Rizal Fathony, J. Zico Kolter

Appendix A Proofs

Al

Proof of Theorem 1

Proof of Theorem 1. The metric in Eq. (3) can be written in a variable notation as:

i 2 Uiyi + b5), (1=3:) (1—y; (D Ui D Vi
metrlc(y,y)zzaj Zzyy +]Z’L(y2< y)+fJ(Zvy Zzy) (17)
j QJ(ZZ yiaZi yl)
Therefore, the expected value of the metrics can be computed as:

EP(Y)- %) {metric(Y, Y)} (18)
= 3 Y PE)QY) metric(y,) (19)

ye{0,1}n ye{0,1}"
> Z Z P($)Q(5 Zaj 299 + b5 20, (L=0) (A =9a) + £ (32, 9i, 22,) (20)

ye€{0,1}» ye{0,1}» gj(Z,- Yi, ZZ i)

o> > D Pl)<Z“J‘Zi@iﬂi+ijg¢j(zI;z)li))(1—yi)+fj(k,Z)> o

ke[0,n] 1€[0,n] {y\ELuﬁk} {F1Z:g:i=1} J

2 2 Z (jz{ylﬁi@i:k}Z{ylziyi:z}P(f’)Q(S’) > Ui (22)

kelo,n]l€[0,n] §

+b; Z{y\zigi:k} 2 gisig=ty PFQW) 22 (1=5:)(1—:)
+ E{S'\E-z)i—k} Z{ymgi:z} P(S’)Q(S’)fj(k7 Z))
Z Z Z (a‘j Z’L P(gz =1, Zilgi’ = k)Q(gZ =1, Zi,g]i/ = l) (23)

kelo,n] le[0,n] J

+; 2(7’@1 = 0,90 = k(O = 0,5 = 1) + fi(k,)P(X,0: = k) Q(X 0 = z))
DD Z % [- ar] + b5 [Pk - al] + f(k, Dresy). (24)

kelo,n]l€[0,n] J

[lo

[l

I

The transformations above are explained as follow:

(a)

Expanding the definition of expectation of the metric to the sum of probability-weighted metrics.
Applying the construction of our performance metric.
Grouping the values of the metric in terms of) . 9, =k and >, 9; = L.

Since each f; is just a linear function over), 9;9; and Y. (1—9;)(1—7;), we can push the summation over
2{5’\Ei@i=k‘} Z{y\ziﬂi=l} inside f;.

Since), 9;9; and Y, (1—9;)(1—9;) are both decomposable, then the expectation over P(y) and Q(y) for
the case where) . #; = k and), 9; = [can be decomposed into each individual marginal probabilities
P(Yis Yy U = k) and Q(g;, >, G =). Similarly, given fixed k and I, f;(k,l) is just a constant. Hence
we can simplify the expectation over f;(k,l) in terms of the marginal probabilities of P(>",4; = k) and

Qi =1).

Rewriting the marginal probabilities in vector notations.

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

A.2 Proof of Theorem 2

Proof of Theorem 2. From Theorem 1 we know that:

méiXEP(X,Y) {5}5}) m(a}; Epy.0v) [metric(Y,Y) —67 (¢(X,Y) - ¢(X, Y))] } (25)

:m(;cxxE};(X’Y) [min max { Z Z Z PC) {a] p;. - ai] +b;[pL -l + £k, l)rksl} (26)

oM P(Y) kelo,n]le[0,n] J

- Eg) 7 (0X,¥) - 0%,)] |

Note that the values for some p{ and qf are known, i.e.:

(P0)i = PG =1,2,8:=0)) =0, Viel[l,n] (27)
(py)i =P(§:i = 0,59 =n)) =0, Viell,n] (28)
(Pr)i =P = 1,5, = n)) = P(1), Vie[l,n] (29)
(P2); = P(§: = 0,55 = 0)) = P(0), Vi€ [ln (30)

and similarly for qf.

We now analyze the relation between p,l€ and pg (which also applies to q,lc and qg). Note that each P(y) such
that >, 9; = k appears k times in), P(y; = 1,)_,9; = k)), which implies:

Tk = P(Zﬂ)z =k)= %Zzp@z = 1721'?}1' =k)). (31)
Therefore, we also have the relation:
Pi=0,>0:=k) =P 0 =k) =Py = 1,>_,9: = k)
=3 P@i =120 =k) — PG = 1,20 = k),
for all k € [1,n—1]. In vector notation, we can write:

(pi- 1) (32)
(p;, - 1)1 —p}, Vk € [1,n—1]. (33)

r

O I
= e

p
We know already that p, = 0. For computing p§, we know that P(g; = 0,>_.49; = 0) = P(>_,9; = 0) = P(0)
which can be computed as:
PO)=1-— Zke[l’n] PO 0i=k) (3)
=1 =2 kepin) 5P =1,50: = k)

L
=1- EkG[l,n] p];c

Therefore, we can compute all values in p?,Vk € [0,n], 7x, P(0), and P(1) from p}, and thus we can perform
optimization over p;, and qj only. For short, we write the as just py and qx. Note that we know that po = qo = 0.
Therefore, it suffices to optimize only over pi and qg, for all k& € [1,n]. Let us denote a n x n matrix P where
each column P, ;) represents pg. Similarly, we denote a matrix Q for q.

Let us take a look at the property of the marginal probability matrices P and Q. To be a valid marginal
probability, P has to satisfy the following constraints:

Pie >0 Vike[ln (35)
DouPik <1 Viel[l,n] (36)

Pik <3Pk Vik € [Ln] (37)
St ik <1 (38)

The constraints above are described below:

Rizal Fathony, J. Zico Kolter

e The first constraint is for the non-negativity of probability.
e The second constraint is from P(y; =1)=>, P(g: = 1,2, 9. =k) < 1.

e The third constraint comes from the fact that each P(y) such that), §; = k appears k times in) . P(y; =
1,>.5: = k)), and thus, P(>_,0: = k) = %Zip@i = 1,0 = k)). Therefore, the inequality of P(y; =
1,35 = k) < P(3>_,9: = k) must hold which implies the third constraint.

e The fourth constraint comes from the fact that >, P(>°,9; = k) < 1.

The same constraints also need to hold for the probability matrix Q. We can also see that satisfying the third
and fourth constraints implies the second constraints, i.e.:

> pik<Y EYpik <L (39)
k k

Now we take a look at the features. Let the pair (x,y) be the empirical training data. Based on the construction
of our features, we compute the potentials for 0T¢(x,y) as:

0To(x,y) = 07 Z d(x,y;) = 07 Zﬂ[yz- = 1o(x,y; = 1) = (y, TTH), (40)

and the potentials for Eq v, [0T¢(x,Y)] as:

Eqry) [07¢(x,Y)] = Eqy) [m Z o(x,Y;)

=6 Z Qs = 1)o(x, 3 = 1) = (QT1, ¥TH). (41)

Therefore, we can simplify Eq. (2) as:

mﬁx{énéﬁglé‘i{[> 2 D gy {wlph-ar] + bslpi - a] + fi(k, Dresi} = (QTLUTO) |+ (y, ‘1’T9>}’
keo,n]lel0n] J
(42)
where A is the set of valid marginal probability matrix denoted as:
Pik >0 Vi, k € [1,n]
A=LP Dik < %Z] Pjk Vi, ke [1, n] . (43)
Sk ibik <1
O

A.3 Proof of Theorem 3

Proof of Theorem 8. The result follows directly from the rule of subgradient of maximum function.

~E0) = gax pin [_ Yoo XD st e - all + bpY - ab] + fi(k Dresi} + (QTLETH) | — (v, UTO)
kel[o,n] le[0,n] J

(44)

Jg— L) >V (Q*T1 —y), where: (45)

Q" = argmax min [— Do XY st {aslpi - al +bs[p) - @l + fi(k Dresi} + (QTL, WT)

PeA -
QeA ke[0,n] I€[0,n] J

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

A.4 Proof of Theorem 4

Proof of Theorem 4. The inner minimization over Q in Eq. (9) is:

min max
QEA PEA

Yo > st laipi-all + bRl + ik Drsi) — (QTLUTH) | (46)

kelo,n] le[0,n] J

Denote:

OQP)= > > > hniapi-all +bpL-all+ fikDrsi} - (47)

kelo,n] lelOn] J
Since the objective in O(Q,P) is a bilinear function over Q and P, it can be written in the form of O(Q,P) =
<%%P), P> + ¢(Q), where ¢(Q) is the terms that are constant over P. Therefore, Eq. (46) can be written as:

iy max (Z(Q), P) +¢(Q) — (Q, W), (48)

where Z(Q) = %, and W = ¥T1T. Note that both Z(Q) and ¢(Q) are some linear functions that depend
on the metric.

We expand the constraints over P as:
min max (Z(Q), P) +¢(Q) - (Q, W) (49)
st pik >0 Vi ke[l,n]
pi,k: S %ijj,k} Vl,k S [17’”}
ok % 2ibik <1

We now perform a change of variable. Let us transform P to a matrix A where its element contains the value
of a; 1 = %a,;k We can rewrite the objective as:

min max (Z'(Q), A) +¢(Q) — (Q W) (50)
s.trar >0 Vike[l,n]
aip < 32 a5k ik € [1,n]
Dok ik <1
where Z/(Q) is the linearly transformed Z(Q) to adjust the transformation of the variable from P to A.

Using duality, we introduce a Lagrange dual variable for a; ; < % Zj aj 1 constraint.

min_ max (Z'(Q),A) +¢(Q) — (Q, W) — Zaz‘,k (aik - %E; aj,k) (51)
ik

QeA;a>0 A

st.ai >0 Vike[l,n]

Dok itk <1
We regroup the terms that depend on A as:
min max (Z'(Q),A) — Zai’k (aik — %Z] aj,k) +¢(Q) — (Q, W) (52)
ik

QeA;a>0 A

st air >0 Vike[l,n]

D2 @ik <1

We now eliminate the inner maximization over A by transforming it into constraints as follows:

Qeg;lgnzo;v v+¢(Q) - (Q, W) (53)

st:ov>0
v > (Z(Q)) (i) — ik + X 0k, Vik € [Ln].

Rizal Fathony, J. Zico Kolter

The formulation above can be written in a standard linear program as:
Qin v +¢(Q) —(Q, W) (54)
st gixk >0 Vikelln
a x>0 Vi kel[l,n]
v>0
Gk < %Z] gk Vi ke ([l,n]
Yk itk <1
v > (Z/(Q))(i,k) — Qi+ % Zj Qi k, Vi, k € [1,n],
where ¢(Q) is a linear function of Q and Z’(Q) is a matrix-valued linear function of Q, both of which are defined

analytically by the form of the metric. O

A.5 Proof of Theorem 5

Proof of Theorem 5. Let us take a look at the expectation in the constraints:

Epey [metric(Y,Y)] (55)
Z P(y) metric(y,y) (56)
ye{o,1}n

5 a; > 9iyi +0;30,(1=0:) A=) + 502 9is D25 vi)
yE{zozl}"P Z 95 (D2 ir D23 Yi)

Ly oy z{ym_m()Y it + b gyimigny PO S0 =30(1=9) + g1y PO (k.)

(57)

kelon] g 9;(k;1)
(58)
-y YU 25 PWi =13 00 = Ky +b; 35, P = 0,3 590 = K)(A—ys) + 5., PO 0: = k) f(k, 1) (59)
ke[om] J g;(k,1)
keon] 4 g](k’l)
where [= . y;. Therefore, the metric constraints can be written as:
b; - i(k, 1
> sk bl R 5 1 vie g
keon] 4 g5 (k, 1)
The dual formulation of Eq. (13) is:
max Epx v) [gggl) Pr(r;{egér Ery.0%) [metnc((Y, Y) +67 (¢(X,Y) — gi)(X,Y))H
where : T £ {’P(Y) | Epx,)P [metric(“ (Y,Y)} > T, Vi€ [Lt]}. (61)
Following the analysis in the proof of Theorem 2, the dual formulation can be simplified as:
i 1 (010 . 40 (0) _/OT1 OT T
max { min max [> 2N ook all 4]+ 0 (ks | - QUL)| 4y, e>},
keo,n] l€e[O,n] J
where:
pzk>0 VZ,kE[l,n]
A={P pzk_kz Djk Vi,k € [1,n] 3, and (62)

Ekkzpzk<1

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

" [p} -y + 09 [pY - (1—y)] + £17 (k, i)
> Z ST

-

A.6 Proof of Theorem 6

>, Vie [1,t]}, where [=", yir. (63)
kelo,n] J

O

Proof of Theorem 6. The inner minimization over Q in Eq. (14) is relatively similar to the standard case (Eq.
(9)). The only difference is the additional constraints over P. Since the numerators of the metrics in the
constraints are linear in terms of pk and pg (which also means linear in terms of py), then the constraints in T’
can be represented by some matrix B(®) and some constant p; such that:

BO.P)+py; >7, or S NP > Vie [1,4] (64)

Following the change of variable in the proof of Theorem 4, we can also represent the constraint in terms of A
using some matrix B’(") such that:

B A+ >7, o, STl 4 >n, Vie[l,d] (65)
Therefore, we have an inner optimization over Q and A, which can be written as:
. / _
min max (Z'(Q), A) +¢(Q) - (Q, W) (66)
st ar >0 Vike[l,n]
aik < X a5k Vik € [1,n]

Dok 2 ik <1
(B A) 4y > 1,V € [1,1]

Using duality, we introduce Lagrange dual variables.

max (Z'(Q),A) +c— (Q, W) Za’k (azk %7) +Zﬁl ((B O A A) + —77) (67)

min
QeA;a>0;8>0 A
st.oaiy >0 Vioke[l,n]

Dok 2o Gk <1
We can convert the optimization in a standard linear program format as follows:

Qg v+ = (@ W)+ D (- 7) (68)
st g >0 Vikel[ln]

e >0 Vikel[l,n]

B>0 Viell,s]

v>0

gk < %ZJ ¢k Vi ke [l,n]

Dok % itk <1

0> (Z(Q) k) — @ik + 12 ik + 2 B B D) gy, Vike[l,n].

A.7 Proof of Theorem 7

Proof of Theorem 7. Despite its apparent differences from standard empirical risk minimization (ERM), the dual
formulation of the adversarial prediction (Eq. (2)) can be equivalently recast as an ERM method:

Rizal Fathony, J. Zico Kolter

m@in Epx vy AL, (X, Y)], where: (69)
ALp,(X,Y) = max min E, .o | — metric(Y,Y) + ho(X,Y) — ho(X,Y 70
(X, Y) = max min B g 0.5, (¥, X) + ho(X,Y) = ho(X, X)) (70)

and hg(x,y) = 0T¢(x,y) is the Lagrangian potential function. AL, (x,y) is then the surrogate loss for input x
and label y. The Fisher consistency condition for the adversarial prediction can then be written as:

h* e & arg;nin Ep(y|x) [ALn(x,Y)] (71)

= argmax h*(x,y) C argmax E p(y|x) [metric(y’, Y)].
y y’

It has been shown by Fathony et al. (2018a,b), for a given natural requirement of performance metric, i.e.,
metric(y,y) > metric(y,y’) for all y’ # y, the adversarial prediction is Fisher consistent provided that h is
optimized over all measurable functions over the input space of (x,y). We quote the result below:

Proposition 1 (Consistency result from Fathony et al. (2018a,b)). Suppose we have a metric that satisfy the
natural requirement: metric(y,y) > metric(y,y’) for all'y’ # y. Then the adversarial surrogate loss ALy is
Fisher consistent if h is optimized over all measurable functions over the input space of (X,y).

The key to the result above is the observation that given a loss metric loss(y’,y), for the optimal potential
function h*, h*(x,y) + loss(y®,y) is invariant to y where y° = argmax,, Ep(y|x)[metric(y’, Y)]. This property
is referred to as the loss reflective property of the h minimizer. For a performance metric, the property can be
equivalently written as h*(x,y) — metric(y®,y) is invariant to y.

We now want to reduce the input space that h needs to operate in order to achieve to Fisher consistency
property. We consider the restricted set of h defined as: h(x,y) = Zi’k pi (X, yi, K)I[> ", yi = k], where each
pyiky is optimized over the set of all measurable functions on the individual input space of (x,y;). If the
performance metric follows the construction in Eq. (3), then we can achieve the loss reflective property under
the restricted set of h by setting:

aj Y ysyi + 05 >0 (1—y) (L—yi) + £33, v5, k)
gj(Ziyka) .

pik(%,yi k) =

J

(72)

This will render the loss reflective property as h*(x,y) — metric(y®,y) = 0.

Therefore, we can conclude that our method is Fisher consistent for a performance metric that follows the
construction in Eq. (3) if the algorithm is optimized over a set of functions that are additive over each sample
and sum statistics. O

Appendix B Experiment Details

To evaluate our approach, we apply our formulation to classification tasks on 20 different tabular datasets from
the UCI repository (Dua and Graff, 2017) and benchmark datasets (Chu and Ghahramani, 2005), as well as
image datasets from MNIST and Fashion MNIST. Table 3 shows the list of the datasets and their properties
(the number of samples in the train, validation, and test sets). Some of the datasets are binary classification
tasks, which we use directly in our experiments. For the multiclass datasets, we transform them into binary
classification tasks by selecting one or more classes as the positive label and the rest as the negative label. Table
3 also shows the original class labels in the dataset and the classes that we select as the positive label in the
transformed binary classification. The distribution of the positive and negative samples in the training set of the
resulting binary classification tasks is described in Table 4. For all of the datasets, we perform standardization,
i.e., transform all the variables into zero mean and unit variance. For the datasets that have not been divided
into training and testing set, we split the data with the rule of 70% samples for the train set and 30% for the
test set. In addition, during the training, we also split the original training set into two different sets, 80% of
the set for training, and the rest 20% of the set for validation.

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

Table 3: Properties of the datasets used in the experiments

Dataset # train set # validation set # test set original classes positive classes
abalone 2,338 585 1,254 [1,10] [6,10]
adult 25,324 6,331 13,567 [0,1] 1]
appliancesenergy 11,051 2,763 5,921 [0,1] 1]
bankdomains2 4,587 1,147 2,458 [1,10] [7,10]
bankmarketing 25,318 6,329 13,564 [0,1] 1]
californiahousing 11,558 2,889 6,193 [1,10] [7,10]
censusdomains 12,758 3,190 6,836 [1,10] [7,10]
computeractivity2 4,587 1,147 2,458 [1,10] [8,10]
default 16,800 4,200 9,000 [0,1] 1]
dutch 33,835 8,459 18,126 [0,1] 1]
eegeye 8,389 2,097 4,494 [0,1] 1]
fashion-mnist 48,000 12,000 10,000 [0,9] [0]
htru2 10,022 2,506 5,370 [0,1] 1]
letter 11,200 2,800 6,000 [1,26] [22,26]
mnist 48,000 12,000 10,000 [0,9] o]
onlinenews 22,200 5,550 11,894 [0,1] 1]
pageblocks 3,065 766 1,642 [1,5] [4,5]
redwine 895 224 480 [1,10] [7,10]
sat 3,548 887 2,000 1,7] 16,7]
sensorless 32,765 8,191 17,553 [1,11] [7,10]
shuttle 34,800 8,700 14,500 [1,7] [4,7]
whitewine 2,743 686 1,469 [1,10] [7,10]

For the tabular datasets, we construct a multi-layer perceptron (MLP) with two hidden layers. Each layer has
100 nodes. For the image datasets, we construct a convolutional neural network (CNN) with two convolutional
layers and two dense layers. In the training process, we use the standard gradient descent algorithm for both
the BCE and AP-Perf networks. We use the learning rate of 0.01 for the BCE networks and 0.003 for the
AP-Perf networks. We select the learning rate values for both methods based on the training and validation test
performance plot over 100 epochs.

For both methods, we perform a cross-validation using validation set to select the best L2 regularization among
A = {0,0.001,0.01,0.1}. After the training session finished, we compute the value of the metric for prediction
in the testing dataset. For both methods, we select the predictive models that achieve the best metric in the
validation set. We also implement an early stopping technique based on the validation set to avoid overfitting.
Even though we run all the networks for 100 epochs, we select the parameters on the epoch that produce the
best metric on the validation set. We then use this parameter to make predictions on the testing set.

Appendix C Code Examples for Constructing Performance Metrics

C.1 Commonly Used Performance Metrics

Below are some code examples for constructing some of commonly used performance metrics.

@metric Accuracy # Accuracy

function define(::Type{Accuracy}, C::ConfusionMatrix)
return (C.tp + C.tn) / (C.all)

end

accuracy_metric = Accuracy()

Rizal Fathony, J. Zico Kolter

Table 4: The number of positive and negative samples in the train set for each dataset

Dataset # train set # positive # negative positive percentage
abalone 2338 146 2192 6%
adult 25324 6258 19066 25%
appliancesenergy 11051 2961 8090 27%
bankdomains2 4587 1829 2758 40%
bankmarketing 25318 2941 22377 12%
californiahousing 11558 4637 6921 40%
censusdomains 12758 5088 7670 40%
computeractivity?2 4587 1379 3208 30%
default 16800 3701 13099 22%
dutch 33835 17803 16032 53%
eegeye 8389 3769 4620 45%
fashion-mnist 48000 4764 43236 10%
htru2 10022 901 9121 9%
letter 11200 2167 9033 19%
mnist 48000 4729 43271 10%
onlinenews 22200 2899 19301 13%
pageblocks 3065 118 2947 4%
redwine 895 113 782 13%
sat 3548 819 2729 23%
sensorless 32765 11934 20831 36%
shuttle 34800 7408 27392 21%
whitewine 2743 587 2156 21%
@metric Precision # Precision

function define(::Type{Precision}, C::ConfusionMatrix)
return C.tp / C.pp
end

prec = Precision()
special_case_positive! (prec)

@metric Recall # Recall / Sensitivity

function define(::Type{Recall}, C::ConfusionMatrix)
return C.tp / C.ap

end

rec = Recall()
special_case_positive! (rec)

@metric Specificity # Specificity

function define(::Type{Specificity}, C::ConfusionMatrix)
return C.tn / C.an

end

spec = Specificity()

special_case_negative! (spec)

@metric F1Score # F1 Score

function define(::Type{F1Score}, C::ConfusionMatrix)
return (2 *x C.tp) / (C.ap + C.pp)

end

f1_score = F1Score()
special_case_positive! (f1_score)

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

@metric GM_PrecRec # Geometric Mean of Prec and Rec

function define(::Type{GM_PrecRec}, C::ConfusionMatrix)
return C.tp / sqrt(C.ap * C.pp)

end

gpr = GM_PrecRec()
special_case_positive! (gpr)

@metric Informedness # informedness

function define(::Type{Informedness}, C::ConfusionMatrix)
return C.tp / C.ap + C.tn / C.an - 1

end

inform = Informedness()
special_case_positive! (inform)
special_case_negative! (inform)

@metric Kappa # Cohen's kappa score

function define(::Type{Kappa}, C::ConfusionMatrix)
num = (C.tp + C.tn) / C.all - (C.ap * C.pp + C.an * C.pn) / C.all"2
den =1 - (C.ap *x C.pp + C.an * C.pn) / C.all*2
return num / den

end

kappa = Kappa()
special_case_positive! (kappa)
special_case_negative! (kappa)

@metric PrecisionGvRecall # precision given recall >= 0.8

function define(::Type{PrecisionGvRecall}, C::ConfusionMatrix)
return C.tp / C.pp

end

function constraint(::Type{PrecisionGvRecall}, C::ConfusionMatrix)
return C.tp / C.ap >= 0.8

end

precision_gv_recall = PrecisionGvRecall()
special_case_positive! (precision_gv_recall)
cs_special_case_positive! (precision_gv_recall, true)

@metric RecallGvPrecision # recall given precision

function define(::Type{RecallGvPrecision}, C::ConfusionMatrix)
return C.tp / C.pp

end

function constraint(::Type{RecallGvPrecision}, C::ConfusionMatrix)
return C.tp / C.ap >= 0.8

end

recal_gv_precision = RecallGvPrecision()
special_case_positive! (recal_gv_precision)
cs_special_case_positive! (recal_gv_precision, true)

@metric PrecisionGvRecallSpecificity # precision given recall >= 0.8 and specificity >= 0.8
function define(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix)

return C.tp / C.pp
end
function constraint(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix)

return [C.tp / C.ap >= 0.8,

C.tn / C.an >= 0.8]

end

Rizal Fathony, J. Zico Kolter

precision_gv_recall_spec = PrecisionGvRecallSpecificity()
special_case_positive! (precision_gv_recall_spec)
cs_special_case_positive! (precision_gv_recall_spec, [true, falsel)
cs_special_case_negative! (precision_gv_recall_spec, [false, truel)

C.2 Performance Metrics with Arguments

Our framework also supports writing performance metric with arguments, for example, the Fg score metric which
depends on the value of 5. Below are some examples on constructing metrics with arguments.

@metric FBeta beta # F-Beta

function define(::Type{FBeta}, C::ConfusionMatrix, beta)
return ((1 + beta*2) * C.tp) / (beta”2 * C.ap + C.pp)

end

f1_score = FBeta(1)
special_case_positive! (f1_score)

f2_score = FBeta(2)
special_case_positive! (f2_score)

precision given recall

@metric PrecisionGvRecall th

function define(::Type{PrecisionGvRecall}, C::ConfusionMatrix, th)
return C.tp / C.pp

end

function constraint(::Type{PrecisionGvRecall}, C::ConfusionMatrix, th)
return C.tp / C.ap >= th
end

precision_gv_recall_80 = PrecisionGvRecall(0.8)
special_case_positive! (precision_gv_recall_80)
cs_special_case_positive! (precision_gv_recall_80, true)

precision_gv_recall_60 = PrecisionGvRecall(0.6)
special_case_positive! (precision_gv_recall_60)
cs_special_case_positive! (precision_gv_recall_60, true)

precision_gv_recall_95 = PrecisionGvRecall(@.95)
special_case_positive! (precision_gv_recall_95)
cs_special_case_positive! (precision_gv_recall_95, true)

@metric PrecisionGvRecallSpecificity th1 th2 # precision given recall >= th1 and specificity >= th2
function define(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix, thl, th2)

return C.tp / C.pp
end
function constraint(::Type{PrecisionGvRecallSpecificity}, C::ConfusionMatrix, th1, th2)

return [C.tp / C.ap >= thi,

C.tn / C.an >= th2]

end

precision_gv_recall_spec = PrecisionGvRecallSpecificity(0.8, 0.8)
special_case_positive! (precision_gv_recall_spec)

cs_special_case_positive! (precision_gv_recall_spec, [true, falsel])
cs_special_case_negative! (precision_gv_recall_spec, [false, truel)

Appendix D Linear Program Solver using the ADMM Technique

In this section we construct an ADMM formulation for solving the inner optimization over Q in Eq. (9). The
optimization can also be solved using any linear program solver as shown in the Appendix A.4. However, the

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

runtime complexity of solving the LP is O(mS) where m is the batch size, which makes it impractical for a batch
of size greater than 30 samples. Our ADMM formulation reduces the runtime complexity to O(m?).

We consider an extension of the family of evaluation metrics in Eq. (3) to also include the false positive and the
false negative in the numerator of the fractions, i.e.,
) a;TP + b;TN + ¢;FP + d;FN + f;(PP, AP
metric(y,y)zz j TP+ 0;TN+ ¢;FP + d; +fJ()
) 4, (PP, AP)

, (73)

where a;, b;, ¢;, and d; are constants.

D.1 ADMM Formulation for Metrics with the Special Case for True Positive

We start with a task where the metric enforces a special case for true positive (for example, the precision, recall,
and Fl-score). In this task, the optimization over Q in Eq. (9) becomes:

Bun o {k li[;]Z i { el - all + b;[pY - o) + ¢;[ok - af] + d;pf - i (74)
swell,n] g

+ f;(k, l)’rksl} +P(0)0(0) — (QT1,UTH) .

In this section we will use matrix notations in our formulation, extending our vector notations in Appendix A.2.
Using matrix notations, Eq. (74) can be written as:

min max M., P] + (M,, PT + (M3, P/ 75
{Q1,Qo0.5,v0}€A {P1,Po,r,uo A < ' 1Q1> < 2 1Q0> < ° OQ1> ()

+ (M4, P{Qo) + (M5, rsT) + ugvg — (Qq, 2),

where the matrix variables Q1, Qo, P1, and Py represent:

Qi =QWi =121 =13), i,je{l,...,n}
Qoli; = Q@ =0,>, 5 =13), 4,je{l,...,n}
Pilij =P@: =120 =7), ij€{l,...,n}
[Polij =PG5 =0,29=3), 4j€{l,...,n},
the vector and scalar variables represent:

sl = ou=74), jefl,....n}

vo = Q0> 5t =0)

;=P oi=14), je{l,....n}

Up = P(Zz o = 0),

and the matrix Q = UTH1T.

The matrix coefficients My, My, M3, My, and M5 are computed from the performance metric, where each cell
k,l of the matrices represents:

Mik = Z '(aj ik M)y, = Z

G\

J J (
_ J _ fi(
(Mg, = Z D)’ Mg = Z D)

7 9 7

Q
o~

Sy

We write the original marginal distribution constraint A over P in matrix notations over {P1,Pg,r,ug} as:
Plzoa P()ZO, I‘Zoa UOZO
r = diag(k)PT1
I'T]_ —+ Ug = 1
P]_ + P() = 1I‘T,

Rizal Fathony, J. Zico Kolter

where: k = [%, %, ol %]T All of the inequalities are element-wise.

Similarly, we write the original marginal distribution constraint A over Q in matrix notations over {Q1, Qo, s, vo }
as:

Q1 >0,Q>0,8>0,v92>0
s = diag(k)QJ1

sT1+vyy=1

Q; + Qo = 1sT.

D.1.1 Simplification and Reformulation

As mentioned in Appendix A.2, we can compute all the variables for P(y; = 0,...) from the variables for
P(y; = 1,...). Specifically, we can derive Py, r, and ug from P;. Let we denote P = P, then the equalities
below hold:

Py =11"Pdiag(k) — P (76)
r = diag(k)PT1 (77)
uo =1 —1TP diag(k)1, (78)

and similarly for the adversary’s variables, where Q = Qq:
Qo =117Qdiag(x) — Q (79)
s = diag(k)QT1 (80)
vo =1 —17Qdiag(k)1. (81)

Using this notation, we write Eq. (74) as:

min max (M, PTQ) + (M, PT(117Q diag(k) — Q)) + (M3, (117P diag(k) — P)TQ) (82)

QeA PeA
+ (My, (11TP diag(k) — P)T(117Q diag(k) — Q)) + (M5, diag(k)PT117Q diag(k))
+ (1 — 1P diag(k)1)(1 — 17Q diag(k)1) — (Q, Q)

The constraint set A for P is:

P>0
17P diag(k)1 <1
P < 117P diag(k),

and similarly for Q:

Q>0

17Qdiag(k)1 <1

Q < 117Q diag(k),
where all of the inequalities are element-wise. This matrix inequalities for defining A is equivalent with the
inequalities in Eq. (10).
By rearranging the variables, we write Eq. (82) as:

min max (P, QM) + (P, (117Q diag() — Q)M3) + (117P diag(x) — P, QMj) (83)

+ (117P diag(k) — P, (117Qdiag(k) — Q)M]) + (P, 117Q diag(x)M] diag(x))
+ (P,117Qdiag(x)117 diag(k)) — (P, 117 diag(k)) — (Q, 117 diag(k)) + 1 — (Q, Q)

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

= min max 1-(Q, 117 diag()) — (Q,) (84)

+ (P, QM] + (117Qdiag(k) — Q)MJ + 117Q diag(k)M] diag(k) + 117Q diag(k)117 diag(k)) — 117 diag(k))
+ (11"P diag(k) — P, QM + (117Q diag(k) — Q)M])

= min max 1 —(Q, 117 diag(x)) — (Q, 2) (85)

+ (P, QM] + (117Qdiag(k) — Q)MJ + 117Q diag(k)M] diag(k) + 117Q diag(k)117 diag(k)) — 117 diag(k))
+ (P, 117QMI diag(k) + 117117Q diag(k)M] diag(k) — 11TQM] diag(k) — QM — 117Q diag(k)M] + QM])

Given a fixed Q maximizing P € A over a linear objective reduces to finding the column £ that has the maximum
sum of k largest elements in the column, with the additional restriction that it has to be greater than zero. We
then simplify the formulation above as:

win f(AQB +QC + D) +(QE) +c (86)
where:
J(X) = max(0, max sum-k-largest(X. 1)) (87)
A=117 (88)
B = diag(k)M] + diag(x)M] diag(r) + diag(r)11T diag() (89)

+ M1 diag(k) + ndiag(k)M] diag(k) — M] diag(k) — diag(x)M]

C=MI - M] - M] +M] (90)
D = — 117 diag(k) (91)
E= — 117 diag(r) — © (92)
c=1 (93)

D.1.2 ADMM Formulation

We perform an alternating direction method of multipliers (ADMM) optimization to optimize Eq. (86). We split
the optimization into three variables: Q, X, and Z.

i 1(7) Q) 1 15(Q) 4 c (o4
st. Z=AXB+XC+D
Q = Xa

where Ia(Q) returns 0 if Q € A or oo otherwise.

The augmented Lagrangian (scaled version) for this optimization is:
L£(Q.X,Z,U,W) =
f(Z) +(QE) +1a(Q) +c+ L|AXB+XC + D - Z+ U[} + £|X - Q+ W3, (95)

where || - || denotes the Frobenius norm of a matrix, p is the ADMM penalty parameter, whereas U and W are
the dual variables for the constraint Z = AXB + XC + D and Q = X respectively.

The ADMM updates for each variable are explained below:

1. Update for Q: a projection operation

Q) = argmin {(Q, E) + 1a(Q) + 51X - @+ W13} (96)
Q
1
= argmin || 2 (X" + W) —E) - Q|I% (97)
QeA
= Proja (; (X" + W) —E)) (98)

Rizal Fathony, J. Zico Kolter

2. Update for Z: a proximal operation.
Zt+D) = argmin {f(Z) + gHAX(t)B +XOC+D-Z+U® ||§} (99)
Z
= prox;; ,,(AX®B + XWC + D + U®) (100)

3. Update for X: Sylvester equation

X+ — argmin {gHAXB +XC+D -zt L UO2 4 gnx — QU W(t)H%} (101)
X
1 1
= argmin {QAXB +XC+D-Z¢Y L Uu®|2 4 SIX - QU+ ¢ w<t>|2p} (102)
X

We solve the minimization above by setting the gradient w.r.t. X to zero. Removing the superscript over
iteration ¢, the gradient of the objective above w.r.t. X is:

ATAXBBT+ ATXCB"+ AXBC™"+ XCCT+ ATD-Z+UB"+(D-Z+U)CT+X+W-Q. (103)
Since A = 117, the gradient can be simplified as:

AXnBBT + AXCBT+ AXBC™"+XCCT+AD-Z+U)B"+(D-Z+U)CT+X+W-Q (104)

=AX(nBBT+CBT+BCT)+X(CCT+I)+AD-Z+UB"+(D-Z+U)CT+W —-Q. (105)

Lt F=AD-Z+UBT+ (D—-Z+U)CT+W — Q. The optimal X can be found by solving a Sylvester
equation below:

AX(nBBT+ CBT +BCT) + X(CCT+1I)+F =0 (106)
AX(nBBT + CBT +BCT) + X(CCT +1I) = -F (107)
AX(nBBT + CBT + BCT)(CCT +I) ' + X = -F(CCT +1)"%. (108)

Note that a Sylvester equation is a matrix equation in the form of AXB+ X =C or AX + XB =C.
4. Update for U:
Ut —Uu® L AXOB + XWC + D — ZHHY, (109)

5. Update for W:
Wt — w4 x+) _ Qt+1) (110)

Please go to Section D.4, D.5, and D.6 for the detailed algorithms for the projection, proximal operator, and
Sylvester equation solver.

D.2 ADMM Formulation for Metrics without Special Cases

For the metric that does not enforce any special cases, the optimization over Q is:

gleigrglgg[S 3 st {astph - all+ bilph - of | + cilpk - o + djpf - af] + (ks Dris | — <QT1,‘PT9>}
k,€lo,n] J

(111)

Since the summation index in the equation above is from 0 to n, whereas our variables P and Q represent the
indices from 1 to n, we need to treat the summation over index 0 separately. Specifically, the matrix notation
optimization is now:

min max M, PT + (M, PT + (M3, P] + (Mg, P] + (Ms;, rsT 112
{QthSM%A{Pl,PO,r,uO}EA< 1, P1Q1) + (M2, P{Qo) + (M3, PjQ1) + (M4, P{Qo) + (M5, rsT) (112)

+ Miyjo,0)Uovo + (Myo), 1T Qo) + (Myl, o), P{1uvg)

+ mso,0/t0vo + (M50, uoST) + (Ms[o), Tv0) — (Q1, §2),

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

where:

d_ .

M4fo,0] = Z . Myfo,] = Z , T Muko) = Z , ;
(s) gj y/ g](
(

fj(7 f]
m , m = e et
5[0,0] = Z (O, 0 5[0,1] ; 9

Using the same technique as in Appendix D.1, we write the optimization over the matrix P and Q only, and
regroup the variables as follows:

iy max (M1, PTQ) + (M2, PT(117Q diag (k) — Q)) + (M3, (117P diag(x) — P)TQ) (113)

+ (Mg, (117P diag(k) — P)T(117Q diag(x) — Q)) + (M5, diag(x)PT117Q diag(x))

+ (maf0,0) + Ms0,0)) (1 — 1TP diag(k)1)(1 — 1TQdiag(x)1)

+ (myp,, (1 — 1TP diag(x)1)17(117Qdiag(k) — Q)) + (my[, o}, (11TP diag(x) — P)T1(1 — 17Qdiag(k)1))

+ (ms),, (1 — 1TP diag(x)1)17Q diag(k)) + (msy, o}, diag(k)PT1(1 — 1TQdiag(x)1)) — (Q, ©2)

= glelg max mafo,0) + Ms(0,0] ~ (Q, 117 diag(x)(mafo,0) + msp0,0)) — (Q, €2) (114)
<Q7 n1m4[0’:] dlag(l‘l;) — 1m4[0’:] + 11’1’15[0’;] d1ag(l<.:)>
+(P.{QMT + (117Qdiag() ~ Q)M] + 117Q diag(k)M] diag(x) + 117 Qdiag(r)117 diag(r) (majo.o] + ms(o.0)))

— 11T diag(k)(ma4f0,0] + Ms50,0)) — n11TQdiag(x)m []1T diag(k) + 11TQmZ[O,:]1T diag(k)
-117Q diag(ka)mg[o’:]lT diag(k) + 1m5[o diag(k) +117Q diag(n)lmg[:ﬁo] diag(n)}>

+ <11TP diag(k) — P, {QMg + (117Q diag(k) — Q)M] + 1m]_ ; — 117Q diag(n)lml[:7o]}>

- glelg. pax mafo,0] +msj0,0 + (Q, {nlmyp ;) diag(k) — 1myp + 1msy) diag(k) — 117 diag(r)(mago,0) + msp0,01) — 2})
+ (P.{QM] + (117Q diag() - Q)M] + 117Qdiag()M] diag(r) + 117Q diag() 117 diag(r) (majo,o] + msf0.0)))
— 11T diag(k)(ma4p0,0) + mMs50,0) — n117Q diag(m)ml[oy:]lT diag(k) + 11TQm1[0’:] 17 diag(k)
-117Q diag(l@)mg[o’:]lT diag(k) + 1m5[o diag(k) +117Q diag(n)lmg[:m diag(&)}>
+ <P, {llTQMg diag(k) + n117Qdiag(x)M] diag(k) — 117TQM] diag(x) + nlml[:m diag(k)

-nl17Q diag(ﬁ,)lml[:m diag(k) — QMI — 117Q diag(k)M] + QM] — lml[:,o] +117Q diag(&)lml[:,o] }>
(115)

As in Appendix D.1, the equation above can be simplified as:

win f(AQB + QC + D) + (Q.B) + ¢ (116)

Rizal Fathony, J. Zico Kolter

where:
f(X) = max(O,m]?x sum-k-largest (X (. 1)) (117)
A=11T (118)
B = diag(k)MJ + diag(k)M] diag(k) + diag(x)117 diag(n)(m4[0 0] + Ms[0,0]) (119)
— ndiag(&)ml[o ;17 diag(k) + ml[o ;17 diag(k) — diag(x)m [0]1T dlag()+ diag(n)lml[oy diag(k)
+ M diag(k) + ndiag(k)M] diag(k) — M] diag(k) — ndiag(x)1m oy diag(k) — diag(k JM] + d1ag(m)1m4[0
C=M] -M] - M! + M] (120)
D = — 11T diag(k)(mapo,0] + Ms[0,0]) + 1mg[:,0] diag(k) + nlml[:,o] diag(k) — 1m1[:70] (121)
E = nlmy) diag(k) — 1myp j + 1mg) diag(x) — 117 diag(k)(majo,0] + ms[0,01) — 2 (122)
€ = Myjo,0] + M5[0,0] (123)

Since the form of the objective above is similar to the one in Appendix D.1, we use the same ADMM technique
to solve the optimization over Q. Note that only the constant variables that are defined by the form of the
metric (A,B,C,D,E, and ¢) are modified from Eq. (86). All the ADMM updates remain the same.

D.3 ADMM Formulation for Metrics with Special Case for True Negative

For the metrics that enforce special cases for true negative only (e.g., specificity) or special cases for both true
negative and true positive (e.g., the MCC and Kappa score), we use the optimization schemes for the metrics that
do not enforce special cases for true negative, with a little modification. Specifically, we modify the coefficient
matrix M; and Mj by setting the values in the n-th row and the n-th column to be zero, except for the (n,n)-th
cell where we set it to one. Therefore, for the metrics that enforce special cases for both true positive and true
negative, we have:

(M7, P{Qq) + (M2, P{Qo) + (M3, P{Q1) (124)

+ (M4, PiQo) + (M2, rsT) 4+ ugvg — (Q1,7),

min max
{Q1,Qo0,5,v0}€A {P1,Po,r,up}€A

whereas for the metrics that enforce special cases for true negative only we have:

min max Mg, PT + (My, PT + (M3, P; + (My,P] + (M$, rsT 125
{Ql,Qo,s,vo}EA{Pl,Po,r,uo}EA< 1, P1Q1) + (M2, P]Qo) + (M3, PjQ1) + (M4, PQo) + (Mg, rsT) (125)

+ my[0,0/u0v0 + (Myjo), uo1T Qo) + (myf, o), P{1vo)

+ ms[o,0)Uovo + (Mso,], uesT) + (ms[. g, rvo) — (Q1, ¥),
where:

1 ifi=j=mn
M, ={0 if(i=nAj#n)V(i#nAj=n) (126)
M, ; otherwise.

All other ADMM optimization techniques remain the same.

D.4 Projection onto the Valid Marginal Probability Set

In the ADMM updates for Q (Eq. (98)), we need to perform a projection onto the set of valid marginal
distributions A. In this subsection, we will derive an algorithm to efficiently perform the projection.

Given a matrix A that is not necessary in the set A, we want to find P € A that minimizes the Euclidean
distance between A and P € A. Specifically, we need to solve:

-1 B 2
min 1P - Al (127)

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

In our vector notation (see. Appendix A.2), this is equal to:
min %%:Ilpk — a3 (128)
subject to: pix >0, Vi k€ [1,n]
Pik < 3 piks Visk €[1,n]
Sk Xibik <1
where py and aj are the k-th column of the P and A respectively.

The constraints above can be written as:

: 1 2 prl

min 5 — agl|3, s-t. == <1 129

o gzk:HP/c kll2s 830 =% (129)
T

where: Ci = {px | Pr. € [0,7%]"; 7% > 0; 7% = p%,l}n

Using the Lagrange multiplier technique, we write the dual optimization as:

. 1 2 p;l
max min ,E : — Ay, + (K *1) 130
WZ(})({pkEICk} g k ks SRRt Y

N . 1 2 NT
— max — 1 _a 1571 131
gt D iy, (3ol + el o

Given 7, the inner minimization is now decomposable into each individual pg. For convenience, we drop the
subscript k in the next analysis, i.e.,

: 1 2
min {3[p — a3 + #pT1}. (132)

where: C={p |p € [0,7]"; r>0; r= %}

This minimization problem admits a search-based analytical solution. We start with the p = a — i, which is

the minimizer of the objective without the constraint as the proposed solution, and start with r = %. If all of

p; lies in [0, r], we accept p as the solution, otherwise, we iteratively reduce the value of the highest probability

values in p, which automatically reduce the value of r = %, and simultaneously setting negative values in p as

zero. This requires sorting the values in p in a decreasing order.

Given we have the solution of Eq. (132) for each column, we calculate the objective and gradient of Eq. (132)
with respect to 1. Since it is just a one-dimensional optimization, we efficiently solve it with a gradient-based
optimization with box constraint of 7 > 0. Note that the objective is concave with respect to 7.

D.5 Proximal Operator for the ADMM Updates
In the ADMM updates for Z (Eq. (100)), we need to perform a proximal operator for the function f(X), i.e.:

fX) = max(O,mI?X sum-k-largest(X. x))). (133)
The proximal operator over f is:
proxﬁl/p(X) = argénin{f(Z)—F gHX—ZH%} (134)

Note that f(Z) can be expanded as:

£(Z) = o (P.Z) = in (P, ~Z) = min (Ia(P) — (P.Z)) = sup (P.Z) ~ 1a(P)) = I5(2). (135)

where I’y (Z) denotes the conjugate function of Ia(Z).

Rizal Fathony, J. Zico Kolter

Based on Moreau Decomposition (Moreau, 1962), we know that:

prox;(X) = X — proxy, (X) (136)
=X —argmin {Io(Z) + 3|X - Z|% } (137)
z
:X—argmin%HX—ZH% (138)
ZeA
=X — ProjA(X) (139)
Therefore, we can compute prox; ; ,(X) as:
proxs q,,(X) =X — % prox, ¢ (pX) (140)
=X — 1 Proja(pX) (141)
D.6 Solving the Sylvester Equation in the ADMM update
In the ADMM updates for X (Eq. (108)), we need solve a Sylvester equation in the form of:
AX(nBBT + CBT +BCT)(CCT+1I)"' + X = -F(CCT+ 1)~ . (142)

Many linear algebra packages in most of program languages have the capability to solve a Sylvester equation.
However, since our formulation contains matrices with special property, we develop a faster customized solver that
utilizes the eigen-decomposition technique and exploits the fact that A, (RBBT+CBT+BCT), and (CCT+1)~!
are symmetric.

First, let us simplify the equation as:
AXB+ X =T, (143)

where B = (nBBT + CBT + BCT)(CCT +1I)~! and F = —F(CCT + I)~!. We perform eigen-decomposition on
matrix A and B, i.e.:

A =USU !, (144)

where U is a matrix whose i-th column is the eigenvector u; of A, and S is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues, S;; = A;. Similarly, we also have:

B=VITV, (145)

where V is a matrix whose i-th column is the eigenvector of B, and T is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues of B.

To make sure that we can apply the technique, we check the eigendecomposability of A and B. Since A
is symmetric, it is surely eigendecomposable. The matrix B may not be symmetric. However, both B =
(nBBT + CBT + BCT) and C = (CCT + I)~! are symmetric. Based on matrix similarity property, since
B = BC, the eigenvalues of B are the same as the eigenvalues of C:BCC—: = (_J%B(_J%, which is symmetric.
Therefore, B is also eigendecomposable.

Applying the eigendecomposition technique, we have:

AXB+X=F (146)
USU 'XVTV ! + X =F (147)
US(U'XV)TV! + X =TF. (148)
Denote X* = U~!XV. We then have:
USX*TV '+ X =F (149)
U 'USX*TV 'V + U 'XV = U 'FV (150)

SX*T +X*=U"'FV (151)

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

Let G = U'FV. Since both S and T are diagonal matrices, we can solve for X° easily by solving element-wise
equations, i.e.:

X;?’j(SiyiTj,j +].) = Gi,j (152)
G

XS, = et 1
bJ Si7iTj,j +1 (53)

We can then easily recover X from X° by computing:

X =UX°V~L, (154)

When applying the decomposition technique above to the ADMM optimization, only the matrix F changes in
each iteration. All other matrices are fixed based on the form of the optimized performance metric. Therefore,
we only perform the eigendecomposition once and store most of the required variables for the computation. This
left us with just a few matrix multiplication operations that need to be computed for each ADMM iteration.

D.7 Runtime Analysis

For a batch of m samples, all of the matrix variables in the ADMM formulations are m x m matrices. We run the
ADMM algorithm for solving the inner optimization over Q in a fixed number of iterations (i.e., 100 iterations).
In each iteration, we need to perform updates over the primal variables Q, Z, and X. In updating Q, we perform
a projection algorithm to the set A. The runtime of the projection consists of sorting m-columns of m-items
which costs m?logm in total. The iterative algorithm for finding the best pj requires scanning the list, which
costs O(m) for each column, or O(m?) in total. The one-dimensional optimization for finding the optimal 7
converges very quickly. We cap the number of iterations of finding 1 to be at most 20 iterations. Hence, the
total runtime of the projection algorithm is O(m?logm). The algorithm for computing the prox function in
Z updates costs the same as the projection algorithm. For solving the Sylvester equation, we need to perform
eigendecomposition once, which costs O(m?). For every ADMM iterations, we only need to perform a few matrix
multiplication operations, which costs O(m??®). Therefore, the total runtime complexity for solving the inner
optimization over Q using our ADMM algorithm is O(m?).

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Experiment Details
	Code Examples for Constructing Performance Metrics
	Commonly Used Performance Metrics
	Performance Metrics with Arguments

	Linear Program Solver using the ADMM Technique
	ADMM Formulation for Metrics with the Special Case for True Positive
	Simplification and Reformulation
	ADMM Formulation

	ADMM Formulation for Metrics without Special Cases
	ADMM Formulation for Metrics with Special Case for True Negative
	Projection onto the Valid Marginal Probability Set
	Proximal Operator for the ADMM Updates
	Solving the Sylvester Equation in the ADMM update
	Runtime Analysis

