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Abstract

N -gram models remain a fundamental com-
ponent of language modeling. In data-scarce
regimes, they are a strong alternative to neu-
ral models. Even when not used as-is, recent
work shows they can regularize neural models.
Despite this success, the effectiveness of one
of the best N -gram smoothing methods, the
one suggested by Kneser and Ney (1995), is
not fully understood. In the hopes of explain-
ing this performance, we study it through the
lens of competitive distribution estimation:
the ability to perform as well as an oracle
aware of further structure in the data. We
first establish basic competitive properties of
Kneser–Ney smoothing. We then investigate
the nature of its backoff mechanism and show
that it emerges from first principles, rather
than being an assumption of the model. We
do this by generalizing the Good–Turing esti-
mator to the contextual setting. This explo-
ration leads us to a powerful generalization of
Kneser–Ney, which we conjecture to have even
stronger competitive properties. Empirically,
it significantly improves performance on lan-
guage modeling, even matching feed-forward
neural models. To show that the mechanisms
at play are not restricted to language mod-
eling, we demonstrate similar gains on the
task of predicting attack types in the Global
Terrorism Database.

1 Introduction

Statistical N -gram language models, that strive to pre-
dict the N th word based on the preceding N − 1 words,
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have a long and rich history, and it is hard to give the
literature justice in such a short space. The classical
works are covered in the comprehensive survey (Chen
and Goodman, 1999),which empirically studied differ-
ent smoothing techniques. Smoothing is critical to
learning these models, since so much of the N -gram
space remains unobserved. For a long time, the most
successful smoothing technique was the one proposed
by Kneser and Ney (1995). This led to several efforts
to explain its properties, mainly its use of backoff: re-
verting to a simpler model when data is scarce. Some
of the best forays in this direction were the Bayesian
perspective described by the hierarchical Pitman-Yor
language models in (Teh, 2006) and, more pertinent
to this paper, the more recent developments explor-
ing rank-reduction properties (Hutchinson et al., 2015;
Parikh et al., 2013; Falahatgar et al., 2016). Despite
these, there was no complete understanding of the joint
mechanisms of smoothing and backoff in Kneser–Ney.

Perhaps this is due to the surge of neural networks and
in particular recurrent neural language models, which
led to a significant jump in performance (Mikolov et al.,
2010). Neural language models have since continued to
improve their results (Merity et al., 2017; Yang et al.,
2017; Gong et al., 2018; Takase et al., 2018; Dai et al.,
2019). Interestingly, N -gram techniques are still rel-
evant as they usually run much faster, and, can be
used in conjunction with neural models to improve
performance even further (Xie et al., 2017). Moreover,
for low-resource languages, non-neural methods or hy-
brid/ensembled methods are known to achieve the best
performance (Gandhe et al., 2014).

Motivated by this continued relevance, and curious
about its further potential, this paper offers a first the-
oretical foray into N -gram models, and in particular
into the principles behind the practice of backoff. As
a result of this exploration and as concrete evidence
of its promise, we report on a powerful generalization
of Kneser–Ney backoff, which is empirically able to
compete with neural models, albeit those limited to
feed-forward architectures. It is worth mentioning that
the smoothing aspect of N -gram models, understood
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primarily as high-dimensional categorical distribution
estimation, has received attention. Part of the novelty
of our perspective is to study backoff through the very
same lens, namely that of competitive distribution esti-
mation. This notion was expressed most clearly by Or-
litsky and Suresh (2015), where it was used to strongly
justify the Good–Turing estimator (Good, 1953), which
is intimately related to Kneser–Ney.

Our contributions are as follows:

• We study this problem as a contextual distribution
estimation problem. Apart from the fact that this
means we aim to learn conditional distributions,
the objective function and notions of competitivity
have to both be carefully set. We do this in Section
3 and show that competitivity is possible in the
contextual setting, and give some evidence for the
advantage that Kneser–Ney has.

• We generalize the Good–Turing estimator to the
contextual setting, in Section 4. The idealized
expression of this estimator cannot be used di-
rectly and needs to be smoothed, just like in the
non-contextual setting. We show that with the
proper smoothing, contextual Good–Turing recov-
ers the Kneser–Ney estimator, when the tails of
the distributions are power laws and are aligned.

• The idealized Good–Turing formula is much more
powerful than the special case of Kneser–Ney. We
conjecture that it could potentially offer compet-
itivity versus oracles that are aware of intricate
relationships between distributions in various con-
texts. We illustrate this potential by giving a strict
generalization of Kneser–Ney backoff, which we
call Partial Low-Rank, since it applies the rank
structure only to the rare part of the data. Kneser–
Ney corresponds to the rank-1 special case.

• In Section 6, we show that Partial Low-Rank uni-
formly improves on Kneser–Ney on various bench-
marks. Furthermore, a nested trigram-level im-
plementation of this approach meets and slightly
exceeds the performance of the feed-forward neu-
ral models on the Penn Tree Bank data set. This
advantage is only enhanced by considering that
it can be trained with a fraction of the time and
space resources required for the neural model.

We start with some preliminaries in Section 2.

2 Preliminaries

We describe the problem generally. Let the context
space be X and the prediction space be Y . When finite,
identify these spaces with X = [K] and Y = [k] respec-
tively. Data is modeled as n context/prediction pairs
(Xt, Yt)t=1,··· ,n. How is this data generated? Various

scenarios may be considered. In modeling sequence
data, as in the case of language modeling, the ideal
context is usually the whole history. Namely, given
an infinite history Xt := (· · · , Yt−2, Yt−1), there is a
conditional probability of observing the next word Yt.
When the history is truncated to N − 1 words, this
is called an N -gram model. Other history-to-context
mappings Xt := f(· · · , Yt−2, Yt−1) may also be consid-
ered, such as skip-grams or word embeddings (Mikolov
et al., 2013a,b). If the data consists of just a single
long sequence, such as a text Y1, Y2, Y3, . . . , Yn of n
words, the context/prediction pairs that result from
partitioning the text are correlated.

We simplify this by assuming that Xt are independently
and identically drawn from a distribution π over X .
In this case, independently for each context Xt, we
take Yt to be drawn from the conditional distribution
Pij := P(Y = j|X = i). The matrix Ci,j =

∑
t 1{Xt =

i, Yt = j} then summarizes the data.

Our goal can now be concisely stated as: given
(Xt, Yt)t=1,··· ,n or (Ci,j)i∈X ,j∈Y , estimate (Pij)i∈X ,j∈Y .
We judge the performance of an estimator Q that maps
data to contextual probabilities, according to a suitably
defined statistical risk. The primary goal of contextual
probability estimation is to make accurate predictions,
requiring the estimated conditional probability to be
close to its true value on new data.

We consider the underlying risk of an estimator as
being the KL-risk, defined as the averaged per-context
Kullback-Leibler divergence

Dπ(P‖Q) :=
∑
i

πi
∑
j

Pij ln
Pij
Qij

, (1)

which captures relative closeness of estimated and true
probabilities, on average. It is the risk associated with
the log-loss and, up to the entropy, is the popula-
tion cross-entropy of Q. Since Q is random, guaran-
tees are often given in terms of the expected KL-risk
rn(π, P,Q) = E[Dπ(P‖Q)].

Ideally, we would like to have the best Q possible,
an optimal one. In the non-contextual setting, when
K = 1, one measure of optimality is worst-case risk with
respect to a class P, rn(Q,P) = maxP∈P rn(π, P,Q).
The best possible such risk is known as the minimax
risk of the class, rn(P) = minQ rn(Q,P). A minimax
optimal Q (either exactly or in rate) is desirable but
pessimistic: minimax optimality does not capture the
possibility of the truth being in a smaller class. The
competitive loss with respect to a family F , which
contains many such (some small, some big) classes, is
a more optimistic notion. It is defined as ε(Q,F) =
maxP∈F [rn(Q,P)−rn(P)]. This is related to the notion
of adaptivity in statistics.
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Think of a family as an oracle that can determine ex-
actly which P in F we have, and does the best for it.
When an estimator has small ε it means it manages
to do as well as this oracle itself. To see the reason
for optimism, say P is nice, with a small rn(P). The
estimator will achieve this small risk, even if F contains
such large classes for which rn(P) is enormous. If an
estimator has ε that is of the same order as the mini-
max risk, we call it competitive. It effectively discovers
the true P. We currently have a nascent theory for
non-contextual estimators that are competitive with
respect to rich families. These include the works that
show that the Good–Turing estimator combined with
the empirical estimator has dimension-free competitiv-
ity, (Orlitsky and Suresh, 2015), and that the absolute
discounting estimator competes with oracles aware of
the effective alphabet size of the distribution, (Falahat-
gar et al., 2017). A similar notion can also be found in
(Valiant and Valiant, 2015).

In the bigram setting, K = k, Kneser–Ney backoff can
be described as follows. For every context / row of C,
perform absolute discounting, defined, for α < 1 as:

Qij = (Cij − α)/ni, when Cij ≥ 1,

where ni =
∑
j Cij . Note that the α subtractions

discount a total probability mass of α/ni times the
number of distinct predictions that appear in context
i. This constitutes the estimate of the missing mass,
the total probability of unseen predictions, i.e. j with
Cij = 0. One has then to figure out how this total
mass is spread out to specific predictions. The simplest
approach is row-wise absolute discounting: spread this
estimated missing mass evenly over unseen predictions.
It is roughly equivalent to row-wise Good–Turing es-
timation (Falahatgar et al., 2017). Instead of this,
Kneser–Ney backs-off to an alternate distribution: it
spreads the missing mass proportionally to backoff
counts bj =

∑
i 1{Cij > 0}. The variant proposed

by Chen-Goodman (Chen and Goodman, 1999) per-
forms a further absolute discounting on b, and spreads
proportionally to (bj − α)/

∑
j′ bj′ . This generates a

secondary missing mass within the b, which is itself
evenly spread over the bj that are zero. Despite being
such a simple estimator, Kneser–Ney backoff, and espe-
cially the Chen-Goodman variant held state-of-the-art
performance for more than a decade.

3 Theoretical Insights

We now give a tentative theoretical exploration of the
advantage of backoff through the lens of competitive
distribution estimation. Let us first define the contex-
tual competitive loss of an estimator Q, with respect
to a family F of classes. In general F contains classes
C, which are sets containing pairs (π, P ). To simplify,

we take π to be arbitrary, or equivalently each C is of
the form ∆K × P where P is a class of P s only. The
competitive loss of an estimator Q is then:

εn(Q,F) := max
C∈F

max
(π,P )∈C

[rn(π, P,Q)− rn(P)] , (2)

= max
∆K×P∈F

max
π∈∆K

max
P∈P

[rn(π, P,Q)− rn(P)] ,

(3)

where the risk of the estimator Q is its expected KL-
risk,

rn(π, P,Q) = E(xn,yn)∼πP
[∑

i πi
∑
j Pij log

Pij

Qij

]
,

(4)

and the minimax risk of the class C = ∆K×P achieved
by an optimal estimator QC ,

rn(P) := min
Q

max
π∈∆K

max
P∈P

rn(π, P,Q). (5)

The choice of family F is again equivalent to competing
with an oracle/genie that can determine the true (π, P )
up to a class C which it belongs to. We are in particular
considering oracles that are uninformed about π, but
know that P belongs to some class P allowed by F .

Basic competitivity Consider an oracle F1 that
knows each row of P up to permutation. Is it possible
to compete with it? Intuitively, one ought to be able
to, by reducing to the non-contextual competitive esti-
mator in each context. There are some subtle points
to consider, however. One is the fact that the number
of samples that each context receives is random. More
importantly, the number K of contexts plays a role in
how competitive we can be.

Let QGT be the per-context Good–Turing estimator.
This analysis also describes absolute-discounting ap-
plied to data from each context separately. Out of
n total samples, let ni denote those that fall in con-
text i. In the non-contextual case, the Good–Turing
estimator with n samples has a competitive loss of
O(min{ 1√

n
, kn}). Note that it is dimensionless in the

high-dimensional regime. So we intuitively expect the
same to hold per context. We formally extend this to
the overall contextual case.

Theorem 1 We have

εn(QGT,F1) ≤ O

(
min

{
1,

√
K

n
,
K · k
n

})
.

This implies three distinct regimes:

εn(QGT,F1) ≤


O(K·kn ) n > K · k2

O(
√

K
n ) K < n < K · k2

O(1) n < K
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The proof is in the supplements (Appendix ??). The-
orem 1 thus generalizes non-contextual results in a
data-diluted form: effectively replacing n by n/K. The
first case is the low-dimensional regime. Perhaps the
most relevant is the middle high-dimensional regime.
This often holds in the case of bigrams (K = k) and tri-
grams (K = k2). In this case we recover the prediction-
dimensionless (in k) bound. For large K and k, this loss
is negligible compared to the minimax risk (Falahatgar
et al., 2016), implying true competitivity (for more on
minimax risks see the supplements, Appendix ??). Not
that in the third (extreme high-dimensional) regime,
the unobserved contexts give no advantage to this ora-
cle, leading to a competitivity that does not decay but
also does not depend on the number of contexts.

Stronger competitivity In this paper, we conjec-
ture that the advantage of backoff is in providing a
much stronger form of competitivity. We use the follow-
ing intuition. The competitivity of the Good–Turing
estimator shows that the difficulty of the problem is
not in estimating the multiset of probabilities as much
as it is in identifying in which permutation they map
to the categories, the only task that the oracle has to
perform, given data. One can think of this as aligning
the tail of the distribution. In the contextual setting,
this intuition still persists. But another joins it: tails
are often related across contexts, and since the iden-
tities of the categories are shared across contexts, the
oracle then ought to be able to better align within each
context too. To make this intuition concrete, consider
the following idealized scenario.

Consider an oracle F2, that knows P has exactly m ≤ k
non-zero columns, but not which ones they are. Thus
P ∈ F2 are indexed simply by m. This idealizes two
aspects of the problem. First, there is a non-ambiguous
tail (the zeros) in each context. And second, all these
tails are clearly correlated across contexts by being
aligned. It turns out that the Kneser–Ney backoff
estimator QKN strongly competes with this oracle.

Theorem 2 If n� k then

ε(QKN,F2) ≤ O
(
k

n

)
.

Consider the regime where n > k2/K. Usually K ≥ k,
think of N -grams, in which case it would suffice that
n > K. It is easy to verify that in this regime the bound
of Theorem 2 is strictly better than that of Theorem 1,
and has the distinct benefit of not scaling with the
dimension of contexts. It is also worth mentioning
that the proof of this result (supplements, Appendix
??) gives the finer class-by-class competitive loss of
O(m/n). QKN achieves this without prior knowledge
of m.

We believe this simple case reinforces the idea that tail
alignment across contexts is a fruitful avenue for com-
petitivity in the contextual case, just as tail alignment
within contexts was a fruitful one in the non-contextual
case. Classes that ease the latter alignment, such as
power law decay or small effective support size, enjoy
lower competitive loss by QGT. These factors are invari-
ant under permutations. This suggests that unlike the
oracle F1 that permutes within each context separately,
the natural notion of invariance in the contextual case
ought to be under simultaneous permutation across
contexts, i.e. permutation of entire columns of P .

4 Contextual Good–Turing

Motivated by this theoretical foray, and with the goal
of giving a principled underpinning to Kneser–Ney
smoothing and the hope of deriving estimators with
more favorable competitive properties, we revisit the
derivation of the original Good–Turing estimator and
extend it to the contextual case.

Good–Turing is based upon an empirical Bayes con-
struction. To parallel it in the contextual setting, as-
sume the multiset of the columns of P is known and
that P is instanced via a uniformly random permuta-
tion of these columns. Let x be some context and y be
some prediction, such that our ultimate goal is to esti-
mate Pxy. The chance that y is any particular j ∈ [k]
is a priori 1/k, and thus E[Pxy] = 1/k. But having
made some observations, we would like to determine
the conditional expectation of Pxy given that there are
n := (ni)i∈[K] samples in each context and given that
y has been observed in each context c := (Ci,y)i∈[K]

times1. Starting with the simple observation that

Pr{c | n, y = j} =
∏
i

(
ni
Cij

)
P
Cij

ij (1− Pij)ni−Cij ,

one can show that

E[Pxy | n, c] =

∑
j

∏
i P

Cij+1{i=x}
ij (1− Pij)ni−Cij∑

j

∏
i P

Cij

ij (1− Pij)ni−Cij

≡ cx + 1

nx + 1

E[Kn+1x,c+1x
|n]

E[Kn,c|n]
. (6)

Here Kn,c is the number of columns that have exactly
the c count pattern. The expectation of this quantity is
column-permutation invariant, thus can be computed
from the multiset. The Good–Turing approach is to
use this expression as an estimator, substituting the
expectations with their empirical counterparts (with

1Note that this is not the entire information useful to
determine the permutation, just local information that
makes the task tractable.
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the shift of nx + 1 to nx, since the additional sample
is not available empirically):

P̂xy =
cx + 1

nx

Kn,c+1x

Kn,c
. (7)

The challenge is that, even in the non-contextual case,
these can be highly unreliable, and one needs to smooth
them, such as by combining with the empirical distri-
bution in the abundant range or by using absolute
discounting. In the contextual case, even more smooth-
ing is needed: c may be observed, but it’s very unlikely
that c + 1x is, and the estimator degenerates. How can
we remedy this?

From Contextual Good–Turing to Classical
Back-off Back-off is an intuitive notion, but was
originally proposed in an ad hoc fashion. We now
show that contextual Good–Turing naturally gives rise
to backoff. We start by observing that if one sums
the total probability assigned to all symbols that ap-
pear µ times in context x, the estimator (7) gives us
back the non-contextual Good–Turing estimate of that
probability: ∑

y:c(y),cx(y)=µ

Kn,c(y)P̂xy

=
µ+ 1

nx + 1

∑
y:c(y),cx(y)=µ

Kn+1x,c(y)+1x

=
µ+ 1

nx + 1
Knx,µ+1(x)

This shows that (7) simply redistributes this mass. This
is the main premise of Kneser–Ney backoff. Does it
redistribute it similarly to QKN? In general, no. But
we can identify when exactly it does. We give the fol-
lowing general smoothing strategy, which we can think
of as binning. For a given x, choose an equivalence ∼,
compatible with the contextual Good–Turing estima-
tor, namely that satisfies (1) c ∼ c′ implies cx = c′x
(fixes x) and (2) if c ∼ c′ then cσ ∼ c′σ for any per-
mutation σ of [K] (invariant under permutations of
contexts). We smooth by spreading probability within
each equivalence bin and counting all equivalent c as
being identical:

P̃xy =
cx + 1

nx

Kn+1x,∼c+1x

Kn,∼c
. (8)

We can verify that this preserves the mass redistribu-
tion property. Let nnz(c) =

∑
i 1{ci > 0} count the

number of non-zero entries of c. Then the following
defines a possible equivalence class:

c ∼ c′ ⇐⇒
{
cx = c′x
nnz(c) = nnz(c′)

(9)

In this case we can characterize the redistribution ac-
curately, at least in its idealized form.

Theorem 3 Use the equivalence relation of Equation
(9) in the smoothed contextual Good–Turing estimator
(8), where the counts K are substituted by their idealized
expectations. Let µ := cx. Then:

P̌xy =
µ+ 1

nx + 1

∑
j

(
nx+1
µ+1

)
Pµ+1
xj (1− Pxj)nx−µρbj∑

j

(
nx

µ

)
Pµxj(1− Pxj)nx−µρbj

,

where b = nnz(c) and

ρbj =∑
S⊂[K]\{x}:|S|=b

∏
i∈S

[1− (1− Pxj)ni ]
∏

i∈Sc\{x}

(1− Pxj)ni .

We omit the proof of this result, since it’s straightfor-
ward manipulations. It is more important to observe
that, apart from ρ, this is exactly the non-contextual
Good–Turing expression. Thus ρ acts as a redistri-
bution coefficient. In general, it does not quite redis-
tribute like Kneser–Ney: unlike it, ρ depends on the
context x. Observe however that only the small values
(of the order of 1/ni) of Pxj contribute to ρ. Let us
assume that these values are aligned across rows (do
not depend on x), that they have a power law decay
of index α, and that the ni are roughly uniform. We
can then show that the effect of ρ is asymptotically
approximately given by (see supplements, Appendix
??):

P̌xy ∼
µ+ by − α
n+ by

. (10)

For the unseen symbols, when µ = 0, this recovers the
Chen-Goodman version of Kneser–Ney smoothing (see
Section 2, and note that by is negligible with respect
to n.)

5 Partial Low-Rank N-gram Backoff

It is enlightening that contextual Good–Turing, an
empirical Bayes estimator derived from column-
permutation invariance, when properly smoothed, re-
covers classical forms of backoff under the kind of tail
alignment conditions that make these competitive in
the first place. It is then natural to ask whether con-
textual Good–Turing’s competitive properties extend
further than simple alignment, especially that it is not
explicitly aware of it. Indeed, column-permutation in-
variance has the potential to capture a much richer
family of tail structures: the rank of P , its sparsity,
the dimension of the manifold on which each row of P
lies, such as the embedding dimension in typical neural
embeddings, and many other classical structures, are
all invariant under such permutation.
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What is needed to achieve this generality is a more
flexible smoothing of the idealized contextual Good–
Turing formula of Equation (6). Based on this idea, we
now give a direct generalization of bigram Kneser–Ney
smoothing. First, refine the equivalence relation given
by (9), and use instead

c ∼ c′ ⇐⇒
{
cx = c′x
∀i 1{ci > 0} = 1{c′i > 0} (11)

Two columns are thus considered equivalent if their non-
zero patterns align. This is clearly a coarser binning
than maintaining the full identity of c, but is a signifi-
cant refinement of the partition induced by (9). For (9),
apart from the identity of cx, the partition could be de-
termined fully through (bj)j∈[k], where bj = nnz(C·j) =∑
i 1{Cij > 0}. To determine this finer partition

one needs the full matrix of non-zero indicators B =
(Bi,j)i∈[X],j∈[k], Bi,j = 1{Cij > 0}. Indeed, this may
still be too fine to effectively smooth Kn,c in general.
It does however allow us to create a hierarchy of refine-
ments of which itself is one extreme, and Kneser–Ney is
another, a projection onto a subspace of one dimension.

The key idea is the following: allow this
subspace to be of a larger dimension, say m.
Namely, represent the non-zero indicator matrix B
by a rank-m approximation. It is not hard to see that
for the case m = 1, such a representation collapses to
bj =

∑
iBij and recovers Kneser–Ney backoff. It is

also important to appreciate that this is not a low-rank
representation of the raw count matrix C. That would
be similar to a topic model. It is instead a low-rank
representation only of C’s rare component. We dub
it partial low-rank (PLR).

PLR can be intuitively thought of as follows:

• Split counts C into two, Cabundant + Crare.

• Cabundant is a α-discounted C, call its normalized
version A. Use it as is.

• Crare consists of the discounts themselves, equal to
α-scaled B. Don’t use it as is. Instead, factorize
it into WH: a thin matrix W and a short one H.

• Combine the A and WH components, using the
estimates ν of the missing mass in each row.

If W and H are 1-thin/short, we get Kneser–Ney be-
cause the backoff distributions, all rows of WH, become
the same. In contrast, PLR allows varying backoff dis-
tributions across rows/contexts.

The main fine-print here is that it is desirable to smooth
the backoff/rare component too. As mentioned in Sec-
tion 2, this was one of Chen and Goodman’s main im-
provements on Kneser–Ney: they smoothed the backoff
counts bj

2. A general simultaneous rank-reduction

2This contribution surprisingly appears just as a tucked
away mention in Section 4.1 of (Chen and Goodman, 1999).

and smoothing technique was recently proposed by
Falahatgar et al. (2017), as a simple modification of
the multiplicative-updates algorithm for non-negative
matrix factorization. That is what we propose to ap-
ply to B for the general rank case, and it once again
recovers the Chen-Goodman version when m = 1. PLR
is detailed in Algorithm 1.

Algorithm 1 Partial Low-Rank (PLR)

1: inputs
2: K × k count matrix C, rank m, discount α,

number of iterations T , (optionally) W0 and H0

3: outputs
4: Conditional distribution matrix QPLR,

(optionally) its components A, ν, W , and H
5: Do α absolute-discounting on each row of C:
6: Get abundant component A, Aij = (Cij −α)/ni
7: Get missing mass vector ν, νi = diα/ni,

where di =
∑

1{Cij > 0}
8: Generate indicator matrix B, Bi,j = 1{Cij > 0}
9: If W0 and H0 are not provided,

10: Initialize K ×m matrix W0:
11: Set it to be uniform 1/m in each row
12: Initialize m× k matrix H0:
13: Split B into m random row-blocks
14: Collapse each to get m× k soft-counts H̃0

15: Do α absolute-discounting on each row of H̃0

16: for t = 1 to T do
17: W̃t ←−

[
(B �Wt−1Ht−1)Hᵀ

t−1

]
⊗Wt−1

18: Add 1/2 to each row of the soft-count matrix W̃
and normalize each row to obtain Wt

19: H̃t ←− [W ᵀ
t (B �WtHt−1)]⊗Ht−1

20: Do α absolute-discounting on each row of the
soft-count matrix H̃t to obtain Ht

21: end for
22: return QPLR = A+ diag(ν) ·WTHT

Figure 1: A graphical representation of the Partial
Low-Rank (PLR) algorithm, Algorithm 1.

Algorithm 1 is illustrated graphically in Figure 1. The
notations ⊗ and � refer to element-wise multiplication
and division. The for-loop in which they appear is
the modified multiplicative updates to factorize B, see
details in (Falahatgar et al., 2016). When K = k,
the PLR algorithm applies as-is to perform bigram
smoothing. With m = 1, it is identical to Kneser–Ney.
With larger m, it describes a much richer set of tail
alignments. One could extend this to N -grams in two
ways, directly by setting K = kN−1, or by nesting like
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Chen-Goodman’s recursive application of backoff, by
fixing sub-contexts (Chen and Goodman, 1999). This
general Nested Partial Low-Rank algorithm, NPLR,
along with other technical details of both algorithms,
is presented in the supplements (Appendix ??.) Here
we merely illustrated it in the trigram (N = 3) case
graphically, in Figure 2. Note that all iterations can be
very efficiently implemented using either sparse matrix
manipulations or dictionaries. They run in linear time
in n, as only observed contexts need to be tracked.

Figure 2: A graphical representation of the Nested
Partial Low-Rank (NPLR) algorithm for the case of tri-
grams. Note how the PLR backoffs in each subcontext
z are combined to create an effective “augmented” bi-
gram model (we say this because there are mk contexts
instead of the k of Chen-Goodman). A nested backoff is
then applied to this augmented bigram. When m > 1,
the iterations of the trigram and bigram PLRs are them-
selves nested: the trigram H is updated only after the
bigram H is updated. When m = 1, each iteration
converges in one step, recovering the Chen-Goodman
algorithm.

6 Experiments

In this section, we reinforce the theory and concepts
so far with experiments. The goal is to show both that
we can improve traditional smoothing techniques and
that we can better aid neural language models. To-
ward the first goal, we show improved performance not
only in language modeling, that is predicting the next
word given its history, but also the Global Terrorism
Database, where we predict the target type for the next
attack for a given city.

N-gram language models We perform word-level
language modeling on the Penn TreeBank (PTB) data
set (Mikolov, 2012) using standard splits (929k training
tokens, 73k validation tokens, and 82k test tokens.)
The vocabulary size is 10k. We compare different
models in terms of their perplexity, the exponentiated

exp(cross-entropy). These express the uncertainty in
prediction, therefore, the lower, the better. We com-
pare the original Kneser–Ney (KN) with the NPLR
algorithm (nested version of PLR). NPLR allows us
to control rank at every back-off level (m2 at bigram,
m3 at trigram, · · · ). We look at two variants, both of
which are overall 5-gram models: (1) partial low-rank
applied either at only the bigram level PLR (m2 = 30,
m3 = m4 = m5 = 1), or (2) at both the trigram and
bigram levels (m2 = 18, m3 = 4, m4 = m5 = 1). This
means in particular that at higher levels we maintain
the KN structure in both cases, i.e. m4 = m5 = 1. We
set (α2, · · · , α5) = (0.8, 0.9, 0.9, 0.9), close to estimates
on held-out data (Ben Hamou et al., 2017; Ohannessian
and Dahleh, 2012).

We also include three neural models, two 5-grams,
one feedforward and one LSTM, and one 13-gram
feedforward, all reported in (Chelba et al., 2017).
Table 1 summarizes these results. We show significant
improvement over KN and a modest improvement
over the 5-gram feedforward model. The gap with the
5-gram LSTM is expected, considering its extensive
weight-sharing, which we surmise latches to additional
structure in language. To the best of our knowledge,
no other direct N -gram smoothing technique, and
in particular none of the attempts to explain and
generalize backoff including hierarchical Bayesian
models (Teh, 2006), have reported such clear gains.

Table 1: Perplexity on PTB — NPLR smoothing sur-
passes KN and competes with feedforward NNs — see
(Chelba et al., 2017) for details

Method Test Perplexity

5-gram KN 143
5-gram NPLR variant (1) 131
5-gram Feedforward NN 127
5-gram NPLR variant (2) 126

13-gram Feedforward NN 125
5-gram LSTM 103

LSTM language models with data noising Re-
cently, Xie et al. (2017) utilized smoothing techniques
as a data noising method for LSTM language models.
Replacing some words in the input data changes the
counts of N -grams in a way that applying an empiri-
cal estimator to the noised data is similar to applying
N -gram smoothing techniques to the non-noisy data.
In Table 2 we show that PLR, if used as a data noising
technique, improves the perplexity of an LSTM lan-
guage model more than all the other techniques, even
the best noising based on Kneser–Ney. The LSTM
setup is the same as the large-network used in (Xie
et al., 2017) (2-layer LSTM with 1500 hidden units)
and we trained our models using the same setup as
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in (Xie et al., 2017; Zaremba et al., 2014). The noising
parameter is tuned based on the validation data and
the result is reported for the best noising parameter.

Table 2: Smoothing as data noising for LSTMs — Ef-
fects on perplexity for the Penn Tree Bank data set —
see (Xie et al., 2017) for details

Noise scheme Validation Test

none 81.6 77.5
unigram 79.4 76.1
bigram Kneser–Ney 76.2 73.4
PLR 75.5 72.7

Global terrorism target prediction Language
modeling is the flagship application of smoothing tech-
niques and most of the new techniques are put to test
there. However, the challenge of predicting rarely seen
elements conditioned on some context, is present in
a multitude of other natural applications. Even the
power-law structure of language is also present in many
natural phenomena. Here we explore one such alter-
native application: predicting terror incidents. We
use the Global Terrorism Database (GTD) (START,
2018), which includes systematic data about more than
180, 000 cases of domestic and international terrorist
events from 1970 through 2017 for more than 36, 000
cities around the globe. The task that we consider
is to estimate the probability of the next attack in a
given city has a specific target. This is a contextual
probability estimation: the context is the city and the
prediction is the target type. There are 114 different
target sub-types, such as restaurants, banks, hotels,
and etc.

We predict the type of the next attack in each city
based on the prior incidents that happened in that year
and compare four different estimators: row-wise add-
half, row-wise absolute discounting, Kneser–Ney (KN),
and PLR. Figures 3(b) and 3(a) show the benefit of
using data from different cities (different rows of the
count matrix) when predicting for the target type in a
particular city. PLR and KN always have significantly
better performances in predicting the next attack’s
type than row-wise estimators such as add-half and
absolute discounting. Also, PLR shows an edge over KN
in terms of generalization power. In all experiments,
PLR is set to use rank m = 5 and the discount factor
α = 0.9, and is run for 100 iterations.

Lastly, we study how performance changes as the
amount of data available for estimation varies. For
this, we base our predictions for a particular year and
predict the target type for two weeks in a month, using
all the incidents before that time period in that year.
As we move towards the end of the year, the amount
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(b) Yearly data
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(c) Effect of training size

Figure 3: Test cross-entropy with training / test pe-
riods: (a) dates before / after 2015, (b) the first 10
months / the last two months of the year, and (c) all
dates prior to a month / that month of the year

of data available for estimation increases. Figure 3(c)
shows how cross-entropy changes for different months
in the year 2017. It is clear that the relative gain of
PLR is more in the case when data is not abundant.
More experiments are reported in the supplements.

7 Conclusion

We initiated a theoretical exploration of N -gram
smoothing, through the lens of competitivity. This
allowed us to understand backoff from first principles
and discover powerful new generalizations. Beyond
matching the performance of feed-forward neural
networks, these new algorithms enable better data
augmentation for training general neural language
models, and even show gains in applications beyond
language modeling. We hope this provides momentum
towards a mature theory and practice of competitive
contextual distribution estimation.
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