently
found to have better generalization performance than
single models in practice. Empirical results have
shown that the accuracy of an ensemble classifier
tends to increase with increasing ensemble size, with
the accuracy of the individual classifiers, and with
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increasing diversity (where ‘diversity’ is variously
defined and measured) between the ensemble mem-
bers. However, although the effect of diversity on
regression ensembles is well-understood, through
the bias-variance-covariance decomposition of Brown
et al. (2005), the actual relationship between these
aspects of model selection and the accuracy of a
classifier ensemble is mostly unknown.

There are many modelling choices to be made in
constructing a classifier ensemble and, in particular,
it is well-known in practice that the choice of both the
diversity generator and of the combination method
can greatly affect the overall accuracy of the ensemble
learner. For classifier ensembles, of the many possible
combination methods the most studied, as well as
one of the most commonly used, is majority voting.
In a majority vote ensemble, each base classifier in
the ensemble estimates a class label, and the class
label chosen by the greatest number of classifiers is
selected as the output of the ensemble. In this paper
we consider only majority voting as a combination
scheme.

Now, in earlier literature on majority vote ensemble
classifiers there have been attempts to model the
ensemble accuracy based on a binomial model, that
is by assuming that each classifier ‘votes’ for a class
independently of any other and with the same proba-
bility of being correct. If these assumptions were true
then by invoking the Condorcet Jury Theorem (CJT)
(Condorcet, 1785) one could show that — provided
each ensemble member is correct more often than not
— as the ensemble size grows the ensemble becomes
increasingly accurate on average, eventually being
correct with probability 1 in the limit. However,
this clearly does not take into account the diversity
of the classifiers in the ensemble (Lam and Suen,
1997; Whitaker and Kuncheva, 2003; Kuncheva et al.,
2003), in spite of the empirical evidence showing
that diversity is important to the ensemble accuracy.
Furthermore, the conditions on CJT are impossible
to verify in practice and, taken together, these facts
make it challenging to optimize any accuracy-diversity
trade-off for the ensemble using a binomial model. To
put this another way, such theory is weak in the sense
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that it ignores aspects of the problem that are known
empirically to be very important.

On the other hand, CJT and its generalizations
have retained their fascination in various fields of
the Social Sciences and Economics. In particular,
works by Ladha (1995) and Berg (1993) have both
proposed that the accuracy of a majority-voting
system can be modelled using a Polya-Eggenberger
distribution (a generalization of the well-known
Beta-Binomial model, which allows for a limited
range of negative-valued shape parameters). While
this model is still fairly restrictive — in particular,
we will still assume identical probabilities that the
individual classifiers vote correctly! — it will allow
us to model dependencies between the votes of the
classifiers in the ensemble and, as we will shortly see,
this will make our model accurate enough to be useful.

1.1 Roadmap

In section 2 we describe the Polya-Eggenberger (P-E)
model and explain how the different ingredients in a
classifier ensemble correspond to its parameters. Next,
we show that a particular diversity measure, namely
the p diversity measure of Sneath and Sokal (1963),
can be interpreted directly as an estimator for the
dispersion parameter of the P-E model. We continue
by evaluating our model experimentally, in terms of
its ability to predict the generalization performance
of an ensemble classifier on simulated and real-world
data, against the accuracy predictions using several
different common measures of ensemble diversity.
Finally, we discuss the benefits and limitations of this
approach, and some potential future directions.

2 Polya-Eggenberger Distribution

The Polya-Eggenberger Distribution describes the ex-
pected number of successes in N trials drawing from
the Polya urn model. In the basic Polya urn model, we
have a black balls (successes) and b white balls (fail-
ures) in an urn. One ball is drawn randomly from
the urn and the colour of the ball is observed. The
ball is returned to the urn, and a further ball of the
same colour is added. Thus, in the following draw it
is more likely that the same outcome is repeated. A
generalization of this model is to add s > 1 balls of
the same colour as the last observation with a simi-

LAt this point it is customary to invoke the memory
of the late George Box, FRS, and remind ourselves that
‘All models are wrong, but some are useful’. In fact, we
will also give a heuristic argument for why this particular
assumption is likely not too wrong in practice.

lar effect. The Polya-Eggenberger model generalizes
the Polya urn model to allow non-integer a and b, and
negative-valued s (Feller, 2008; Sen and Mishra, 1996).
The definition of the P-E distribution depends on these
4 parameters, a,b, s, N, and for completeness we give
it below:

Definition 1 (Polya-Eggenberger Distribution (Sen
and Mishra, 1996)). Let N be the number of trials in
a Polya urn model, let the initial number of black balls
be a and the initial number of white balls be b. Let
the number of additional balls of the same colour to be
added following an observation (of black or white) be

s. Define p:= 15 and ¢ 1= 7.

Let Sy be the number of black balls drawn after N tri-
als. Then Sy follows a Polya-Eggenberger distribution
with:

. 1
Case 1: ¢ > —

PriSy =k} =

Case 2: ¢ =0
n

Pr{Sy =k} = (k>p’“(1 —p)" "

With ( ) defined for any real T and integer y as

y (:g) (@)(z—1)...(x—y+1)

Yy y!

Note that (Z) can also be written as %

x _ _ —x+y—1
when = > y. (2 = (-nv(*tY
(_1y)% when x < y where T'(x) is the

Gamma function.

The parameter 1) in the P-E model can be interpreted

as quantifying the increased likelihood that the next

observation will be the same colour as the current ob-

servation. In other words, if p; is the probability tilat
_ pit

the i-th observation is a success, then p;11 = ito if

pi Was a success and p;+1 = 75 otherwise.
We note that for ¢ > 0 this distribution can also be

viewed as a beta-binomial distribution with o = %
and 8 = 1%, when ¢ = f% exactly it is equiva-

lent to a hypergeometric distribution (sampling with-
out replacement), and when ¢ = 0 it is equivalent to
a binomial distribution. In the context of classifier
ensembles we can identify the ensemble size with the
number of trials N, a as the number of classifiers in
the ensemble correctly labelling an example, b as the
number incorrectly labelling the same example, and
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as a measure of classifier diversity - given the vote of
the i-th classifier, how much more (or less) likely is
it the j-th classifier will vote the same way? In the
context of a majority vote ensemble, under our model
the expected number of ensemble members giving the
correct vote can be shown to be:

Case 1: For odd N, Ziv:(N+1)/2 ST P(Sy =1)
Case 2: For even N, Z?L(N/2)+1ZP(SN = i)+
3P(Sy = N/2)

For brevity, we will refer to the distribution defined in
Definition 1 as PE(N, p, 1) or PE(N, a, b, 1) depending

on which parameterization is more convenient.

3 Diversity Measures

There are many measures used to assess the diver-
sity of a classifier ensemble. Here, we focus on
the average diversity measure p of Sneath and Sokal
(1963). We first show how this diversity measure
corresponds to the parameter ¢ in the definition of
the Polya-Eggenberger distribution when the classi-
fiers each have the same accuracy. Although this lat-
ter assumption is false in general, we argue that it is
not too wide of the mark in practice: In particular, if
any ensemble member has (training, or hold-out) ac-
curacy far lower than the other ensemble members it
will typically be pruned, while if any single classifier is
far more accurate than the others we would likely use
it by itself rather than train an ensemble. Moreover,
PAC theory says that if all ensemble members have
the same VC-dimension, for an i.i.d sample of fixed
size n then the gap between their empirical accuracies
is typically only O(1/y/n). Therefore, it is plausible,
and in our experience true in practice, that different
ensemble members tend to have similar accuracy on a
given sample.

Now define Pij to be the observed proportion of train-
ing observations both classifier 4 and j classified cor-
rectly, and P, and Pj as the observed proportion of
training observations that classifier ¢ and classifier j
classified correctly, respectively.

We can then rewrite the 2 x 2 contingency table for a
pair of classifiers D; and D; (Table 1) in terms of P;,

Pj and PA)U

Table 1: 2 x 2 contingency table for the classifiers D;
and D;

D; Correct
D; Correct P;;
Dl' WI‘OI’lg Pj — Pij

D; Wrong
1-P—-P;+ P

Suppose that Vk € [1, N], b, # 0. The sample diver-
sity measure of Sneath and Sokal (1963) is then:

by = Py(1— Pi— Py + Py) — (P, — Py)(P; — Pyy)
VEEQ-B)(1-P)
_ P — PP;
VEB( - B)(1 - Py)

Therefore, p;; is a sample estimate of the correlation
between the errors of classifiers ¢ and j.

Now, let 7 be the average of the p;; over all pairs i # j
in the ensemble:

. ——— )
i=1 j#i \/PZP](I *Pz)(l 7PJ')

If we now assume that Vi, j : P, = Pj = p, the sample
average classifier accuracy, equation 1 simplifies to:

TNZT - : Npl— ZZ( )Z (Pli/f)p_p

i=1 j#i

=

where P, = ﬁzz]\; Z;\;Z PZ] Writing P;; in

terms of 7 and p, we have:

Letting ¢ = 1%72, p = p we can solve for the parameters
of the Polya-Eggenberger model PE(N,p, ).

3.1 Other estimators of diversity

As noted before, other diversity measures could be
used to estimate the parameter s or 1) in principle.
An extensive survey by Kuncheva and Whitaker (2003)
summarizes ten different diversity measures, several of
which we also consider here. They consider the pre-
dictive power (with respect to ensemble accuracy) of
different diversity measures by themselves, unlike our
approach of using the diversity measure as a parame-
ter in our P-E model. Contrary to our findings they
conclude that (for a majority-voting ensemble) “any
answers to (the) questions: ‘Is there a measure that is
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best for the purposes of developing committees that
minimize error’, and ‘How can we use the measures in
designing the classifier ensemble?’, can only be specu-
lative”.

In much of the ensemble classification literature (e.g.
Malmasi and Dras (2015); Whalen and Pandey (2013);
Yang (2011)), the Yule’s Q-statistic (Yule, 1900) is
used to measure the diversity of classifiers in an en-
semble. An appealing property of the Q-statistic is
it has an intuitive interpretation as an odds-ratio and
is specifically designed for discrete counts (Kuncheva
et al., 2000). We found however, that this diversity
measure tends to overestimate the agreement between
ensemble members and can be widely off the mark
when used with our Polya-Eggenberger model. Indeed,
the study of Kuncheva and Whitaker (2003) concludes
that — with respect to the Q-statistic —“There is no
realistic framework for benchmarking classifier ensem-
bles with either synthetic or real data”, again unlike
our findings using the Sneath and Sokal (1963) diver-
sity measure as a parameter in our P-E model.

One shortcoming of both the Sneath and Sokal (1963)
diversity measure and Yule (1900) Q-statistics is that
we need to know beforehand (or estimate) the individ-
ual classifier accuracies before we can determine the
diversity. It may be useful to be able to estimate the
diversity of the classifiers independently of ensemble
member accuracies, such as when evaluating diversity
generation schemes. In both Ladha (1995) and Berg

(1993), the authors used the cosine similarity m
to estimate the diversity measure p, where y; and y;
are n-dimensional vectors representing the output la-
bels on the sample of classifiers ¢ and j respectively.
While we agree that voting agreement is a natural and
intuitive way to derive the increased likelihood that
two voters would vote similarly, we found that this
measure also tends to be even more conservative than
the Q-statistic and overestimates the agreement be-
tween ensemble members. We suspect this is because
the accuracies of individual ensemble members may
depend on the class labels.

Inspired by the feature stability measures used for fea-
ture selection in Nogueira and Brown (2015), we also
evaluate the Jaccard similarity index as an estimator
for p. We found in practice that the Jaccard similarity
index gave good estimates for our synthetic cases but
poor estimates on the real-world test cases.

Overall since Sneath and Sokal’s diversity measure has
a natural fit to our P-E model, and also gave the best
predictive performance, we will focus on this measure
in the sequel. In the next section 4 we report results
for Sneath and Sokal’s p and these other measures, as
well as for a binomial model, to give an indication of
the size of the gap in model performance.

4 Empirical Evaluation of Model

In this section we evaluate our model empirically on
synthetic and real-world datasets. Our main focus is
on modelling ensemble accuracy and so we consider
measures of classifier diversity as tools for estimating
this. In all experiments we consider predictor vectors
r € R? and labels y € {—1,1} and the classifier is
provided with a training set of n predictor-label pairs
Tn = {(@i, ) iy -

Note that our model does not depend directly on the
family of functions (‘Hypothesis space’) from which
a classifier is chosen, nor on the dimensionality of
the problem. To keep things manageable we con-
sider only two diversity generators, namely random
subspace (RS) (i.e. sampling k¥ < d features without
replacement) — which is arguably the most common
diversity-generating approach used in practice — and
random projection (RP) (i.e. projecting the predictors
onto a random subspace of dimension k < d), which
is less commonly used but has recently been shown
to work well in the setting where n < d (Durrant,
2013). In both cases the diversity between classifiers
is generated by the random choice of the k predictors
available to the ensemble member for training.2.

4.1 Experiments using Synthetic Datasets

We set d = 1000 to be the dimensionality of our
data, w = (1,0,...,0)7 and draw n observations
t; ~ (0,N(0,I5-1)"/||t;||. Note that w is orthogonal
to t;. We then generate a random orthogonal matrix
R by sampling its entries R; ; ~ ﬁN(O,Id) and us-
ing Gram-Schmidt orthogonalization on the columns.
For each 6 = {80°,85°,87.5°}, we then let h = uR,
and x; = cosfu + sinft;R. By construction, h
and each x; has an angle of exactly §. We sample
Ntrain € {150,500, 2000} draws of the training exam-
ples of t; and set T, := {(x;,y;)}!~, as the training
set of npain examples with exactly nirain/2 examples
with angular separation 6 and nain/2 examples with
angular separation —f by multiplying half the vectors
by —1. We label y; = 1 if the corresponding x; has
an angular separation 6 and y; = —1 if the angular
separation is —f@. As noted in Durrant and Kabéan
(2013), 6 can be interpreted as the difficulty of the
classification problem with a value of 6 that is closer
to 90° representing a more difficult problem with a
“smaller margin” separating the two classes, so this
process generates a sequence of increasingly difficult
problems. Furthermore h is the Bayes’ optimal clas-
sifier which separates the two classes perfectly with

2Source code for our experiments is available at http:
//www.github.com/nlim-uow/majorityvote/
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maximum margin w.r.t the generating process, and it
is not aligned with any coordinate axis with probabil-
ity 1.

Using the same data generation scheme, we also gener-
ate an additional n., = 1000 and niest = 1000 model
validation and test examples, with the corresponding
class labels {1, —1}, divided evenly within all datasets.
Then X ain, Xval and Xiest are the data matrices rep-
resenting the training, holdout, and test data respec-
tively. For each set of experimental conditions, we
learned N = 250 base classifiers, using the following
diversity generation schemes and learning algorithms,
for each projection dimension k € 2,5, 10, 20:

e Linear Discriminant using random subspace pro-
jection, with the routine provided by Matlab Cen-
tral (Dwinnell, 2010)

e Linear Discriminant wusing Orthonormalized
Gaussian random projections

e L2 Regularized Linear Kernel Support Vector Ma-
chine with random subspace projection and the
liblinear routine of Fan et al. (2008).

e 2 Regularized Linear Kernel Support Vector
Machine with orthonormalized Gaussian random
projection and the liblinear routine of Fan et al.
(2008).

e Random Forest with Bag Size = 1/3 nrain with
the routine provided by Matlab.

We constructed an ensemble of N = 250 classifiers us-
ing these base classifiers, and measured the empirical
majority vote accuracy on the test data Xies using
the zero-one loss. In our experiments each ensemble
member is learned from (a particular RS or RP pro-
jection of) the training data Xiyain. For each set of
experimental conditions, we repeated this process 30
times. We extracted the Sneath and Sokal (1963) di-
versity measure p and the average individual classifier
accuracy p for the Polya-Eggenberger model using the
empirical results from the experiments in section 4.1.
For comparison, we also extracted the Q-statistics, the
vote cosine similarity (‘Vote Correlation’) score, and
the Jaccard similarity index to compare against the
p diversity measure, as well as the simple binomial
model for ensemble accuracy (¢ = 0). In each case
the parameters of the corresponding PE models are
estimated by applying the ensemble learned from the
training data Xi,.n on the validation data X,. We
then calculated the CDF's for the Polya-Eggenberger
models corresponding to these different diversity mea-
sures and we compare the predicted ensemble accu-
racy modelled by the Polya-Eggenberger distributions
to the empirical majority vote ensemble accuracy on

the test data Xiest averaged over 30 runs.

Figure 1 shows the predicted ensemble accuracy mod-
elled by the Polya-Eggenberger Distribution with the
different determination of ¥ against the empirical ma-
jority voting ensemble accuracy averaged over 30 runs
on our synthetic data.

Tables 3 shows the comparison between the average
majority vote ensemble classifier accuracy for ensem-
ble size N = 50, N = 100 and N = 250 against the
values predicted by the Polya-Eggenberger Model us-
ing the Sneath and Sokal (1963) diversity measure as
the estimate for .

4.2 Experiments using Real Datasets

We used six real-world datasets, three taken from
the 2003 NIPS feature selection challenge, namely
GISETTE, ARCENE and DEXTER (Guyon et al.,
2004), and data from MNIST handwriting recognition
challenge, IMDB sentiment analysis, and GTZAN mu-
sic/speech recognition.

Using the same base classifier families as for our syn-
thetic test cases, we learnt N = 100 classifiers for each
of the base classifiers.

For the MNIST handwriting challenge, the task is
to discriminate between digits ‘7’ and ‘9’ from low-
resolution images. In the IMDB dataset, the task is
to discriminate between positive and negative reviews
using bags-of-words data from individual reviews. For
the IMDB data we did not use random projection as a
diversity generator as the time and space complexity
for the random preprocessing was exorbitant. Finally,
for the GTZAN music/speech classification task, we
segmented the audio samples into 1-second segments
and trained on the odd-second segments and tested
on the even-second segments. The characteristics of
the datasets and the number of projection dimensions
used is summarized in Table 2.

For the real world data we removed the features that
had zero variance in the training set, but to avoid
possible confounds we carried out no other feature
engineering. Apart from the smaller ensemble sizes
(N = 100), also we made a 50:50 random split of the
test data and fitted the P-E parameters on one half
for these experiments. Evaluation of the model ac-
curacy is on the remaining held-out test data, simi-
larly to the experiments on synthetic data. Figure 3
shows the predicted ensemble accuracy modelled by
the Polya-Eggenberger Distribution for the different
datasets, with the different estimators of ¢ and the bi-
nomial model (¢ = 0), against the empirical majority
voting ensemble accuracy averaged over 100 runs. Re-
sults presented here are representative of typical out-
comes, but for more complete findings for all experi-
ments please see the supplementary material.

Table 4 shows the largest difference between the aver-
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Table 2: Characteristics of the non-synthetic datasets.

. Train | Test Proj.
File Type Set Set 7 feat Dlirri
ARCENE | Dense | 100 100 10000 | 2,10,20
DEXTER | SP&¢ | 300 | 300 20000 | 29:100;

Integer 200

GISETTE | Dense 6000 1000 5000 2,10,20

MNIST Dense | 60000 | 10000 | 784 2,10,20

Sparse 200,1000,
IMDB Tnteger 25000 | 25000 | 89527 2000
GTZAN Dense 1920 1920 22050 ;86100’

age majority vote ensemble classifier accuracy against
the values predicted by the Polya-Eggenberger Model
using the Sneath and Sokal (1963) diversity measure
as the estimate for 1.

4.3 Comments on Experiments

Table 3: Comparison between the empirical majority
vote ensemble accuracy (left) and our model (right) for
the synthetic data of Section 4.1 with many irrelevant
features. Observe that the actual values were within
1% of the model predictions.

k=2

theta | n N=50 N=100 N=150
150 66.0 / 66.6 | 71.4 / 72.3 | 75.0 / 76.0
80 500 66.7 /66.9 | 73.4/72.7 | 76.7 ] 76.4
2000 | 67.1 /66.9 | 73.6 / 72.6 | 76.5 / 76.4
150 58.6 / 58.6 | 61.6 / 61.8 | 64.3 / 64.0
85 500 59.1 / 59.3 | 61.8 / 62.7 | 64.2 / 65.0
2000 | 60.0 /59.9 | 63.5 /63.5 | 65.8 / 66.0
150 53.6 / 53.6 | 55.0 / 55.0 | 56.3 / 55.9
87.5 500 53.9 / 54.0 | 55.6 / 55.5 | 56.9 / 56.6
2000 | 54.3 / 54.4 | 56.2 / 56.1 | 57.4 ] 57.3

We can see that the Polya-Eggenberger model using
the Sneath and Sokal (1963) diversity measure pro-
vides a very good estimate for the average majority
vote ensemble classifier accuracy. The difference be-
tween the majority vote accuracy is visually almost
imperceptible as seen in Figure 1. The largest dif-
ferences in performance from our model occur for the
smallest values of the projection dimension k, with the
ensemble member size approximately N/2 = 125, in
which case the absolute empirical majority vote accu-
racy differs by less than 2% compared to the Polya-
Eggenberger model. This is despite the fact that the
individual classifiers do not have identical accuracies,
with the standard deviation of the accuracy of the en-
semble members &~ 1.2%, indicating that violating this
assumption is not fatal to good estimation of the en-
semble accuracy. Table 3 summarizes differences be-
tween the empirical and the modelled accuracy for dif-
ferent experimental conditions for the synthetic data

with the smallest k£ = 2.

We also see that our model gave a very good approx-
imation to the majority vote ensemble accuracy on
the real world datasets; with difference between the
estimates and the empirical values within 3%. Here
the gap between the different estimators is much more
clear-cut. We have not run statistical tests of hypothe-
ses between the different estimators — it is clear from
the graphics that using the p diversity measure gen-
erally outperforms the other alternatives considered
here.

Figure 3 shows a representative selection of compar-
isons between the empirical accuracy and the mod-
elled accuracy for different classifiers on the real world
datasets, while Table 4 summarizes the absolute differ-
ence between the empirical accuracy and our model.
For the sake of full disclosure we note that for cases
when k is set very small compared to d — for exam-
ple smaller than logd — our model can fail to give an
accurate approximation of ensemble performance, and
exhibits non-monotonic behaviour. These figures are
omitted here due to space constraints — A complete set
of results and figures is available in the supplementary
material.

5 Discussion and applications of our
model

Our experiments support the view that we can use the
Polya-Eggenberger distribution, with the dispersion
parameter estimated using Sneath and Sokal (1963)
to model the accuracy of a majority vote ensemble
classifier faithfully. A limitation of this model is that
it assumes equal accuracies across ensemble members
and this is not true in general. However, as our empir-
ical results indicate, this assumption is not crucial to
good performance of the model. Moreover the Polya-
Eggenberger model gives a very good estimate of the
average accuracy of the majority vote ensemble across
a very wide range of ensemble member sizes, and in-
dependently of those particular aspects of the problem
that are not related to classifier diversity, such as the
original number of predictor variables, d, the hypothe-
sis class of functions from which the model is selected,
and even the sample size, n. We note that these factors
must of course play a part in the accuracy of the base
classifiers, and therefore they have an indirect effect
on the parameters of our model. Nonetheless it is sur-
prising, to us, just how well we can model ensemble
accuracy without considering all of those important
ingredients.

Consider two classification ensembles with identical
average classifier performances p > 0.5, the first with
classifier correlation r and ensemble member size N,
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Figure 1: Majority vote ensemble accuracy on syn-
thetic data as modelled by a Polya-Eggenberger distri-
bution vs ensemble size for a small sample size setting
n = 150 and dimensionality d = 1000. The solid line
is the average majority vote accuracy measured em-
pirically. Dashed lines are the accuracies modelled us-
ing different diversity measures. The Sneath diversity
model most accurately estimates the empirical major-
ity vote accuracy.

Asymptotic Ensemble Majority Vote Acccuracy vs
Classifier Correlaio and Classifier Accuracy
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Figure 2: Surface plot for the asymptotic accuracy of
a majority vote ensemble with N — oo

and the second with classifier correlation ' and en-
semble member size N’ : If r + 1N;T <7+ 1;,7 then

Table 4: Maximum absolute residual between the em-
pirical majority vote ensemble accuracy and our model
on real world datasets. The results marked with (*) are
ensembles with non-monotonic accuracies. Observe
that on these data our model estimates were always
within 5% of the empirical accuracy.

Maximum Residual
Base
Dataset Classifier k=2 k=10 k=20
LDA-RS 4.55% 2.28 1.31
LDA-RP | 3.96 1.83 2.00
ARCENE SVM-RS | 4.56* 2.18 1.46
SVM-RP | 3.08 3.00 1.56
RF 1.57 1.31 1.96
LDA-RS 1.97 1.35 0.67
LDA-RP | 0.7 0.54 0.75
GISETTE | SVM-RS 1.36 2.32 1.24
SVM-RP | 0.64 0.66 0.66
RF 1.93 1.50 1.06
LDA-RS 4.36* 1.72 2.38
LDA-RP 1.04 1.35 0.51
MNIST SVM-RS | 4.46* 1.81 1.1
SVM-RP | 1.43 1.29 0.5
RF 2.04 0.79 0.49
EFOJQCU.OH k=20 | k=100 | k=200
1mension
LDA-RS 3.76* 1.20 1.19
LDA-RP 1.34 1.04 0.95
DEXTER | SVM-RS 1.85 1.47 0.87
SVM-RP | 2.00 1.58 0.77
RF 3.1 1.26 1.81
LDA-RS 1.59 1.07 0.90
LDA-RP 1.26 1.01 0.82
GTZAN SVM-RS 1.53 1.04 0.65
SVM-RP | 1.24 0.83 0.74
RF 0.65 1.10 1.24
E?OJGCU.OH k=200 | k=1000 | k=2000
1mension
SVM-RS | 1.00 0.37 0.41
IMDB RF 2.74 0.75 0.86

the ensemble on the LHS will typically have the better
majority vote accuracy since the variance of the errors
is smaller than that of the ensemble on RHS. Thus we
have a simple criterion for model selection that does
not require any nested (or indeed any other) structure
to make sense of.

A further practical question of interest is whether it
is better to have fewer negatively correlated classifiers
(generated via careful selection), or (infinitely) many
correlated classifiers. Here, one can verify that if we
can generate N > == then fewer negatively corre-
lated classifiers are better.

Since we can empirically predict the accuracy of dif-
ferent majority-voting ensembles precisely with our
model we can also predict the effects of greedy - vs.
non-greedy pruning of ensemble members by modelling
the effect (on ensemble accuracy) of removing different
ensemble members.
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Figure 3: Average Majority vote ensemble accuracy on real-world datasets as modelled by a Polya-Eggenberger
distribution vs ensemble member size for various datasets on different base classifiers. The upper and lower ticks
are bootstrap confidence intervals for the upper-95% and lower-5% empirical accuracy. Observe that our model

predicts the average ensemble accuracy almost exactly.

Now we consider the behaviour of a large ensemble
under our model for scenarios when the (average) cor-
relation of the classifier errors 7 =0, 7 < 0 or 7 > 0.
When 7 = 0 and average accuracy p is greater than 0.5
the P-E distribution has the same form as a binomial
distribution, and CJT then implies the majority vote
ensemble accuracy will increase as the ensemble size
N tends to infinity. However we see from the model
that for 7 < 0 accuracy of the ensemble should im-
prove, consistent with the findings of Kuncheva et al.
(2000). However it is not possible for all classifiers to
be both accurate and have negatively correlated er-
rors in a majority vote, there is a strict lower bound
on ¢ of —1/N and this tends to zero from below as
N — o0, so ¥ 0 approaching a binomial model.
One can think of this roughly as a consequence of the
pigeonhole principle.

Finally, if # > 0, observe that the P-E distribution
is equivalent to a beta-binomial distribution with pa-
rameters o = p=*, B = (1 —p)==" and N. The
limiting distribution as the number of ensemble mem-
bers N — oo is the beta distribution with parameters
«a and (. Using the CDF for the beta distribution we
can explore the asymptotic behaviour of a large en-
semble with # > 0. Figure 2 illustrates the CDF for
various values of & and 5. We see that when P is close

to 0.5, the size of ensemble N required to approach the
asymptotic behaviour can be very large. As a general
rule of thumb it seems that the ensemble size should
be at least N € O(m) before the majority vote
ensemble classifier accuracy tends to the estimated
asymptotic accuracy given by the corresponding beta
model. This knowledge may have practical value for
ensemble classification implementations where space
considerations (on a smart device, for example) limit
the ensemble size.

6 Conclusions and Future Work

We showed the accuracy of a majority-voting ensemble
can be accurately modelled using a Polya-Eggenberger
model using the Sneath and Sokal (1963) diversity
measure (p). We discussed some implications of our
model and verified it empirically on synthetic and real
data. Surprisingly the accuracy of our model seems
robust to properties that tend to make accuracy esti-
mates for single models less robust, such as high di-
mensionality or small sample size. We note these af-
fect the accuracy of individual ensemble members, the
average of which is a parameter in the P-E model we
propose. Modelling the accuracy of weighted majority-
voting ensembles remains a challenging open problem.
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