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Abstract

We study a class of weakly identifiable
location-scale mixture models for which the
maximum likelihood estimates based on n i.i.d.
samples are known to have lower accuracy
than the classical n� 1

2 error. We investigate
whether the Expectation-Maximization (EM)
algorithm also converges slowly for these mod-
els. We provide a rigorous characterization
of EM for fitting a weakly identifiable Gaus-
sian mixture in a univariate setting where we
prove that the EM algorithm converges in or-
der n

3
4 steps and returns estimates that are at

a Euclidean distance of order n� 1
8 and n

� 1
4

from the true location and scale parameter
respectively. Establishing the slow rates in
the univariate setting requires a novel local-
ization argument with two stages, with each
stage involving an epoch-based argument ap-
plied to a di↵erent surrogate EM operator at
the population level. We demonstrate several
multivariate (d � 2) examples that exhibit
the same slow rates as the univariate case.
We also prove slow statistical rates in higher
dimensions in a special case, when the fitted
covariance is constrained to be a multiple of
the identity.

1 Introduction

Gaussian mixture models [Pearson, 1894] have been
used widely to model heterogeneous data in many appli-
cations arising from physical and the biological sciences.
In several scenarios, the data has a large number of sub-
populations and the mixture components in the data
may not be well-separated. In such settings, estimating
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the true number of components may be di�cult, so that
one may end up fitting a mixture model with a number
of components larger than that present in the data.
Such mixture fits, referred to as over-specified mixture

distributions, are commonly used by practitioners in
order to deal with uncertainty in the number of com-
ponents in the data [Rousseau and Mengersen, 2011,
Havre et al., 2015]. However, a deficiency of such mod-
els is that they are singular, meaning that their Fisher
information matrices are degenerate. Given the pop-
ularity of over-specified models in practice, it is im-
portant to understand how methods for parameter
estimation, including maximum likelihood and the EM
algorithm, behave when applied to such models.

1.1 Background and past work

In the context of singular mixture models, an impor-
tant distinction is between those that are strongly

versus weakly identifiable. Chen [Chen, 1995] studied
the class of strongly identifiable models in which, while
the Fisher information matrix may be degenerate
at a point, and it is not degenerate over a larger
set. Studying over-specified Gaussian mixtures with
known scale parameters, he showed that the accuracy
of the MLE for the unknown location parameter is
of the order n

� 1
4 , which should be contrasted with

the classical n
� 1

2 rate achieved in regular settings.
A line of follow-up work has extended this type of
analysis to other types of strongly identifiable mixture
models; see the papers [Ishwaran et al., 2001,
Rousseau and Mengersen, 2011, Nguyen, 2013,
Heinrich and Kahn, 2018] as well as the references
therein for more details.

A more challenging class of mixture models are those
that are only weakly identifiable, meaning that the
Fisher information is degenerate over some larger
set. This stronger form of singularity arises, for in-
stance, when the scale parameter in an over-specified
Gaussian mixture is also unknown [Chen et al., 2001,
Chen and Li, 2009]. Ho et al. [Ho and Nguyen, 2016a]
characterized the behavior of MLE for a class of weakly
identifiable models. They showed that the conver-



Sharp Analysis of Expectation-Maximization for Weakly Identifiable Models

gence rates of MLE in these models could be very slow,
with the precise rates determined by algebraic relations
among the partial derivatives. However, this past work
has not addressed the computational complexity of
computing the MLE in a weakly identifiable model.

The focus of this paper is the intersection of statistical
and computational issues associated with fitting the
parameters of weakly identifiable mixture models. In
particular, we study the expectation-maximization
(EM) algorithm [Dempster et al., 1997, Wu, 1983,
Redner and Walker, 1984], which is the most popular
algorithm for computing (approximate) MLEs in the
mixture models. It is an instance of a minorization-
maximization algorithm, in which at each step, a
suitably chosen lower bound of the log-likelihood
is maximized. There is now a lengthy line of work
on the behavior of EM when applied to regular
models. The classical papers [Wu, 1983, Tseng, 2004,
Chrétien and Hero, 2008] establish the asymptotic
convergence of EM to a local maximum of the
log-likelihood function for a general class of incomplete
data models. Other papers [Jordan and Xu, 1995,
Xu and Jordan, 1996, Ma et al., 2000] characterized
the rate of convergence of EM for regular Gaussian
mixtures. More recent years have witnessed a flurry of
work on the behavior of EM for various kinds of reg-
ular mixture models [Balakrishnan et al., 2017,
Wang et al., 2015, Yi and Caramanis, 2015,
Xu et al., 2016, Daskalakis et al., 2017,
Yan et al., 2017, Hao et al., 2018, Cai et al., 2019];
as a consequence, our understanding of EM in such
cases is now relatively mature. More precisely, it is
known that for Gaussian mixtures, EM converges
in O(log(n/d))-steps to parameter estimates that lie
within Euclidean distance O((d/n)1/2) of the true
location parameters, assuming minimal separation
between the mixture components.

In our recent work [Dwivedi et al., 2020], we studied
the behavior of EM for fitting a class of non-regular
mixture models, namely those in which the Fisher
information is degenerate at a point, but the model
remains strongly identifiable. One such class of mod-
els are Gaussian location mixtures with known scale
parameters that are over-specified, meaning that the
number of components in the mixture-fit exceeds the
number of components in the data generating distribu-
tion. For such non-regular but strongly identifiable mix-
ture models, they [Dwivedi et al., 2020] showed that
the EM algorithm takes O((n/d)

1
2 ) steps to converge

to a Euclidean ball of radius O((d/n)
1
4 ) around the

true location parameter. Recall that for such models,
the MLE is known to lie at a distance O(n� 1

4 ) from
the true parameter [Chen, 1995], so that even though
its convergence rate as an optimization algorithm is

slow; the EM algorithm nonetheless produces a solu-
tion with a statistical error of the same order as the
MLE. This past work does not consider the more re-
alistic setting in which both the location and scale
parameters are unknown, and the EM algorithm is
used to fit both simultaneously. Indeed, as mentioned
earlier, such models may become weakly identifiable
due to algebraic relations among the partial deriva-
tives [Chen and Li, 2009]. Thus, analyzing EM in the
case of weakly identifiable mixtures is challenging for
two reasons: the weak separation between the mix-
ture components, and the algebraic interdependence
of the partial derivatives of the log-likelihood. The
main contributions of this work are (a) to highlight the
dramatic di↵erences in the convergence behavior of the
EM algorithm, depending on the structure of the fitted
model relative to the data-generating distribution; and
(b) to analyze the EM algorithm under a few specific
yet representative settings of weakly identifiable mod-
els, giving a precise analytical characterization of its
convergence behavior.

1.2 Some illustrative examples

Before proceeding further, we summarize a few common
aspects of the numerical experiments and the associated
figures presented in the paper. Computations at the
population-level were done via numerical integration on
a su�ciently fine grid. For EM with finite sample size
n, we track its performance for several values of n 2

{100, 200, 400, . . . , } and report the quantity bme + 2bse
on the y-axis, where bme and bse, respectively, denote the
mean and standard deviation across the experiments
for the metric under consideration (as a function of
n on the x-axis, e.g., Wasserstein error for parameter
estimation in Figure 1. The stopping criteria for sample
EM were: (a) the change in the iterates was small
enough (< .001/n), or (b) the number of iterations
was too large (greater than 100, 000); criteria (a) led
to convergence in most experiments. Furthermore,
whenever we provide a slope, it is the slope for the
least-squares fit on the log-log scale for the quantity
on y-axis when fitted with the quantity reported on
the x-axis. For instance, in Figure 1(a), we plot the
Wasserstein error between the estimated mixture and
the true mixture on the y-axis value versus the sample
size n on the x-axis and also provide the slopes for
the least-squares fit. In particular, in panel (a) the
green dot-dashed line with the legend ‘slope= �0.09’
denotes the least-squares fit and the respective slope for
the logarithmic error logW1(G⇤, Gfit) (green diamonds)
with respect to the logarithmic sample size log n when
the number of components in the fitted mixture is 3.
Such a result implies that the error W1(G⇤, Gfit) scales
as n�0.09 with the sample size n in our experiments.

To begin with, we consider the simplest case of over-
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Figure 1. Scaling of the Wasserstein error between the true parameters and the EM estimates, when EM is
used to fit a Gaussian mixture model with Kfit 2 {1, 2, 3} components, i.e., Gfit =

PKfit
i=1 wiN (µi,⌃i), on an n

sample-dataset generated from standard Gaussian distribution G⇤ = N (0, Id). In all three examples, when the fitted
model is over-specified, meaning that the fitted model has more components than the true model (Kfit 2 {2, 3} in
these examples), we observe a significant increase in the Wasserstein error. Stated di↵erently, the simulations suggest
that the estimation accuracy of the EM algorithm degrades dramatically when the fitted model is over-specified.

specification with Gaussian mixture models—when the
true data is generated from a zero-mean standard Gaus-
sian distribution in d dimensions and EM is used to
fit a general multi-component mixture model with dif-
ferent number of mixtures. (We note that fitting by
one mixture model is simply a Gaussian fit.) Given
the estimates for the mixture weights, location and
scale parameters returned by EM, we compute the
first order Wasserstein distance1 between the true and
estimated parameters. Results for d 2 {1, 2, 4} and
for various amount of over-specification are plotted in
Figure 1. From these results, we notice that the decay
in statistical error is n�1/2 when the fitted number of
components is well-specified and equal to the true num-
ber of components but has a much slower rate whenever
the number of fitted components is two or more. More-
over, in Section 4 (see Figure 3) we show that such a
phenomenon occurs more generally in mixture models.

While a rigorous theoretical analysis of EM under over-
specification in general mixture models is desirable, it
remains beyond the scope of this paper. Instead, here
we provide a full characterization of EM when it is used
to fit the following class of models to the data drawn
from standard Gaussian N (0, Id):

Gsymm((✓,�
2))=

1

2
N (✓,�2

Id) +
1

2
N (�✓,�

2
Id). (1)

In particular, in this symmetric fit, we fix the mix-
ture weights to be equal to 1

2 and require that the
two components have same scale parameter. Given
the estimates b✓, b�, the Wasserstein error (see equa-
tion (58) in Appendix D) in this case can be simplified

as kb✓k2+
p
d
p

|b�2 � 1|. In our results to be stated later,
we show that the two terms are of the same order (equa-
tions (6), (21)) and hence we primarily focus on the

1 First-order Wasserstein distance has been used in prior
works to characterize the error between the estimated and
true parameters. See section 1.1 [Ho and Nguyen, 2016b].

error kb✓�✓?k2 going forward to simplify the exposition.
We consider our set-up as a simple yet first step towards
understanding the behavior of EM in over-specified
mixtures when both location and scale parameter are
unknown. In our prior work [Dwivedi et al., 2020], we
studied the slow down of EM with over-specified mix-
tures for estimating only the location parameter, but
they assumed that the scale parameter was known and
fixed. Here a more general setting is considered.

We now elaborate the choice of our class of models (1)
that may appear a bit restrictive at first glance. This
model turns out to be the simplest example of a weakly
identifiable model in d = 1. Let � denote the density
of a Gaussian distribution with mean ✓ and variance
�
2, then we have

@
2
�

@✓2
(x; ✓,�2) = 2

@�

@�2
(x; ✓,�2), (2)

valid for all x 2 R, ✓ 2 R and � > 0. As alluded to ear-
lier, models with algebraic dependence between partial
derivatives lead to weak identifiability and slow statisti-
cal estimation with MLE. However, in the multivariate
setting when the same parameter � is shared across mul-
tiple dimensions, this algebraic relation does not hold
and the model is strongly identifiable (since the Fisher
information matrix is singular at (✓⇤,�⇤) := (0, 1)).
For this reason, we believe that analysis of EM for the
special fit (1) may provide important insight for more
general over-specified weakly identifiable models.

Population EM: Given n samples from a d-
dimensional standard Gaussian distribution, the sample
EM algorithm for location and scale parameters gener-
ates a sequence of the form ✓

t+1 = Mn,d(✓t) and �
t+1,

which is some function of k✓
t+1

k
2
2; see equation (3c)

for a precise definition. An abstract counterpart of
the sample EM algorithm—not useful in practice but
rather for theoretical understanding—is the population
EM algorithm Md, obtained in the limit of an infinite
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sample size (cf. equation (11b)).

In practice, running the sample EM algorithm yields
an estimate b✓n,d of the unknown location parameter ✓⇤.
Panel (a) in Figure 2 shows the scaling of the statistical

estimation error kb✓n,d � ✓
⇤
k2 of this sample EM esti-

mate versus the sample size n on a log-log scale. The
three curves correspond to dimensions d 2 {1, 2, 16},
along with least-squares fits (on the log-log scale) to
the data. In panel (b), we plot the Euclidean norm
k✓

t
k2 of the population EM iterate2 versus the iteration

number t, with solid red line corresponding to d = 1
and the dash-dotted green line corresponding to d = 2.
Observe that the algorithm converges far more slowly
in the univariate case than the multivariate case. The
theory to follow in this paper (see Theorems 1, 2 and
Lemmas 1 and 3) provides explicit predictions for the
rate at which di↵erent quantities plotted in Figure 2
should decay. We now summarize our theoretical re-
sults that are also consistent with the trends observed
in Figure 2.

1.3 Our contributions

The main contribution of this paper is to provide a
precise analytical characterization of the behavior of the
EM algorithm for certain special cases of over-specified
mixture models (1).

Univariate over-specified Gaussian mixtures: In
the univariate setting (d = 1) of Gsymm in (1), we prove
that the EM estimate has statistical estimation er-
ror of the order n

� 1
8 and n

� 1
4 after order n

3
4 steps

for the location and scale parameters respectively. In
particular, Theorem 1 provides a theoretical justifi-
cation for the slow rate observed in Figure 2 (a) for
d = 1 (red dotted line with star marks). Proving
these rates requires a novel analysis, and herein lies
the main technical contribution of our paper. Indeed,
we show that all the analysis techniques introduced in
past work on EM, including work on both the regu-
lar [Balakrishnan et al., 2017] and strongly identifiable
cases [Dwivedi et al., 2020], lead to sub-optimal rates.
Our novel method is a two-stage approach that makes
use of two di↵erent population level EM operators.
Moreover, we also prove a matching lower bound (see
Appendix B) which ensures that the upper bound of
order n� 1

8 for the statistical error of sample EM from
Theorem 1 is tight up to constant factors.

Multivariate setting with shared covariance:
Given the technical challenges even in the simple uni-
variate case, the symmetric spherical fit Gsymm in (1)

2In fact, our analysis makes use of two slightly di↵erent
population-level operators fMn,d and Md defined in equa-
tions (22) and (11b) respectively. Figure 2(b) shows plots
for the operator Md, but the results are qualitatively similar
for the operator fMn,d.

serves as a special case for the multivariate setting
d � 2. In this case, we establish that the sharing of
scale parameter proves beneficial in the convergence of
EM. Theorem 2 shows that sample EM algorithm takes
O((n/d)1/2) steps in order to converge to estimates, of
the location and scale parameters respectively, that lie
within distances O(d/n)1/4 and O(nd)�

1
2 of the true

location and scale parameters, respectively.

General multivariate setting: We want to remind
the readers that we expect the Wasserstein error to
scale much slowly than n

� 1
4 (the rate mentioned in the

previous paragraph) while estimating over-specified
mixtures with no shared covariance. When the fitted
variance parameters are not shared across dimensions
our simulations under general multi-component fits in
Figure 1 demonstrate a much slower convergence of
EM (for which a rigorous justification is beyond the
scope of this paper).

Notation: In the paper, the expressions an - bn or
an  O(bn) will be used to denote an  cbn for some
positive universal constant c that does not change with
n. Additionally, we write an ⇣ bn if both an - bn

and bn - an hold. Furthermore, we denote [n] as the
set {1, . . . , n} for any n � 1. We define dxe as the
smallest integer greater than or equal to x for any
x 2 R. The notation kxk2 stands for the `2 norm of
vector x 2 Rd. We use c, c

0
, c1 etc. to denote some

universal constants independent of problem parameters
(which might change in value each time they appear).

1.4 EM updates for symmetric fit Gsymm

The EM updates for Gaussian mixture models are
standard, so we simply state them here. In terms of
the shorthand notation ⌘ := (✓,�), the E-step in the
EM algorithm involves computing the function

Qn(⌘
0; ⌘) :=

1

n

nX

i=1

⇥
w✓,�(Xi) log

�
�(Xi; ✓

0
, (�0)2Id)

�

+ (1 � w✓,�(Xi)) log
�
�(Xi;�✓

0
, (�0)2Id)

� ⇤
,

where the weight function is given by

w✓,�(x) = (1 + e
�2✓>x

�2 )�1. The M-step involves
maximizing the Qn-function over the pair (✓0,�0) with
⌘ fixed, which yields

✓
0 =

1

n

nX

i=1

(2w✓,�(Xi) � 1)Xi, and (3a)

(�0)2 =
1

d

✓Pn
i=1 kXik

2
2

n
� k✓

0
k
2
2

◆
, (3b)
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Figure 2. Behavior of the EM algorithm for the fitted model (1), where the data is being generated from N (0, Id).

(a) Scaling of the Euclidean error kb✓n,d � ✓⇤k2 with respect to the sample size n for dimension d 2 {1, 2, 16}. Here,
b✓n,d denotes the EM algorithm estimate of the mean parameter ✓ based on n samples. Note that the simulations
indicate two distinct error scaling for d = 1 and d > 1. (b) Convergence behavior of the population-like EM sequence
✓t+1 = Md(✓

t) (11b) in dimensions d = 1 and 2. The rate of convergence in dimension d = 1 is significantly slower
compared to the rate in dimension d = 2. Overall, both the plots provide strong empirical evidence towards two
distinct behaviors of the EM algorithm for dimension d = 1 and dimensions d > 1. See the Theorems 1-2, and
Lemmas 1 and 3 for a theoretical justification of trends in panels (a) and (b) respectively.

Doing some straightforward algebra, the EM updates
(✓tn,�

t
n) can be succinctly defined as

✓
t+1
n =

1

n

nX

i=1

tanh

✓
X

>
i ✓

t
nPn

i=1 kXik
2
2/(nd) � k✓tnk22/d

◆

=: Mn,d(✓
t
n), (3c)

and �
t+1
n =

Pn
i=1 kXik

2
2/(nd) � k✓

t+1
n k

2
2/d. For sim-

plicity in presentation, we refer to the operator Mn,d

as the sample EM operator.

Organization: We present our main results in Sec-
tion 2, with Section 2.1 devoted to the univariate case,
Section 2.2 to the multivariate case and Section 2.3 to
the simulations with more general mixtures. Our proof
ideas are summarized in Section 3 and we conclude
with a discussion in Section 4. The detailed proofs of
all our results are deferred to the Appendices.

2 Main results

In this section, we provide our main results for the
behavior of EM with the singular (symmetric) mix-
tures fit Gsymm (1). Theorem 1 discusses the result
for the univariate case, Theorem 2 discusses the re-
sult for multivariate case. In Section 2.3 we discuss
some simulated experiments for general multivariate
location-scale Gaussian mixtures.

2.1 Results for the univariate case

As discussed before, due to the relationship between the
location and scale parameter, namely the updates (3c),
it su�ces to analyze the sample EM operator for the
location parameter. For the univariate Gaussian mix-
tures, given n samples {Xi, i 2 [n]}, the sample EM

operator is given by

Mn,1(✓) :=
1

n

nX

i=1

Xi tanh

"
Xi✓Pn

j=1 X
2
j /n � ✓2

#
. (4)

We now state our first main result that characterizes
the guarantees for EM under the univariate setting.
Let I 0� denote the interval [cn� 1

12+�
, 1/10] where c is a

positive universal constant.

Theorem 1. Fix � 2 (0, 1), � 2 (0, 1/8], and

let Xi
i.i.d.
⇠ N (0, 1) for i = 1, . . . , n such that

n % log log(1/�)
� . Then for any initialization ✓

0
n that

satisfies |✓
0
n| 2 I

0
�, the sample EM sequence ✓

t+1
n =

Mn,1(✓tn), satisfies

|✓
t
n � ✓

⇤
|  c1

1

n1/8��
log5/4

✓
10n log(8/�)

�

◆
, (5)

for all t � c2n
3
4�6�

· log n log 1
� with probability at least

1 � �.

See Appendix A.1 for the proof.

The bound (5) shows that with high probability af-
ter O(n3/4) steps the sample EM iterates converge to
a ball around ✓

⇤ whose radius is arbitrarily close to
n
�1/8. Moreover, as a direct consequence of the rela-

tion (3b), we conclude that the EM estimate for the
scale parameter is of order n� 1

4 with high probability:

��(�t
n)

2
� (�⇤)2

�� =
����

Pn
i=1 Xi

2

n
�
�
✓
t
n � ✓

⇤�2
� (�⇤)2

����

- n
� 1

2 + n
� 1

4 = O(n� 1
4 ) (6)

where we have used the standard chi-squared concen-
tration for the sum

Pn
i=1 Xi

2
/n.
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Matching lower bound: In Appendix B, we prove
a matching lower bound and thereby conclude that the
upper bound of order n� 1

8 for the statistical error of
sample EM from Theorem 1 is tight up to constant
factors. In Section 2.3, we provide further evidence
(cf. Figure 3) that the slow statistical rates of EM
with location parameter that we derived in Theorem 1
might appear in more general settings of location-scale
Gaussian mixtures as well.

2.2 Results for the multivariate case

Analyzing the EM updates for higher dimensions turns
out to be challenging. However, for the symmetric fit
in higher dimensions given by

Gsymm((✓,�
2))=

1

2
N (✓,�2

Id)+
1

2
N (�✓,�

2
Id), (7)

the sample EM operator Mn,d(✓) has a closed form as
already noted in the updates (3b) and (3c). Note that
for the fit (7), we have assumed the same scale param-
eter for all dimensions. Such a fit is over-specified for
data drawn from Gaussian distribution N (0, Id). We
now show that the sharing of scale parameter in the
model fit across dimensions (7), leads to a faster con-
vergence of EM in d � 2—both in terms of number of
steps and the final statistical accuracy. In the following

result, we denote I� := [5
�
d
n

� 1
4+�

,
1
8 ].

Theorem 2. Fix � 2 (0, 1), � 2 (0, 1/4], and let

Xi
i.i.d.
⇠ N (0, Id) for i = 1, . . . , n such that d � 2

and n % d log
1
4� (log 1/�

� ). Then with any starting point

✓
0
n such that k✓

0
nk2 2 I�, the sample EM sequence

✓
t+1
n = Mn,d(✓tn) satisfies

k✓
t
n � ✓

⇤
k2  c1

✓
d

n
log

log(1/�)

�

◆ 1
4��

, (8)

for all t � c2

�
n
d

� 1
2�2�

log n
d log 1

� with probability at

least 1 � �.

See Appendix A.2 for the proof.

The results in Theorem 2 show that the that the sample
EM updates converge to a ball around ✓

⇤ = 0 with
radius arbitrarily close to (d/n)

1
4 when d � 2. At

first sight, the initialization condition k✓
0
nk2  1/8,

assumed in Theorem 2, might seem pretty restrictive
but Lemma 6 (in Appendix C.6) shows that for any

✓
0
n satisfying k✓

0
nk2 

p
d, we have fMn,d(✓0n) 

p
2/⇡,

with high probability. In light of this result, we may
conclude that the initialization condition is Theorem 2
is not overly restrictive.

Comparison with Theorem 1: The scaling of order
n
� 1

4 with n is significantly better than the univariate
case (n� 1

8 ) stated in Theorem 1. We note that this

faster statistical rate is a consequence of the sharing of
the scale parameter across dimensions, and does not
hold when the fit (7) has di↵erent variance parameters.
Indeed, as we demonstrated in Figure 1, when the fitted
components have freely varying scale parameter, the
statistical rate slows down (and can be of the order
n
� 1

8 in higher dimensions).

2.3 Simulations with general cases

We now present preliminary evidence that the slow
statistical rates of EM with location parameter that
we derived in Theorem 1 might appear in more general
settings. In Figure 3, we plot the statistical error of
estimates returned by sample EM when estimating all

the parameters (namely weights, location and scale)
simultaneously, as a function of sample size n, for the
following two cases:

G
d=1
? =

1

6
N (�5, 1)+

1

2
N (1, 3)+

1

3
N (7, 2); (9)

G
d=2
? =

1

2
N
�0
0

�
, I
�
+

1

6
N
� 7

5

�
, 2I
�1
3
N
� �4

�7

�
, 3I
�
.

(10)

We plot the results for a Kfit 2 {3, 4, 5}-mixture Gaus-
sian model fit. When Kfit is equal to the number of
components (= 3) in the true mixture the statistical
rate is n�1/2. When it is larger, i.e., Kfit 2 {4, 5}, the
statistical rate of EM is much larger, n�0.12 in panel
(a) (for Kfit = 5) and n

�0.20 in panel (b) (for Kfit = 5)
of Figure 3. These simulations suggest that the sta-
tistical rates slower than n

� 1
4 and of order n

� 1
8 may

arise in more general settings, and moreover that the
rates get slower as the over-specification of the number
of mixtures increases. See Section 4 for possible future
work in this direction.

3 Analysis of EM

We now provide a road-map for the technical analy-
sis of EM. Deriving a sharp rate for univariate case
(Theorem 1) turns out to

Our proof makes use of the population-to-
sample analysis framework of Balakrishnan et
al. [Balakrishnan et al., 2017] albeit with several new
ideas. Let Y ⇠ N (0, 1), then the population-level
analog of the operator (3c) can be defined in two ways:

fMn,1(✓) :=EY

"
Y tanh

 
Y ✓Pn

j=1 X
2
j /n�✓2

!#
, (11a)

M1(✓) := EY


Y tanh

✓
Y ✓

1 � ✓

◆�
. (11b)

The particular choice of the population-like operator
fMn,1 in equation (11a) was motivated by the previous
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Figure 3. Scaling of the first-order Wasserstein error for EM estimates when fitting a Gaussian mixture with
Kfit 2 {3, 4, 5}, i.e., Gfit =

PKfit
i=1 wiN (µi,⌃i), on n i.i.d. samples from a 3-Gaussian mixture model (equations (9)

and (10)). In the case of no over-specification, i.e., Kfit = Ktrue = 3, the error scales as n�1/2, but when the fitted
model is over-specified (Kfit 2 {4, 5}), the scaling is much worse (and degrades further for any given n as Kfit gets
large). See Section 2.3 for further details.

works [Cai et al., 2019] with the location-scale Gaus-
sian mixtures. We refer to this operator as the pseudo-

population operator since it depends on the samples
{Xi, i = 1, . . . n} and involves an expectation. Nonethe-

less, as we show in the sequel, analyzing fMn,1 is not
enough to derive sharp rates for sample EM in the
over-specified setting considered in Theorem 1. A care-
ful inspection reveals that a “better” choice of the
population operator is required, which leads us to de-
fine the operator M1 in equation (11b). Unlike the

pseudo-population operator fMn,1, the operator M1 is
indeed a population operator as it does not depend
on samples X1, . . . , Xn. Note that, this operator is
obtained when we replace the sum

Pn
j=1 Xj

2
/n in the

definition (11a) of the operator fMn,1 by its correspond-
ing expectation E[kXk

2
2] = 1. For this reason, we also

refer to this operator M1 as the corrected population

operator. In the next lemma, we state the properties
of the operators defined above (here I

0
� denotes the

interval [cn� 1
12+�

, 1/10]).

Lemma 1. The operators fMn,1 and M1 satisfy

✓
1 �

3✓6

2

◆
|✓| 

���fMn,1(✓)
��� 

✓
1 �

✓
6

5

◆
|✓| , (12a)

✓
1 �

✓
6

2

◆
|✓| 

��M1(✓)
�� 

✓
1 �

✓
6

5

◆
|✓| , (12b)

where bound (12a) holds for all |✓| 2 I
0
� with high

probability
3
and the bound (12b) is deterministic and

holds for all |✓| 2
⇥
0, 3

20

⇤
. Furthermore, for any fixed

3 Since the operator fMn,1 depends on the samples
{Xj , j 2 [n]}, only a high probability bound (and not a
deterministic one) is possible.

� 2 (0, 1) and any fixed r � O(n� 1
12 ), we have that

P
"

sup
✓2B(0,r)

���Mn,1(✓) � fMn,1

���  cr

r
log(1/�)

n

#

� 1 � �. (12c)

On the other hand, for any fixed r  O(n� 1
16 ), we have

P

2

4 sup
✓2B(0,r)

��Mn,1(✓) � M1(✓)
��  c2r

3

s
log10(5n/�)

n

3

5

� 1 � �. (12d)

See Appendix A.3 for its proof where we also nu-
merically verify the sharpness of the results above
(see Figure 4). Lemma 1 establishes that, as ✓ !

0, both the operators have similar contraction co-
e�cient �(✓) ⇣ 1 � c✓

6; thereby justifying the
rates observed for d = 1 in Figure 2(b). How-
ever, their perturbation bounds are significantly dif-

ferent: while the error sup✓2B(0,r)

���Mn,1(✓) � fMn,1(✓)
���

scales linearly with the radius r, the deviation error
sup✓2B(0,r)

��Mn,1(✓) � M1(✓)
�� has a cubic scaling r

3.

Remark: A notable di↵erence between the two
bounds (12c) and (12d) is the range of radius r over
which we prove the validity of the bounds (12c) and
(12d). With our tools, we establish that the pertur-

bation bound (12c) for the operator fMn,1 is valid for

any r % n
� 1

12 . On the other hand, the correspond-
ing bound (12d) for the operator M1 is valid for any
r - n

� 1
16 . We now elaborate why these di↵erent ranges

of radii are helpful and make both the operators crucial
to in the analysis to follow.
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3.1 A sub-optimal analysis

Using the properties of the operator fMn,1 from
Lemma 1, we now sketch the statistical rates for the
sample EM sequence, ✓t+1

n = Mn,1(✓tn), that can be
obtained using (a) the generic procedure outlined by
Balakrishnan et al. [Balakrishnan et al., 2017] and (b)
the localization argument introduced in our previous
work [Dwivedi et al., 2020]. As we show, both these
arguments end up being sub-optimal as they do not
provide us the rate of order n� 1

8 stated in Theorem 1.
We use the notation:

sup
|✓|�✏

���fMn,1(✓)
��� /|✓| - 1 � ✏

6 =: �(✏).

Sub-optimal rate I: The eventual radius of con-
vergence obtained using Theorem 5(a) from the pa-
per [Balakrishnan et al., 2017] can be determined by

r/
p
n

1 � �(✏)
= ✏ =) ✏ ⇠ n

�1/14
, (13a)

where r denotes the bound on the initialization radius
|✓

0
| but we have tracked dependency only on n. This

informal computation suggests that the the sample EM
iterates for location parameter are bounded by a term
of order n�1/14. This rate is clearly sub-optimal when
compared to the EM rate of order n� 1

8 from Theorem 1.

Sub-optimal rate II: Next we apply the more
sophisticated localization argument from the pa-
per [Dwivedi et al., 2020] in order to obtain a sharper
rate. In contrast to the computation (13a), this argu-
ment leads to solving the equation

✏ · r/
p
n

1 � �(✏)
= ✏ =)

✏r/
p
n

✏6
= ✏ =) ✏ ⇠ n

� 1
12 , (13b)

where, as before, we have only tracked dependency
on n. This calculation allows us to conclude that the
EM algorithm converges to an estimate which is at a
distance of order n� 1

12 from the true parameter, which
is again sub-optimal compared to the n

� 1
8 rate of EM

from Theorem 1.

Indeed both the conclusions above can be made rigorous
(See Corollary 1 for a formal statement) to conclude
that, with high probability for any � 2 (0, 1

12 ]

��✓tn � ✓
⇤��  O(n� 1

12+�) for t � O(n
1
2�6�). (14)

3.2 A two-staged analysis for sharp rates

In lieu of the above observations, the proof of the sharp
upper bound (5) in Theorem 1 proceeds in two stages.
In the first stage, invoking Corollary 1 with � = 1

48 ,
we conclude that with high probability the sample EM
iterates converge to a ball of radius at most r after

p
n

steps, where r ⌧ n
�1/16. Consequently, the sample

EM iterates after
p
n steps satisfy the assumptions

required to invoke the perturbation bounds for the
operator M1 from Lemma 1. Thereby, in the second
stage of the proof, we apply the 1 � c✓

6 contraction
bound (12b) of the operator M1 in conjunction with
the cubic perturbation bound (12d). Using localization
argument for this stage, we establish that the EM iter-
ates obtain a statistical error of order n�1/8 in O

�
n
3/4
�

steps as stated in Theorem 1. See Appendix A.1 for a
detailed proof.

4 Discussion

In this paper, we established several results character-
izing the convergence behavior of EM algorithm for
over-specified location-scale Gaussian mixtures. We
view our analysis of EM for the symmetric singular
Gaussian mixtures as the first step toward a rigorous
understanding of EM for a broader class of weakly iden-
tifiable mixture models. Such a study would provide
a better understanding of the singular models with
weak identifiability which do arise in practice since:
(a) over-specification is a common phenomenon in fit-
ting mixture models due to weak separation between
mixture components, and, (b) the parameters being
estimated are often inherently dependent due to the
algebraic structures of the class of kernel densities be-
ing fitted and the associated partial derivatives. We
now discuss a few other directions that can serve as a
natural follow-up of our work.

The slow rate of order n
� 1

8 for EM updates with lo-
cation parameter is in a sense a worst-case guarantee.
In the univariate case, for the entire class of two mix-
ture Gaussian fits, MLE exhibits the slowest known
statistical rate n

� 1
8 for the settings that we analyzed.

More precisely, for certain asymmetric Gaussian mix-
ture fits, the MLE convergence rate for the location
parameter is faster than that of the symmetric equal-
weighted mixture considered in this paper E.g., for
the fit 1/3N (�2✓,�2) + 2/3N (✓,�2) on N (0, 1) data,
the MLE converges at the rate n

�1/6 and n
�1/3 re-

spectively [Ho and Nguyen, 2016b]. It is interesting to
understand the e↵ect of such a geometric structure
of the global maxima on the convergence of the EM
algorithm.

Our work analyzed over-specified mixtures with a spe-
cific structure and only one extra component. As
demonstrated above, the statistical rates for EM ap-
pear to be slow for general covariance fits and further
appear to slow down as the number of over-specified
components increases. The convergence rate of the
MLE for such over-specified models is known to fur-
ther deteriorate as a function of the number of extra
components. It remains to understand how the EM al-
gorithm responds to these more severe—and practically
relevant—instances of over-specification.
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