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Abstract

We develop a convex analytic framework for
ReLU neural networks which elucidates the
inner workings of hidden neurons and their
function space characteristics. We show that
rectified linear units in neural networks act
as convex regularizers, where simple solutions
are encouraged via extreme points of a cer-
tain convex set. For one dimensional regres-
sion and classification, we prove that finite
two-layer ReLU networks with norm regular-
ization yield linear spline interpolation. In
the more general higher dimensional case,
we show that the training problem for two-
layer networks can be cast as a convex opti-
mization problem with infinitely many con-
straints. We then provide a family of convex
relaxations to approximate the solution, and
a cutting-plane algorithm to improve the re-
laxations. We derive conditions for the ex-
actness of the relaxations and provide simple
closed form formulas for the optimal neural
network weights in certain cases. Our results
show that the hidden neurons of a ReLU net-
work can be interpreted as convex autoen-
coders of the input layer. We also establish
a connection to `0-`1 equivalence for neural
networks analogous to the minimal cardinal-
ity solutions in compressed sensing. Exten-
sive experimental results show that the pro-
posed approach yields interpretable and ac-
curate models.

1 Introduction

Understanding the fundamental reason why training
over-parameterized Deep Neural Networks (DNNs)
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converges to minimizers that generalize well remains
an open problem. Recently, it was empirically ob-
served that ReLU NNs exhibit an interesting struc-
ture, where only finitely many simple functions can be
obtained as optimal solutions (Maennel et al., 2018;
Savarese et al., 2019). In (Savarese et al., 2019), the
function space of one dimensional (1D) ReLU regres-
sion networks was studied, where it was shown that
among infinitely many two-layer ReLU networks that
perfectly fit the training data, the one with the mini-
mum Euclidean norm parameters yields a linear spline
interpolation. It is possible that the structure induced
by over-parameterization explains remarkable gener-
alization properties of DNNs. Despite the dramatic
surge of interest in NNs, the fundamental mechanism
behind these simple structures in over-parameterized
networks is largely unknown.

In this paper, we develop a convex analytic frame-
work to analyze two-layer ReLU NNs and character-
ize the structure that emerges as a result of over-
parameterization. We show that over-parameterized
networks behave like convex regularizers, where simple
solutions are encouraged via extreme points of a cer-
tain convex set. Our results are analogous to `1-norm
regularization where sparse solutions are encouraged
as a result of the 1-sparse extreme points of the `1-
ball. However, unlike these methods, we show that the
extreme points in over-parameterized NNs are data-
adaptive and precisely serve as convex autoencoders.
We fully describe the extreme points via analytical ex-
pressions. In one dimensional regression and classifi-
cation, the extreme points manifest as finitely many
simple quantized solutions, and yield linear spline in-
terpolations for regression/classification tasks explain-
ing and extending recent results.

1.1 Related work

A line of research (Maennel et al., 2018; Blanc et al.,
2019; Zhang et al., 2016) explored the behavior of
ReLU networks in finite size cases. In (Zhang et al.,
2016), the authors indicated that NNs are implicitly
regularized during training since Stochastic Gradient
Descent (SGD) converges to a solution with small
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norm. The idea of implicit regularization was also
extended to the networks trained with GD as well
as SGD. Particularly, the authors in (Maennel et al.,
2018) showed that implicit regularization has a strong
connection with the initialization of a network and
proved that network weights tend to align along cer-
tain directions determined by the input data, which
implies that there are only finitely many possible sim-
ple functions for a given dataset. In order to explain
generalization capabilities of ReLU networks, another
line of research in (Bengio et al., 2006; Wei et al.,
2018; Bach, 2017; Chizat and Bach, 2018) focused on
infinitely wide two-layer ReLU networks. In (Bengio
et al., 2006), the authors introduced an algorithm that
can train a regularized NN with infinite width in an
incremental manner. In (Wei et al., 2018), the au-
thors adopted a margin-based perspective, where they
showed that the optimal point of a weakly regularized
loss has the maximum margin property, thus, over-
parameterization can improve generalization bounds.

1.2 Our contributions

1) We develop a convex analytic framework for two-
layer ReLU NNs to provide a deeper insight into over-
parameterization and implicit regularization. We show
that over-parameterized NNs behave like convex regu-
larizers, where simple structures are encouraged in the
solution via the extreme points of a well-defined reg-
ularizer; 2) For one dimensional regression and clas-
sification, we prove that hidden layers form a linear
spline interpolation. We also provide an intuitive con-
vex geometric explanation of this fact, and derive a
general formula for the hidden layer representation in
higher dimensions; 3) We provide a convex relaxation
based training procedure, which is proven to be exact
under certain assumptions on the training set. We also
prove that these assumptions hold in generic regimes,
e.g., when the training examples are i.i.d. random; 4)
We establish an `0-`1 equivalence for NNs, which par-
allels minimum cardinality relaxations in compressed
sensing. We then provide closed form expressions for
the optimal ReLU networks in certain cases.

1.3 Overview of our results

Implicit regularization plays a key role in training
NNs, however, it is still theoretically elusive how NNs
trained with gradient descent (GD) and no regulariza-
tion obtain simple solutions, e.g., spline interpolation.
In order to gain a deeper insight into the effects of
initialization magnitude, we perform a simple exper-
iment on training 1D ReLU NNs on the data shown
in Figure 1b. The results in Figures 1a and 1b show
that the two-layer ReLU regression network fits pre-
cisely a linear spline interpolation when the standard
deviation of the (zero-mean) initialization is below a

critical value. Thus, as emphasized by (Maennel et al.,
2018; Chizat and Bach, 2018), initialization magnitude
is critical for the final norm of the network parameters,
so that GD converges solutions with smaller norm, i.e.,
closer to initialization, which can generalize as a re-
sult of this implicit regularization. In Figure 1b, we
also display the set of neurons found by GD and the
corresponding overall function fit in the case of small
initialization. In this over-parameterized scenario, lin-
ear combination of the neurons with different weights
and biases still outputs a linear spline interpolation.
The same results also hold for the binary classification
using a two-layer ReLU network with the hinge loss
as illustrated in Figure 1c. The network fits a certain
piecewise linear function and the decision region (to
label the samples as ±1) boundaries become precisely
the zero crossings of this function. The central ques-
tions we will address in this paper are: Why are over-
parameterized NNs providing a linear spline interpo-
lation in 1D? Is there a general mechanism encour-
aging simple solutions in arbitrary dimensions? How
are the decision regions formed ? We show that these
questions are completely and rigorously answered us-
ing convex geometry and duality.

Simply stated, we show that the optimal solutions
have kinks at input data points because the con-
vex approximation1 of a data point xi given by
minλ<0,

∑
j λj=1 |xi −

∑
j∈S,j 6=i λjxj | is given by an-

other data point, i.e., an extreme point of the convex
hull of data points in S\{i}. Consequently, input data
points are the only allowed hidden neuron activation
thresholds at optimum for 1D networks. We further
provide a general formula for the hidden neuron con-
figurations in higher dimensions.

Specifically, we focus on minimizers for two-layer NNs
with small Euclidean norm. In one dimensional data
sets, through convex analytic arguments, we establish
that each training sample becomes an extreme point of
a certain convex set, which means that the activation
threshold of a ReLU function has to correspond to one
of the data samples. This result completely explains
what we observe in Figure 1. Since the data samples
are the activation thresholds, we observe a piecewise
linear function as the neural network output, where
the kinks occur exactly at the data samples (activa-
tion points). Our analysis also reveals that the hidden
neurons can be interpreted as data autoencoders in
higher dimensions and they can further be expressed
in closed form in certain cases.

Notation: We denote the matrices and vectors as
uppercase and lowercase bold letters, respectively. To
denote a vector or matrix of zeros or ones, we use 0

1Here xi is an arbitrary sample, and S is an arbitrary
subset of data points. λj ’s are mixture weights, approxi-
mating xi as a convex mixture of the data points in S\{i}.
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(a) Deviation of the ReLU network out-
put from linear spline vs standard de-
viation of initialization plotted for dif-
ferent number of hidden neurons m.
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(b) Contribution of each neuron along
with the overall fit. Each activation
point corresponds to a particular data
sample.
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(c) Binary classification using hinge
loss. Network output is piecewise lin-
ear, and decision regions are deter-
mined by zero crossings (see Lemma
2.6).

Figure 1: Analysis of one dimensional regression and classification with a two-layer NN.

or 1, respectively, where the sizes are understood from
the context. Additionally, Ik represents the identity
matrix of the size k. We also use (x)+ = max{x, 0}
for the ReLU activation. Furthermore, we denote the
set of integers from 1 to n as [n] and use the notation
e1, ...en for the ordinary basis vectors in Rn.

2 Preliminaries

Given n data samples, i.e., {ai}ni=1,ai ∈ Rd, we con-
sider two-layer NNs with m hidden neurons and ReLU
activations. Initially, we focus on the scalar output
case for simplicity, i.e.,

f(A) =

m∑
j=1

wj(Auj + bj1)+, (1)

where A ∈ Rn×d is the data matrix, uj ∈ Rd and
bj ∈ R are the parameters of the jth hidden neuron,
and wj ’s are the weights for the output layer. For
a more compact representation, we also define U ∈
Rd×m, b ∈ Rm, and w ∈ Rm as the hidden layer
weight matrix, the bias vector, and the output layer
weight vector, respectively. Thus, (1) can be written
as f(A) = (AU + 1bT )+w.

Note that we can assume that the bias term for the
output layer is zero without loss of generality, since
we can recover the general case (Maennel et al., 2018).
Given the data matrix A and the label vector y ∈ Rn,
consider training the network by solving the following
optimization problem

min
θ∈Θ

∥∥ m∑
j=1

wj(Auj + bj1)+ − y
∥∥2

2
+ β

m∑
j=1

(‖uj‖22 + w2
j ) ,

(2)

where β is a regularization parameter and we de-
fine the overall parameter space Θ as θ ∈ Θ =

{(U,b,w,m) |U ∈ Rd×m,b ∈ Rm,w ∈ Rm,m ∈
Z+}. Based on our observations in Figure 1a and
the results in (Savarese et al., 2019; Chizat and Bach,
2018; Neyshabur et al., 2014), we first focus on a min-
imum norm2 variant of (2). We define the squared
Euclidean norm of the weights (without biases) as
R(θ) = ‖w‖22 + ‖U‖2F . Then we consider the following
optimization problem

min
θ∈Θ

R(θ) s.t. fθ(A) = y, (3)

where the over-parameterization allows us to reach
zero training error over A via the ReLU network in (1).
The next lemma shows that the minimum squared Eu-
clidean norm is equivalent to minimum `1 norm after a
rescaling. This result was also presented in (Savarese
et al., 2019; Neyshabur et al., 2014).

Lemma 2.1 ((Savarese et al., 2019; Neyshabur et al.,
2014)). The following two optimization problems are
equivalent:

P ∗ = min
θ∈Θ

R(θ) s.t. fθ(A) = y

= min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 = 1,∀j.

Lemma 2.2. Replacing ‖uj‖2 = 1 with ‖uj‖2 ≤ 1
does not change the value of the above problem.

By Lemma 2.1 and 2.2, we can express (3) as

min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 ≤ 1,∀j. (4)

However, both (2) and (4) are quite challenging op-
timization problems due to the complicated behavior
of an affine mapping along with the ReLU activation.
In particular, depending on the properties of A, e.g.,
singular values, rank, and dimensions, the geometry of
the objective in (2) might considerably change.

2This can be regarded as weak regularization, i.e., β →
0 in (2) (see e.g. (Wei et al., 2018) for a similar notion).
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2.1 Geometry of the problem

In order to illustrate the geometry of (2), we partic-
ularly focus on a simple case where we have a single
neuron with no bias and regularization, i.e., m = 1,
b1 = 0, and β = 0. Thus, (2) reduces to

min
u1

∥∥w1(Au1)+ − y
∥∥2

2
s.t. ‖u1‖2 ≤ 1. (5)

The solution of (5) is completely determined by the set
QA = {(Au)+|u ∈ Rd, ‖u‖2 ≤ 1}. It is evident that
(5) is solved via scaling this set by |w1| to minimize
the distance to +y or −y, depending on the sign of w1.
We note that since ‖u‖2 ≤ 1 describes a d-dimensional
unit ball, Au describes an ellipsoid whose shape and
orientation is determined by the singular values and
the output singular vectors of A.

2.2 Rectified ellipsoid and its geometric
properties

A central object in our analysis is the rectified ellip-
soidal set introduced in the previous section, which is
defined as QA =

{(
Au
)

+
|u ∈ Rd, ‖u‖2 ≤ 1

}
. The set

QA is non-convex in general, as depicted in Figure 2b.
However, there exist data matrices A for which the set
QA is convex, e.g., diagonal data matrices. 2a.

2.2.1 Spike-free matrices

We say that a matrix A is spike-free if it holds that
QA = AB2 ∩ Rn+ , where AB2 = {Au |u ∈ B2}, and
B2 is the unit `2 ball defined as B2 = {u | ‖u‖2 ≤ 1}.
Note that QA is a convex set if A is spike-free. In this
case we have an efficient description of this set given
by QA = {Au|u ∈ Rd, ‖u‖2 ≤ 1, Au ≥ 0}.

If QA = {(Au)+|u ∈ Rd, ‖u‖2 ≤ 1} can be expressed
as Rn+ ∩ {Au|u ∈ Rd, ‖u‖2 ≤ 1} (see Figure 2a), then
(5) can be solved via convex optimization after the
rescaling u = u1w1

min
u

∥∥Au− y
∥∥2

2

s.t. u ∈ {Au < 0} ∪ {−Au < 0}, ‖u‖2 ≤ 1 .

The following lemma provides a characterization of
spike-free matrices

Lemma 2.3. A matrix A is spike-free if and only if
the following condition holds

∀u ∈ B2,∃z ∈ B2 such that
(
Au
)

+
= Az. (6)

Alternatively, A is spike free if and only if it holds that

max
u : ‖u‖2≤1, (In−AA†)(Au)+=0

‖A†
(
Au
)

+
‖2 ≤ 1 .

If A is full row rank, then the above condition simpli-
fies to

max
u : ‖u‖2≤1

‖A†
(
Au
)

+
‖2 ≤ 1 . (7)

We note that the condition in (7) bears a close re-
semblance to the irrepresentability conditions in Lasso
support recovery (see e.g. (Zhao and Yu, 2006)). It
is easy to see that diagonal matrices are spike-free.
More generally, any matrix of the form A = ΣVT ,
where Σ is diagonal, and VT is any matrix with or-
thogonal rows, i.e., VTV = In, is spike-free. In other
cases, QA has a non-convex shape as illustrated in Fig-
ure 2b. Therefore, the ReLU activation might exhibit
significantly complicated and non-convex behavior as
the dimensionality of the problem increases. Note that
AB2 ∩ Rn+ ⊆ QA always holds, and therefore the for-
mer set is a convex relaxation of the set QA. We call
this set spike-free relaxation of QA.

As another example for spike-free data matrices, con-
sider the Singular Value Decomposition of the data
matrix A = UΣVT in compact form. We can ap-
ply a whitening transformation on the data matrix by
defining Ã = AVΣ−1, which is known as zero-phase
whitening in the literature. Note that the empirical co-
variance of the whitened data is diagonal since we have
ÃT Ã = In. The following lemmas show that whitened
matrices with n ≤ d and rank-one data matrices with
positive left singular vectors are spike-free.

Lemma 2.4. Whitened data matrices with n ≤ d are
spike-free.

Lemma 2.5. Rank-one data matrices with positive left
singular vectors are spike-free.

2.3 Polar convex duality

It can be shown that the dual of the problem (4) is
given by3

max
v

vTy s.t. v ∈ Q◦A , − v ∈ Q◦A (8)

where Q◦A is the polar set (Rockafellar, 1970) of QA

defined as Q◦A = {v|vTu ≤ 1 ∀u ∈ QA} .

2.4 Extreme Points

Let us first define the extreme point of QA along v
as argmaxz∈QA

vT z. Note that the endpoints of the
spikes in Figure 2b are the extreme points in directions
e1 and e2. In this section we show that the extreme
points of QA are given by data samples and convex
mixtures of data samples in one dimensional and mul-
tidimensional cases, respectively. Here, we also pro-
vide a generic formulation for the extreme point along
an arbitrary direction.

Lemma 2.6. In a one dimensional data set (d = 1),
for any vector v ∈ Rn, an extreme point of QA along

3We refer the reader to the supplementary material for
the proof. For the remaining analysis, we drop the bias
term, however, similar arguments also hold for a case with
bias as illustrated in the supplementary file.
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(a) (b)

Figure 2: Two dimensional illustration of (a) a spike-free case and (b) a non spike-free case. The extreme points
(spikes) produce the piece-wise linear behavior in Figures 1b and 1c as predicted by our theory (see Lemma 2.7).
The set shown in the rightmost figure acts as a structured regularizer.

v is achieved when uv = ±1 and bv = −sign(uv)ai for
a certain index i ∈ [n].

Combined with Theorem 3.1, the above result proves
that the optimal network outputs the linear spline in-
terpolation for the input data. We now generalize the
result for extreme points in the span of the ordinary
basis vectors to higher dimensions. These will improve
our spike-free relaxation as a first order correction. For
instance, the behavior in Figure 2b is captured by the
convex hull of the union of extreme points along e1

and e2, and the spike-free relaxation.

Lemma 2.7. An extreme point in the span of each
ordinary basis direction ei is given by

ui =

ai −
∑n
j=1
j 6=i

λjaj∥∥∥∥ai −∑n
j=1
j 6=i

λjaj

∥∥∥∥
2

and bi = min
j 6=i

(−aTj ui), (9)

where λ is computed via the following problem

min
λ

∥∥∥∥ai − n∑
j=1
j 6=i

λjaj

∥∥∥∥
2

s.t. λ < 0,1Tλ = 1.

Our next result characterizes extreme points along ar-
bitrary directions for the general case.

Lemma 2.8. For any α ∈ Rn, the extreme point along
the direction of α can be found using

uα =

∑
i∈S(αi + λi)ai −

∑
j∈Sc νjaj

‖
∑
i∈S(αi + λi)ai −

∑
j∈Sc νjaj‖2

bα =

{
maxi∈S(−aTi u), if

∑
i∈S αi ≤ 0

minj∈Sc(−aTj u), otherwise
(10)

where the set of active and inactive ReLUs, i.e., S and

Sc, λ, and ν are obtained via the following problem

min
λ,ν

max
u,b

uT
(∑
i∈S

(αi + λi)ai −
∑
j∈Sc

νjaj

)
s.t. λ,ν < 0,

∑
i∈S

(αi + λi) =
∑
j∈Sc

νj , ‖u‖2 = 1.

Lemma 2.8 proves that optimal neurons can be char-
acterized as a linear combination of the data samples.
Below, we further simplify this characterization and
achieve a representer theorem for regularized NNs.

Corollary 2.1 (A representer theorem for opti-
mal neurons). Lemma 2.8 implies that each extreme
point along the direction α can be written in the fol-
lowing compact form

uα =

∑
i∈S αi(ai − ak)

‖
∑
i∈S αi(ai − ak)‖2

and b = −aTk uα

for some k and subset S. Therefore, optimal neurons
in the training objectives (2) and (4) all obey the above
representation.

Remark 2.1. We remark that an interpretation of
the extreme points given above is autoencoding: the
optimal neurons are convex mixture approximations of
subsets of samples via other subsets.

3 Main results

In the following, we present our main findings based
on the extreme point characterization.



Convex Geometry of Two-Layer ReLU Networks

3.1 Convex duality

Theorem 3.1. The dual of (4) is given by

D∗ = max
v∈Rn

vTy = max
v∈Rn

vTy , (11)

s.t.
∣∣vT (Au

)
+

∣∣ ≤ 1 ∀u ∈ B2 s.t. v ∈ Q◦A,−v ∈ Q◦A

and we have P ∗ ≥ D∗. For finite width NNs, there
exists a large enough m such that we have strong dual-
ity, i.e., P ∗ = D∗, and an optimal U for (4) satisfies
‖(AU∗)T+v∗‖∞ = 1 , where v∗ is dual optimal.4

Remark 3.1. Note that (11) is a convex optimization
problem with infinitely many constraints, and in gen-
eral not polynomial-time tractable. In fact, even check-
ing whether a point v is feasible is NP-hard: we need
to solve maxu:‖u‖2≤1

∑n
i=1 vi

(
aTi u

)
+

. This is related

to the problem of learning halfspaces with noise, which
is NP-hard to approximate within a constant factor
(see e.g. (Guruswami and Raghavendra, 2009; Bach,
2017)).

Corollary 3.1. Theorem 3.1 implies that the optimal
neuron weights are extreme points which solve

argmax
u:‖u‖2≤1

|v∗T
(
Au
)

+
|.

3.2 Structure of one dimensional networks

We are now ready to present our results on the struc-
ture induced by the extreme points. The following
corollary directly follows from Lemma 2.6.

Corollary 3.2. Let {ai}ni=1 be a one dimensional
training set i.e., ai ∈ R, ∀i ∈ [n]. Then, a set of
solutions to (4) that achieve the optimal value are ex-
treme points, and therefore satisfy {(ui, bi)}mi=1, where
ui = ±1, bi = −sign(ui)ai.

Proposition 3.1. The solution provided in Corollary
3.2 may not be unique. In the supplementary file, we
present a counter-example where an optimal solution
is not in this form, i.e., not a piecewise linear spline.

3.3 Closed form solutions and `0-`1
equivalence

A considerable amount of literature have been pub-
lished on the equivalence of minimal `1 and `0 so-
lutions in under-determined linear systems, where it
was shown that the equivalence holds under assump-
tions on the data matrices (see e.g. (Candes and Tao,
2005; Donoho, 2006; Fung and Mangasarian, 2011)).
We now prove a similar equivalence for two-layer NNs.
Consider the minimal cardinality problem

min
θ∈Θ
‖w‖0 s.t. fθ(A) = y, ‖uj‖2 = 1,∀j. (12)

4Similar results hold for other loss functions and vector
output networks. We defer these results to the supplemen-
tary file and present our results in this simplified version.

The following results provide a characterization of the
optimal solutions to the above problem

Lemma 3.1. Suppose that n ≤ d, A is full row rank
and y contains both positive and negative entries, and
define A† = AT (AAT )−1. Then an optimal solution
to the problem in (12) is given by

u1 =
A†
(
y
)

+

‖A†
(
y
)

+
‖2

, w1 = ‖A†
(
y
)

+
‖2

u2 =
A†
(
− y

)
+

‖A†
(
− y

)
+
‖2

, w2 = −‖A†
(
− y

)
+
‖2 .

Lemma 3.2. We have `1-`0 equivalence, i.e., the opti-
mal solutions of (12) and (4) coincide if the following
condition holds

min
v:vT

(
Au1

)
+

=1,vT
(
Au2

)
+

=−1

max
u:‖u‖2≤1

∣∣vT (Au
)

+

∣∣ ≤ 1 .

Furthermore, whitened data matrices with n ≤ d sat-
isfy `1-`0 equivalence.

3.4 A cutting plane method

In this section, we introduce a cutting plane based
training algorithm for the NN in (1). Among infinitely
many possible unit norm weights, we need to find the
weights that violate the constraint in (11), which can
be done by solving the following optimization problems

u∗1 = argmax
u:‖u‖2≤1

vT (Au)+, u∗2 = argmin
u:‖u‖2≤1

vT (Au)+.

(13)

However, (13) is not a convex problem. There exist
several methods and relaxations to find the optimal
parameters for (13). As an example, one can use the
Frank-Wolfe algorithm (Frank and Wolfe, 1956) in or-
der to approximate the solution iteratively. Here, we
show how to relax the problem using our spike-free
relaxation as follows

û1 = argmax
u:Au<0,‖u‖2≤1

vTAu, û2 = argmin
u:Au<0,‖u‖2≤1

vTAu,

(14)

where we relax the set {(Au)+|u ∈ Rd, ‖u‖2 ≤ 1} as
{Au|u ∈ Rd, ‖u‖2 ≤ 1} ∩ Rn+. Now, we can find the
weights for the hidden layer using (14). In the cutting
plane method, we first find a violating neuron using
(14). After adding these parameters to U as columns,
we solve (4). If we cannot find a new violating neuron
then we terminate the algorithm. Otherwise, we find
the dual parameter for the updated U. We repeat this
procedure till we find an optimal solution (see Algo-
rithm 1 in the supplementary file for the pseudocode
of the cutting-plane method).
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Proposition 3.2. When A is spike-free as defined in
Lemma 2.3, the cutting plane based training method
globally optimizes (11).

The following theorem shows that random high dimen-
sional i.i.d. Gaussian matrices asymptotically satisfy
the spike-free condition.

Theorem 3.2. Let A ∈ Rn×d be an i.i.d. Gaussian
random matrix. Then A is asymptotically spike-free
as d→∞. More precisely, we have

lim
d→∞

P
[

max
u∈B2

‖A†
(
Au
)

+
‖2 > 1

]
= 0 .

We now consider improving the basic relaxation by
including the extreme points in our relaxation, and
provide some theoretical results.

Theorem 3.3. Let Ca denote the convex hull of
{ai}ni=1. If each sample is a vertex of Ca, then a fea-
sible solution to (4) can be achieved with n neurons,
which are the extreme points along the ordinary basis
vectors. Consequently, the weights given in Lemma 2.7
achieve zero training error.

Our next result shows that the above condition is likely
to hold high dimensional random matrices.

Theorem 3.4. Let A ∈ Rn×d be a data matrix gen-
erated i.i.d. from a standard Gaussian distribution
N (0, 1). Suppose that the dimensions of the data ma-
trix obey d > 2n log(n − 1). Then, every row of A is
an extreme point of the convex hull of the rows of A
with high probability.

4 Regularized two-layer ReLU
networks

A penalized version can also be formulated instead of
the equality form in (4). We next present a duality
result for the penalized case.

Theorem 4.1. An optimal U for the following regu-
larized version of (4) given by

min
θ∈Θ
‖(AU)+w − y‖22 + β‖w‖1 s.t. ‖uj‖2 ≤ 1,∀j,

can be found through the following dual problem

max
v
−‖v − y‖22 s.t. v ∈ βQ◦A,−v ∈ βQ◦A ,

where β is the regularization (weight decay) parameter.

5 Two-layer ReLU networks with
hinge loss

Now we consider the classification problem with the
hinge loss.

Theorem 5.1. An optimal U for the binary classifi-
cation task with the hinge loss given by

min
θ∈Θ

n∑
i=1

max{0, 1− yi(aTi U)+w}+ β‖w‖1 (15)

s.t. ‖uj‖2 ≤ 1,∀j,

can be found through the following dual

max
v

vTy

s.t. 0 ≤ yivi ≤ 1 ∀i ∈ [n],v ∈ βQ◦A,−v ∈ βQ◦A .

Consequently, in the 1D case, the optimal neuron
weights are given by the extreme points as a result of
Theorem 3.1. Therefore the optimal network network
output is given by the piecewise linear function

f(a) =

m∑
j=1

wj(auj + bj)+ ,

for some output weights w1, . . . , wm where uj = ±1
and bj = ∓aj for some j.

This explains Figure 1c, where the decision regions are
determined by the zero crossings of the above piecewise
linear function. Moreover, the dual problem reduces to
a finite dimensional minimum `1 norm Support Vector
Machine (SVM), whose solution can be easily deter-
mined. As it can be seen in Figure 1c, the piecewise
linear fit passes through the data samples which are on
the margin, i.e., the network output is ±1. This corre-
sponds to the maximum margin decision regions and
separates the green shaded area from the red shaded
area.

It is straightforward to see that this is equivalent to
applying the kernel map κ(a, aj) = (a− aj)+, forming
the corresponding kernel matrix

Kij = (ai − aj)+ ,

and solving minimum `1-norm SVM on the kernelized
data matrix.

Theorem 5.2. For a one dimensional dataset a ∈
Rn, applying `1-norm SVM on

(
au∗

T

+ 1b∗
T )

+
finds

the optimal solution θ∗ to (15), where u∗ and b∗ are
2n − 2 dimensional vectors defined as {u∗i = ±1, b∗i =
−sign(u∗i )ai}

n−1
i=2 , {u∗n = −1, b∗n = an}, and {u∗1 =

1, b∗n = −a1} 5.

The proof directly follows from Theorem 3.1 and
Lemma 2.6. We also verify Theorem 5.2 using the ex-
periments in Figure 3. In this figure, we observe that
whenever there is a sign change, the corresponding two

5Notice that we do not include {u∗
n = 1, b∗n = −an} and

{u∗
1 = −1, b∗1 = a1} since they output a vector of zeros,

which are obviously not extreme points.
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(a) Lt = 1.600× 10−4 and
Lgd = 1.600× 10−4.

GD and our theory agrees.
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(b) Lt = 1.600× 10−4 and
Lgd = 1.679× 10−4.

GD is stuck at a local minima.

(c) Visualization of the loss
landscape in (b)

(Lt = 1.600× 10−4 and
Lgd = 1.679× 10−4).

Figure 3: Binary classification using hinge loss, where we apply GD and our approach in Theorem 5.2. Here, we
denote the objective value in (15) as Lt and Lgd for our theoretical approach (Theorem 5.2) and GD, respectively.
In (c), we also provide 3D illustration of the loss surface of the example in (b), where we mark the initial point
(black), the GD solution (red), and our solution (green).

Table 1: Classification Accuracies (%) and test errors

MNIST CIFAR-10 Bank Boston California Elevators News20 Stock

One Layer NN (Least Squares) 86.04% 36.39% 0.9258 0.3490 0.8158 0.5793 1.0000 1.0697
Two-Layer NN (Backpropagation) 96.25% 41.57 % 0.6440 0.1612 0.8101 0.4021 0.8304 0.8684
Two-Layer NN Convex 96.94% 42.16% 0.5534 0.1492 0.6344 0.3757 0.8043 0.6184
Two-Layer Convex-RF 97.72% 80.28% - - - - - -

samples determine the decision boundary, which re-
sembles the idea of support vector. Thus, the piece-
wise linear fit passes through these samples. On the
other hand, when there is no sign change, the piece-
wise fit does not create any kink as in Figure 3a. We
also observe that GD might fail to globally optimize
(15) unlike our approach as illustrated in Figure 3b. In
Figure 3c, we also provide a visualization of the loss
landscape for this case.

6 Numerical experiments

We first consider classification tasks and report the
performance of the algorithms on MNIST (LeCun)
and CIFAR-10 (Krizhevsky et al., 2014) 6. For these
data sets, we do not perform any preprocessing ex-
cept a normalization on the pixels in MNIST so that
each pixel is in the range [0, 1]. In Table 1, we ob-
serve that our approach denoted as Convex, which is
solely based on convex optimization techniques, out-
performs the non-convex backpropagation based ap-
proach. In addition, we use an alternative approach,
denoted as Convex-RF in Table 1 which uses (9) on
image patches7. This unsupervised training approach
for the hidden layer surprisingly increases the accu-

6We use a generalized vector output version of our
method discussed in the supplementary material.

7Further information about our experimental setup can
be found in the supplementary material.

racy by almost 40% compared to the convex approach
with the cutting plane algorithm. We also evaluate the
performances on several regression data sets, namely
Bank, Boston Housing, California Housing, Elevators,
Stock (Torgo), and the Twenty Newsgroups text clas-
sification data set (Mitchell and Learning, 1997). In
Table 1, we provide the test errors for each approach.
Here, our convex approach outperforms the backprop-
agation, and the one layer NN approach in each case.

7 Concluding remarks

We have studied two-layer ReLU networks via a con-
vex analytic framework that explains why simple so-
lutions are achieved even when networks are over-
parameterized. In particular, we showed that the ex-
treme points characterize simple structures and ex-
plain why training of regularized NNs yields a linear
spline interpolation in 1D. Using these observations,
we have also provided a training algorithm based on
cutting planes, which achieves global optimality un-
der certain assumptions. We conjecture that similar
extreme point characterizations in deep networks may
explain their extraordinary generalization properties.
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