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Abstract

Suppose a customer is faced with a sequence
of fluctuating prices, such as for airfare or a
product sold by a large online retailer. Given
distributional information about what price
they might face each day, how should they
choose when to purchase in order to maxi-
mize the likelihood of getting the best price
in retrospect? This is related to the classi-
cal secretary problem, but with values drawn
from known distributions. In their pioneer-
ing work, Gilbert and Mosteller [J. Amer.
Statist. Assoc. 1966] showed that when the
values are drawn i.i.d., there is a threshold-
ing algorithm that selects the best value with
probability approximately 0.5801. However,
the more general problem with non-identical
distributions has remained unsolved.

In this paper we provide an algorithm for the
case of non-identical distributions that selects
the maximum element with probability 1/e,
and we show that this is tight. We further
show that if the observations arrive in a ran-
dom order, this barrier of 1/e can be broken
using a static threshold algorithm, and we
show that our success probability is the best
possible for any single-threshold algorithm
under random observation order. Moreover,
we prove that one can achieve a strictly better
success probability using more general multi-
threshold algorithms, unlike the non-random-
order case. Along the way, we show that
the best achievable success probability for the
random-order case matches that of the i.i.d.
case, which is approximately 0.5801, under a
“no-superstars” condition that no single dis-
tribution is very likely ex ante to generate the
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maximum value. We also extend our results
to the problem of selecting one of the k best
values.

1 Introduction

Suppose we are given a sequence of real numbers one
by one, drawn from independent but not necessarily
identical distributions known in advance. We can keep
a single number from the sequence, but this choice
must be made online. At each observation, we can ei-
ther select the current number or push our luck and
continue to the next observation. Our goal is to max-
imize the probability of selecting the maximum (or
equivalently minimum) number from the sequence.

As a toy application, consider an airfare platform that
provides a service of suggesting when a buyer should
purchase their ticket for the lowest fare. Such a plat-
form has distributional information about how expen-
sive the fare will be each day before the flight. Users
hope to avoid the regret of purchasing at a subopti-
mal price, and this incentivizes the platform to maxi-
mize the likelihood of suggesting the best price in hind-
sight. Given a model that maps time-before-flight and
other fixed information (such as location and airline)
to a distribution over prices, how should the platform
make its online recommendations, and how likely is it
to achieve the best price?

This question is related to the classical secretary prob-
lem. In the secretary problem, we receive a sequence of
randomly permuted numbers 1 to n in an online fash-
ion. We are given the numbers one by one, but each
time we observe a number, we see only its relative
rank compared to the previously observed numbers.
At each observation, we have the option to stop the
process and select the most recent number. The goal
is to maximize the probability of selecting the max-
imum (or equivalently minimum) number. For this
problem, Dynkin 1963 presents a simple but elegant
algorithm that succeeds with probability at least 1/e;
indeed, the success probability converges from above
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to 1/e as n grows large, and 1/e is the best possible
bound (up to lower order terms) we can achieve for
this problem.

A natural variation of the problem assumes that the
numbers are drawn from the same known distribu-
tion, and the numbers themselves are revealed one by
one. In their classic work, Gilbert and Mosteller 1966
consider this so-called “full information” case.! As a
starting point, they show that one can pick a single
threshold T such that stopping at the first value larger
than T will select the maximum value with probabil-
ity approximately 0.517 (asymptotically as n grows
large). For the general case where one can use a dis-
tinct threshold at each step, they show that with the
appropriate choice of thresholds one succeeds at stop-
ping at the maximum value with probability approxi-
mately 0.5801 (again, asymptotically as n grows large;
both bounds are tight). These bounds significantly
improve upon the 1/e ~ 0.37 result for the secretary
problem, which corresponds to the setting where the
underlying distribution is not known and only the rel-
ative ranks are obtained.?

Since the work of Gilbert and Mosteller, there has been
a vast literature on secretary problems going well be-
yond the scope of this paper. We refer the interested
reader to a survey by Freeman for an overview of this
activity from the perspective of stopping theory (Free-
man, 1983). The full information case has received
less attention, but there has been a notable line of
work considering variations such as n being random-
ized (Porosinski, 1987) and/or it being possible to re-
visit previously-observed values with a probability of
failure (Petruccelli, 1981). To our knowledge, this lit-
erature on the full information case has focused exclu-
sively on the case of i.i.d. values.

Our Contributions We consider the more general
problem of selecting the maximum (or minimum) value
when the numbers are drawn from distributions that
are independent but not necessarily identical. Our first
result is that there is an algorithm that achieves a suc-
cess probability of 1/e in this non-i.i.d. setting, match-
ing the original secretary problem. This is tight up to
lower-order terms. Our algorithm uses a single fixed
threshold rule, and thus applies even if the values are

!Despite the name, this is similar to the “incomplete
information” setting in mechanism design. We will use the
term “full information” in the sense of secretary problems,
meaning that the distributions are known in advance.

Interestingly, one of the original motivations Gilbert
and Mosteller 1966 provide is a simplified model for an
atomic bomb inspection program, which may have arisen
from Mosteller’s work in Samuel Wilks’s Statistical Re-
search Group in New York city during World War II on
statistical questions about airborne bombing.

revealed in an adaptively adversarial order. Our lower
bound holds even if the order is known in advance and
applies to arbitrary algorithms, showing that a simple
fixed-threshold rule is asymptotically optimal. This
expands the long-standing result for the i.i.d. case due
to Gilbert and Mosteller 1966 to the setting with dif-
ferent distributions.

We next consider a random-order model, where the
values are drawn from arbitrary independent distribu-
tions but are presented in a uniformly random order.
The i.i.d. setting of Gilbert and Mosteller 1966 is a
special case of this random order setting, where all ob-
served values are chosen from the same distribution.
Our second result generalizes the result of Gilbert and
Mosteller to show that in the random-order setting,
it is possible to select the maximum value with prob-
ability at least 0.517, using a single-threshold algo-
rithm. This improves on the adversarial-order setting,
and matches the tight bound for single-threshold algo-
rithms for the i.i.d. case (Gilbert and Mosteller, 1966).

Still in the random-order model, we next present an al-
gorithm that breaks this barrier of 0.517 using multiple
thresholds. As a corollary, algorithms that use a single
threshold are not optimal in the random-order model.
Our approach is to consider a natural “no-superstars”
condition, which is that no single distribution has more
than a certain constant probability (ex ante) of gen-
erating the maximum value. This captures scenarios
where no single entry has a non-vanishing impact on
the problem’s solution in the limit as the problem size
n grows large.?> We show that under such an assump-
tion, there is an algorithm that succeeds with prob-
ability arbitrarily close to 0.5801, the tight success
probability obtainable in the i.i.d. setting with mul-
tiple thresholds, in the limit as n grows large. If the
no-superstars assumption is violated, the presence of
a highly dominant distribution again makes it possible
to improve over the single-threshold bound of 0.517.

It is natural to compare these results with the prophet
inequality, introduced by Krengel et al. 1978; 1977. In
the prophet inequality problem, the goal is to maxi-
mize the expected value of the number selected rather
than the probability of selecting the maximum. The
classic prophet inequality is that one can achieve half
of the expected maximum value using a single thresh-
old algorithm, and this is tight. The prophet sec-
retary model (Esfandiari et al., 2017) considers this
goal of maximizing expected value in the random-
order model, which admits improved results. One
can view our results as extending classic “secretary-
style” results for best-choice problems to settings typ-
ical of prophet inequalities, with independent but non-

3We can think of this as a large market condition.
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identical distributions.

One distinction between the best-choice problem and a
prophet inequality is that, in the best-choice problem,
it is typically better to avoid a “non-robust” solution
that achieves high expected value by accepting a very
large number with very small probability, but other-
wise does not obtain much value. Motivated by this
connection to robustness, one might relax the desider-
atum of picking only the highest number, and aim in-
stead to obtain one of the top few values with high
probability. To this end, we consider a variant of our
problem where the goal is to maximize the probabil-
ity of selecting any of the top k values. A similar
variant has been studied for the secretary problem by
Gusein-Zade 1966, who shows that there is an algo-
rithm whose failure probability is at most O(%).
When values are drawn i.i.d. from a known distribu-
tion, Gilbert and Mosteller 1966 study the case k = 2
and solve for the limiting probability of success. We
extend this to arbitrary k and arbitrary distributions
presented in an adversarial order, and show that there
is an algorithm with failure probability exponentially
small in k. Moreover, this is the best possible bound,
up to coefficients in the exponent, even in the i.i.d.
setting.

As one of our main tools in our analysis, we use Le
Cam’s theorem (Le Cam, 1960), which (as we describe
below) connects sums of Bernoulli random variables
and discrete Poisson distributions. This result, along
with coupling techniques and other additions for our
setting, allow us to represent the probability distribu-
tion for the maximum (over several different distribu-
tions) by discrete Poisson distributions. This variation
of a “Poissonization” argument for these settings ap-
pears novel, and may be of its own interest.

1.1 Results and Techniques

In what follows, we refer to the best-choice prophet
inequality problem and best-choice prophet secretary
problem for the variations we consider, where the goal
is to maximize the probability of choosing the highest
observed value given distributions presented in adver-
sarial and random order, respectively. We start by
obtaining a tight bound for the best-choice prophet
inequalities problem: we provide an algorithm that
selects the maximum with probability at least ]E and
show that there is no algorithm that selects the maxi-
mum with probability at least % + € for any constant
€ > 0. Although the probability of success here is the
same as for the classical secretary problem, the proof
and corresponding algorithm are not the same. Our al-
gorithm is based on choosing a suitable threshold and
accepting any observation above that threshold. We
choose the threshold to optimize the probability that

exactly one element lies above it, since we are guaran-
teed to accept the largest value in this case. Perhaps
surprisingly, our lower bound shows that this analy-
sis is tight, even for an arbitrary selection rule with
advance knowledge of the arrival order.

We next provide a single threshold algorithm for the
best-choice prophet secretary problem that selects the
maximum with probability at least 0.517. This re-
sult utilizes some of the technology used for the best-
choice prophet inequality result. We also extend our
analysis to the top-k-choice prophet inequality prob-
lem, and provide a single threshold algorithm that se-
lects one of the top k values with probability at least
1 — e 1% where ¢; > 0 is a fixed constant. We
also show that this exponential dependence on k is
tight even in the i.i.d. setting: there is a constant
¢2 > 0 such that no algorithm can select one of the
top k values with probability greater than 1 — e~¢2¥,
This tightness result involves arguing that an arbitrary
algorithm must become “trapped” at some point in
the observation sequence, with at least an exponen-
tial probability; conditional on what it has seen, there
is a non-negligible chance that all of the top k values
have already been observed, but also a non-negligible
chance that all of them are yet to come.

All of the algorithms above use a single fixed thresh-
old. For the best-choice prophet inequality prob-
lem our lower bound shows that single-threshold al-
gorithms achieve tight results, but for the best-
choice prophet secretary problem we show that this
is not the case. Designing and analyzing multiple-
threshold algorithms is significantly more challenging,
as dependencies and correlations naturally arise. To
overcome this, we develop an alternative approach for
analyzing the setting of multiple distributions in a ran-
dom order. The intuition is that for a large number of
observations n, we can split the observations into con-
secutive groups of size n/T for a suitable constant T,
such that we can think of the maximum of each group
as being approximately from an i.i.d. distribution cor-
responding to a sample of n/T distributions from the
n overall distributions. That is, each group of n/T dis-
tributions is sufficiently similar that we can view the
problem as very similar to the best-choice problem for
T i.i.d. observations. Formalizing this closeness allows
us to nearly achieve the same worst-case performance
of a T-threshold scheme in the i.i.d. setting. This result
requires a technical “no-superstars” condition, which
is that the a priori probability of any specific distri-
bution being the maximum is o(1). Using this tech-
nique, and under no-superstars assumption, we design
a threshold-based algorithm whose success probability
converges to 0.5801 as n grows large, which is tight
even for the i.i.d. setting. On the other hand, we show
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that if the no-superstars assumption is violated and
there exists a distribution that has more than a cer-
tain constant probability of generating the maximum
value as n grows large, one can improve the single-
threshold analysis. Combining these methods leads to
an unconditional improvement over the optimal worst-
case bound for single-threshold algorithms.

We briefly note that, unlike the expectation version of
prophet inequalities (Esfandiari et al., 2017), in this
setting of best-choice prophet inequalities, all our re-
sults trivially extend to the setting where we want to
maximize the probability of finding the minimum ele-
ment as well.

1.2 Poissonization Technique

One approach used in (Gilbert and Mosteller, 1966)
involves setting a threshold and considering the num-
ber of observations above that threshold. In the case
of i.i.d. distributions for the observations, this num-
ber is the sum of i.i.d. Bernoulli random variables,
which is known to converge to a Poisson distribution
in the setting we consider (where the expected number
of positive observations is constant as the number of
observations grows large).

A helpful tool in extending such results to the setting
where distributions may differ for observations is Le
Cam’s theorem (Le Cam, 1960). The basic statement
of Le Cam’s Theorem is the following: let X, -+, Xy
be a sequence of Bernoulli random variables where
Pr[X;=1]=p;and A = Z]i\; pi. We have

0o n Ake_)\ N
> |Pr [Z?ﬁ—k - <2 pi.
k=0 ’ i=1

i=1

Intuitively, Le Cam’s Theorem says that when the
probability of each random variable being 1 in a se-
quence of Bernoulli random variables is sufficiently
small (e.g. O(%)), the sum is well approximated by
a Poisson distribution. There are a number of inter-
esting proofs of Le Cam’s Theorem (see the survey
(Steele, 1994)), including proofs that slightly improve
the constant on the right hand side, but this general
bound suffices for our purposes.

2 Further Related Work

Starting with the work of Dynkin 1963, there has been
a long line of research on variants of the secretary
problem. See the survey by Ferguson 1989 for a light-
hearted but thorough historical treatment, and the re-
view paper by Freeman 1983 for many generalizations.

There have likewise been many generalizations of the
prophet inequality, since the initial work of Garling,

Krengel, and Sucheston (1978; 1977). One of the
first generalizations was the multiple-choice prophet in-
equality (Kennedy, 1987; Kennedy et al., 1985; Kertz,
1986) in which we are allowed to pick k items and
the goal is to maximize their sum. Alaei (2014) gives
an almost tight (1 — 1/v/k + 3)-approximation algo-
rithm for this problem (the lower bound is due to Ha-
jlaghayi et al. (2007)), where the approzimation factor
is the ratio of the expectation of the algorithm to the
expectation of the optimum. Similarly, the multiple-
choice secretary problem was first studied by Ha-
jlaghayi et al. (2004), and Kleinberg (2005) gives a
(1 —0(4/1/k))-approximation algorithm.

Other than Dynkin (1963), generally follow-up work
considers approximation factors instead of maximizing
the probability of obtaining the best. An interesting
exception is 7, who provides a general approach for
determining the optimal stopping time for choosing
the maximum of a sequence of i.i.d. random varaibles
(along with approaches for finding the optimal stop-
ping time for some related problems). This work does
not determine bounds on the probability of choosing
the maximum, as we do here for the problems we con-
sider.

The research investigating the relation between
prophet inequalities and online auctions is initiated
in Hajiaghayi et al. (2007); Chawla et al. (2010). This
lead to several interesting follow up works for ma-
troids Yan (2011) and matchings Alaei et al. (2012).
Meanwhile, the connection between secretary prob-
lems and online auctions is first explored in Haji-
aghayi et al. Hajiaghayi et al. (2004). Its general-
ization to matroids is considered in Babaioff et al.
(2007); Lachish (2014); Feldman et al. (2015) and
to matchings in Goel and Mehta (2008); Korula and
Pal (2009); Mahdian and Yan (2011); Karande et al.
(2011); Kesselheim et al. (2013); Guruganesh and
Singla (2017).

In the prophet secretary model, Esfandiari et al. Es-
fandiari et al. (2017) give a (1—1/e)-approximation in
the special case of a single item. Going beyond 1—1/e
has been challenging. Only recently, Abolhasani et
al. Abolhassani et al. (2017) and Correa et al. Correa
et al. (2017) improve this factor for the single item
ii.d. setting. Very recently, Ehsani et al.Ehsani et al.
(2018) extend prophet secretary for combinatorial auc-
tions and matroids as well.

3 Notation

In the best-choice prophet inequality problem, we are
given a set of distributions {D1,...,Dn}. We then ob-
serve an online sequence of values xi1,- -+ ,Xn, wWhere
each x; is drawn independently from Dj, presented in
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an arbitrary order. When value x; is observed, we
must irrevocably decide whether or not to choose that
value. Once we choose a value, the process stops. A
value that has been observed but not chosen cannot be
chosen later. The goal is to maximize the probability
that the value chosen is equal to max;{x;}. We empha-
size that the order in which the values are presented is
arbitrary and not known in advance. We refer to the
case with identical distributions as the i.i.d. setting.

The best-choice prophet secretary problem is identical,
except that the values are presented in a uniformly
random order. That is, after applying a random per-
mutation TT = (7y,...,7,) on the sequence of x; val-
ues, they are presented in that order, so that at step
k, m and x,, are revealed. Again, the goal is to max-
imize the probability of choosing a maximum value.

Our algorithms are threshold-based, where we choose
a value if and only if it lies above a suitable thresh-
old. We use 7 = (T11,...,Tn) to refer to a sequence
of thresholds; thus, we check for example whether
X, > Tk. Inthecasethat T1 =T =... =Th =T, we
say that the algorithm is a single-threshold algorithm.

In our proofs, we will assume for notational conve-
nience that the distributions are atomless: the prob-
ability distributions are continuous, so that no single
value takes on a non-zero probability. We use this
assumption only to define the inverse of a given cu-
mulative distribution; i.e., to find a value T such that
Pry-plx > 1] = p for some fixed p € [0,1]. This is
only for convenience, and our results actually apply
to the general case with atoms, using the following
reduction based on using an auxiliary random num-
ber to break ties (which we believe is folklore). If
there exists a value T such that Pry-p[x > 7] > p
but also Pry-plx < 7] > p (i.e., there is an atom
that prevents the desired inversion), then we can mod-
ify our random process to include a random variable
y drawn from the uniform distribution on [0, 1], and
augment threshold T with a secondary threshold y.
We will then interpret the event [x > T] to mean
[(x >71)V(x =1y > 7g))l, and set y so that,
under this definition, Pry.p[x < 1] = p. With this
reduction in mind, we will assume throughout that
distributions are atomless without further comment.

4 Best-Choice Algorithms with a
Single threshold

In this section, we describe algorithms and lower
bounds for the best-choice prophet inequality problem
(in Section 4.1) and the best-choice prophet secretary
problem (in Section 4.2). All of the algorithms in this
section will be single-threshold algorithms.

4.1 Best-Choice Prophet Inequalities

First we show that it is possible to choose the maxi-
mum value with probability at least le, using a single
threshold, for the best-choice prophet inequality prob-
lem.

Theorem 1 For the best-choice prophet inequality
problem, there is an algorithm that succeeds with prob-
ability at least 15

Proof : We will warm up by proving an easier
result: a simple single-threshold algorithm that suc-
ceeds with probability 1/4. We’ll then show how to
improve this to 1/e. Our algorithm will select thresh-
old T such that Pr [max!* ; (xi) > 1] = 1/2, and choose
the first value that is at least 1. From the definition of
T, the algorithm chooses a value with probability 1/2,
otherwise it chooses nothing. Conditional on having
chosen a value, the algorithm will certainly succeed if
no subsequent value is strictly greater than T. But the
probability of a subsequent value lying above T is at
most 1/2, the probability that any of the n observa-
tions is greater than T. So the probability of success,
conditional on having selected an item, is at least 1/2,
leading to a total success probability of at least 1/4.4

We can modify the algorithm above to improve the
success probability to 1/e. Namely, the algorithm will
set threshold T so that Pr [max] ;(x;) <1l =1/e and
pick the first number that is larger than T. We show
that with probability at least 1/e there is exactly one
number which is larger than T, which implies the de-
sired result. Let p; = Pr[x; > t]. By the way we

choose T, we have [[{"; (1 —pi) = 1/e.

We now consider the probability that exactly one num-
ber is larger than T, and show that it is at least 1/e;
this completes the proof.? The probability that the
jth observed value is larger than T but all others are
not is IE;j [Te,0—p) = 15%' We briefly note
the fact that e* > 14x implies (using x = p;/(1—7pj))

pj>ln( ] > 1
T=pj = \1-p; .

Now the probability that exactly one number is larger
than T is

T« P 1i ( 1 )
=y ——>-Y I
ej:11—pj e 1—p;

LS M

e H;;(] —pj) e

Y

4This warm up is similar to ?.

5We thank an anonymous reviewer for providing us this
simplification over our prior proof.
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Here the first line follows from Inequality 1, and the
last line from [T, (1 —p;) = 1/e. O

Our algorithm uses only a single fixed threshold as its
stopping rule. One might suspect that a more compli-
cated algorithm, perhaps one that modifies its thresh-
olds adaptively or employs randomization, would per-
form better. Our next result is that this is not the case:
no online algorithm can guarantee a success probabil-
ity strictly better than 1; We provide the proof of this
theorem in Appendix B

Theorem 2 For any constant ¢ > 0, there is no al-
gorithm that succeeds with probability % + ¢ for the
best-choice prophet inequality problem.

4.2 Best-Choice Prophet Secretary

In this subsection we show a single threshold suffices
to provide an algorithm that chooses the maximum
value with probability 0.517 for best-choice prophet
secretary. To begin, we provide a simple analysis that
achieves this 0.517 probability for best-choice prophet
inequalities with i.i.d. distributions. We note that this
result was presented in Gilbert and Mosteller (1966),
with the constant calculated numerically for large val-
ues of n. We essentially follow their argument, but
provide a formal justification for their numerical re-
sults.

Theorem 3 For sufficiently large m, there ex-
ists a single threshold algorithm that chooses the
mazximum value with probability arbitrarily close

to maxy ) po g (%)‘kEIA ~ 05173, for best-

choice prophet inequalities with i.i.d. distributions,
and this is tight for single-threshold algorithms.

Proof: Let T be given by Pr[max]* ;(x;) < 1] =P,
and p = Pr[x; > 1] = 1—P"™ for P to be given later.
Let K be the random variable indicating the number
of x; that are greater than T. When K > 1, due to
symmetry each of these I items is the maximum with
probability 1//C, and since we pick the first item that
is greater than T, when I > 1 the maximum is chosen
with probability 1/K. So, we pick the maximum with
probability at least

i (%Pr[lCzk]).
k=1

Here K is sum of Bernoulli random variables, and so
the probability we choose the maximum is simply

i (L(E)Pk(l —p)“’k)-

k=1

For large n we may use that the limit of the Bernoulli
distribution becomes a Poisson distribution, and use
numerical calculations and Le Cam’s theorem to ob-
tain the result. Specifically, take P = (1—1.501/n)™ ~
e 1% and p = Prlx; > 1] = 1.501/n, where the
1.501 is determined numerically. By Le Cam’s theorem

ZEO:O ‘Pr UC — k] _ Ake A

o < 2np?, where A = np =

1.501. This gives us Y o4

Ipric =112 <

k k!

2np? < %. Therefore the probability that we pick the
maximum is at least

n n k,—A
3 (prrik=x)= 3 () o

> 0.5173 — 6 > 0.517,
n

where the second inequality is calculated numerically
for A = 1.501 and the last inequality is by assuming
n > 20000. We note that by taking n large enough,
we can obtain a success probability arbitrarily close to
the sum maxy ) o, (%%4) using the same argu-
ment. This is an asymptotic upper bound by a similar
argument, so this success probability is tight. O

We are now ready to extend Theorem 3 to the more
general best-choice prophet secretary problem. Notice
that the following theorem does not require n to be
large, so even when applied to the special case of i.i.d.
distributions it extends Theorem 3 to general n.

Theorem 4 There exists a single threshold algorithm
that chooses the maximum value with probability at

%%4) ~ 0.5173, for the best-

choice prophet secretary problem.

least maxy ) o,

Proof : As in Theorem 3, we set T such that
Pr[max™ ; (x{) < 1] =~ e~ 1-3°1 and pick the first num-
ber which is at least T. We clarify the exact value of
T later in the proof after we present the required no-
tation. To analyze the algorithm, for some arbitrary
small ¢’ we replace each distribution D; with a bag
of n?/¢’ identical and independent copies of a dummy
distributions D{, where the distribution of the max-
imum of the n?/¢’ copies of D! is equivalent to Dj.
We let x{ to be the realization of the j’th copy of D/,
let p} = Pr [X]1 > T}, and let n’ = n3/¢’ to be the
total number of dummy distributions. By the way we
have defined the dummy distributions, the distribution
of the maximum of all dummy distributions is equiva-
lent to the distribution of the maximum of the original
problem.
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The bags arrive in a random order and upon the arrival
of each bag we observe the realization of the maximum
number in the bag. The first time we face a bag with
at least one number above the threshold, we stop and
pick the maximum number in the bag. Again, the
distribution of the value chosen in this framework is
equivalent to that of our threshold algorithm on the
actual distributions.

Let K be the random variable indicating the number
of x;s that are greater than T and let £’ be the random
variable indicating the number of x!s that are greater
than 7. In fact, if for some i we have x; > T, then
for some j we have XJi > 1. Hence we have £’ > K.
Notice that if £’ > 1 with probability 1/K the bag
that contains the maximum number arrives first and
we select the maximum number; otherwise, we do not.
Thus, we choose the maximum with probability

’

Z (Pr [We choose the maXUC’ = k] Prik’ = k])
since K' > K (2)

Now we are ready to set the value for T given at the
beginning of the proof; specifically, we set T so that

> Z;l;/ ¢ p) equals the value of A that maximizes
maxy Y po (%)‘kﬁ#» which is approximately 1.501.
This corresponds to A = 1.501 for Le Cam’s Theorem.
Also for any i and j we have p} < ¢’/n?. Using Le
Cam’s Theorem we have

© | , 1 Ake A
D[ Prikf =K =
k=1
= Ake=A
[
<) |PriK =K——
k=1
n nZ/E/
< ZZ Z Pl Le Cam’s Theorem
im1 j=
3 l X l
gZ%x(%)zgs’, sincep{ﬁ%andn>1.

This immediately gives us Y -, (lk PriK’ = k]) >

Y (%%#) — ¢’. Therefore, the probability that
our algorithm picks the maximum is at least

(%Pr[IC':k]> :i(%PrW:H)
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where the first equality holds since for k > n’,
Pr[K’ =k] = 0. Recall that ¢’ is an arbitrary small
positive number and the algorithm does not depend
on ¢’. Hence, the probability that our algorithm picks
the maximum is at least Y -, (%}‘kk#) as claimed.
O

We note that since the lower bound in Theorem 4
matches the upper bound on the performance of any
single-threshold algorithm from Theorem 3, we can
conclude that the algorithm in Theorem 4 is best-
possible among single-threshold algorithms for best-
choice prophet secretary.

5 Top-k-Choice Algorithms

In this section we consider a variant of our best-choice
problems, where the goal is relaxed to choosing one of
the k largest values. Here k > 1 is fixed as n grows
large. As before, we can make only a single choice;
doing so stops the process, and that is the final selec-
tion. We first show that for the top-k-choice prophet
inequality problem, where the distributions are pre-
sented in an arbitrary order, there is a single-threshold
algorithm whose probability of failure is exponentially
small in k.

Theorem 5 For any k > 1, there exists an algo-
rithm for the top-k-choice prophet inequality problem
that succeeds with probability at least 1—2e~Y*, where

y=03-v5)/2.

The algorithm in Theorem 5 sets its threshold T so
that the expected number of values greater than T is
exactly yk. The result then follows by applying stan-
dard concentration bounds (Chernoff) to show that
it is exponentially unlikely (in k) that no values are
greater than T, and also exponentially unlikely that
strictly more than k values are greater than t. The
formal details are deferred to Appendix D.

One thing to note about the bound in Theorem 5 is
that it is independent of n, which we can take to be
very large relative to k. It’s tempting to imagine that
one could improve this error in special cases such as
the i.i.d. setting. Our next result shows that this is
not possible. One cannot do better than an exponen-
tially decreasing error in k, even for the i.i.d. setting
and hence also for the top-k-choice prophet secretary
problem.

We note that for such a bound one cannot simply con-
dition on observing a certain worst-case ordering over
a collection of 0(k) distributions, as the probability
of seeing any particular permutation of (k) elements
is e 9(klogk)  The intuition of our proof is that, say
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halfway through the process, there is at least an expo-
nentially small probability that the algorithm becomes
“trapped:” given what it has seen, there is at least an
exponentially small probability that all of the top k
values were present in the first half, but also at least
an exponentially small probability that all of the top
k values appear in the second half. Thus, regardless
of what the algorithm has done, an exponential error
bound cannot be avoided. Formalizing this intuition
takes some care.

Theorem 6 There exists a constant ¢ such that, for
any fixred Xk > 1, no algorithm for the top-k-choice
prophet inequality problem with identical distributions

selects the maximum with probability more than 1 —
e ¢k,

6 Improved Best-Choice Prophet
Secretary with Multiple Thresholds

As we showed in Section 4.1, a single threshold algo-
rithm achieves tight results for best-choice prophet in-
equalities. However, this does not seem to be true for
best-choice prophet secretary. In this section, which
captures our most technical result, we seek to go be-
yond the single threshold algorithms and design a more
efficient algorithm for best-choice prophet secretary.
Our algorithm will use multiple thresholds. First we
provide an algorithm for inputs with an additional as-
sumption that we call the no-superstars assumption,
which is that no single observation has too large a
probability, a priori, of being the largest value. Then
we use this algorithm to provide an unconditional algo-
rithm for best-choice prophet secretary that improves
upon single threshold algorithms.

Definition 7 (No-Superstars Assumption.)

We say that a set of distributions {Dq,...,Dn}
satisfies the no e-superstars assumption if, for all
i e {1,...,n}, we have Pr [i:argmaxj“:1 xj] < e,
where each xi is a random variable drawn from Dj.

In particular, we will show that our algorithm results
in an improved bound (relative to the best single-
threshold algorithm) when the set of distributions sat-
isfies a no e-superstars assumption for a sufficiently
small constant e. We will sometimes drop the ¢ and
simply refer to the “no-superstars assumption” when
¢ is clear from context.

The starting point for our algorithm is the analysis of
Gilbert and Mosteller 1966, which shows that in the
ii.d. setting the optimal (multi-threshold) algorithm
succeeds with probability 0.5801 as n grows large. At
an intuitive level, we would like to establish that a
prophet secretary instance behaves similarly to an i.i.d.

instance, where each of the distinct distributions is re-
placed by an “average” of all the distributions. How-
ever, this is not quite right due to correlations between
values. For example, once the process reaches the
last few distributions, the algorithm may have a lot
of information about their likely outcomes relative to
an i.i.d. instance, because knowing which distributions
are left could be very informative.

To dampen this correlation, we will instead consider
groups of qn consecutive observations for some small
constant . The maximum of each collection of qn
distributions will, because of concentration from sam-
pling, be distributed very similarly to the maximum of
a suitable average of all the distributions, and there is
negligible correlation between the 1/q collections. It is
here where we make use of the no-superstars assump-
tion. We can therefore model our best-choice prophet
secretary instance as a (nearly) i.i.d. instance with 1/q
observations, and design an algorithm based on the
i.i.d. variation of the problem. This ultimately leads
to an algorithm for best-choice prophet secretary that
succeeds with probability as close as desired to the
worst-case guarantee of the best i.i.d. algorithm.

Theorem 8 Let Alg, be any threshold-based algo-
rithm that selects the maximum with probability at least
o when values are i.i.d. Then for anyy € (0,1), there
is an algorithm for the best-choice prophet secretary
problem that selects the maximum with probability at
least (« — 13y), whenever the distributions satisfy the

10
v
24Tog(5)" In

particular, for small enough ¢, we can take & == 0.5801.

no e-superstars assumption with ¢ =

While Theorem 8 requires a no-superstars assumption,
we can use it to show that for general input distribu-
tions, the single-threshold algorithm is not tight, under
the additional assumption that we observe not just the
value but also which distribution the value arises from
in each observation.

Theorem 9 There exists an algorithm for the best-
choice prophet secretary problem that chooses
the mazximum wvalue with probability at least
max Y po (%%#) + €0, where €y is a posi-
tive constant, when we observe not just the value but
also the distribution from which each value arises.

We give the formal details of our algorithm and ana-
lyze its success probability in Appendix C. The main
technical difficulty in the analysis is establishing the
necessary concentration bounds, which require some
care because we are sampling without replacement and
do not have a good uniform bound on the contribution
of any single value. We defer the proof details of these
concentration inequalities to Appendix E.1.
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