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A Further Details on Definitions of
Entropy, Mutual Information and
Kullback-Leibler Divergence

Definition 6 For a pair of discrete random variables
(X,Y), the empirical mutual information is defined as:

I(X,Y) =H(X) +H(Y) -

(
where H(X ) and H(Y') are the emperical marginal en-
tropies, and H(X,Y) is the joint entropy of X and Y
defined as follows:

H(X,Y) (44)

HX) = —Z Clon("s)  (49)
HY) = —Z%logx%) (46)
HX,Y) = _szm ”) (47)

=1 j=1

Definition 7 (Kullback-Leibler Divergence)
Given two probability distributions pgx; and qrxi

Dir(pllg) = Z Zpu 1og = H(p,q) — H(p) (48)
i=1 j=1

where H(p) = Zle 22:1 pijlog pi; is the entropy of

p, and H(p,q) = Zle Zé‘:ﬂ’ij log gi; is the cross en-

tropy of p and q.

B Dirichlet Distribution

Consider the Dirichlet distribution with parameters
a1, ,ag > 0. The probability density function is
represented as

K
Fler, e, o) = @ [[z0  (9)
k=1

where Zszl xr = 1. Moreover, j is the Beta function:

B(a)

= B(al,ag,...,aK) (50)

I VR ACY) -
D(3 ey ) oy

and T'(z) is the Gamma function:
I'(z) = / x*"te™"dx, if real part of 2 >0 (52)
0

When z is a natural number, we have

I(i)=(i—1) ieN (53)

C Proof of Lemma [

From (13)) and ([15]), we have
A
| log ( X””) — S.I(X;Y) |
Bxy

( B(m +1)5(1%)5(1Y)
A(m? +17)5(m¥ + 1¥)5(1)

) ~SI(X:Y) |
(54)

kool
:|ZZm” Zm log—

i=1 j=1
l

mY S
- m?log?]+5'logg—5.[(X;Y)

1 k l
t\FSk—H RTTL 11_[]‘ 1 tij/Mij

Lt mT Ty 4 fm?

+ log (5(1%(1@) | (55)

Note that from Sterling’s formula, for any natural
number n we have v2mn2" < n! < ey/nZ2". We

+ log

x|

define t;; = — Ml 4r — % and
" Vg (k) m‘<mT>
vy X
t) = % and therefore, from Sterling’s for-
o (m’j i
J e
mula we have
V2r <ttt <e (56)

Therefore, we have

A
| log< X’Y) — S.I(X;Y) |
Bxy

)

t\fsk“*l*kl 1 I 1tij\/mz‘j

= | log
z 1 l \/ H] 1 J\/
ﬁ(lw)ﬁ(ly)>
+1lo ( 57
o (P 57)
1

<O(Kl) + |k +1— 3 kl|log S (58)
1D is true from Definition as
Zz 12; 1mw - ZI'C: : -
zé 1my log % — SI(X;Y) = 0 and as

k . l
El 12] 1 Mg, ZZ ymi and Yoo ,mj are equal to
S. Finally, . ) follows from v2m < t;5,t7 ,té’ <e.

D Proof of Lemma [2

We first prove the statement about the true positive
rate, and then we prove the statement about the com-
plexity. Under Dirichlet assumption, the chance of
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dependent pairs falling in the same bucket is:
Th(G)
—p (couision(X, Y) | (X,Y) ~P,P~ Dir(a)) (59)

- ¥

VE€Vhuckets(G)

P~ Dir(a)) (60)

3 P(Preﬁx(sm(v), (X))
VEVpuckets(G)
, Prefix(Sy (v), 7(Y))
| (X,Y) ~P,P ~ Dir(a)) (61)

- ¥

VEVpuckets(G)
=A(G) (63)

P(comsion(x, Y,0) | (X,Y) ~P,

A(v) (62)

where Collision(X,Y") is the event that X and Y fall
in the same bucket, Collision(X,Y,v) is the event X
and Y fall in buckets v, and Prefix(S7, S) is the event
string 57 is a prefix of string Ss.

Equation holds, as:
P(PreﬁX(Sx(v),ﬂ'(X)), Prefix(Sy(v), 7(Y)) |
(X,Y) ~ B, P~ Dir(a)) (64)
:P(Xﬂ'*l(l) = Sx(U, 1)a Yﬂfl(l) = Sy('Uv 1)a
XW*1(2) = S:L’(Ua 2)u Yﬂ*1(2) = Sy(“y 2)7
L
(X,Y) ~P,P~ Dir(a)) (65)

depth(v)
= H P(Xﬂ.fl(s) = Sw(v,s)
s=1

Vi) = Sy(v,5)) (66)
b 1
= [
k l
X H Hp%“dpnmdpkl (67)
i=1j=1
_plon+1) ;
O = A(v) (68)

Therefore holds. Now, we show that holds.
Building prefix trees on S, (or Sy) has runtime of:

Cpreﬁx-|%uck:ets(G)|-depth(G) (69)

Moreover, to search each data points against all
the buckets using the prefix tree takes at most

Csearch-depth(G) time, and the overall complexity of
searching all the points in b band is:

Csearch-0.(M + N).depth(G) (70)
The expected value of the number of positive calls in
each band under Dirichlet model is:

E ( Number of positive calls in a single band)
:N.M.P<Collision(X, Y)| X ~P, Y ~P,,
P, ~ Dir(ct,), B, ~ Dir(ar)> (71)
=N.M. )
VEVhuckets(G)
Y ~P,,P, ~ Dir(og),P, ~ Dir(ay)) (72)

=N.M.

vE€EVhuckets(G)
Prefix(S,(v),7(Y)) | X ~P,,Y ~ Py,

P(couision(x, Y,0)| X ~P,,

P(Preﬁx(Sx(v), (X)),

P, ~ Dir(c), Py ~ Dir(ay)) (73)

=N.M. ) Bu(v)By(v) (74)
UEVbuckets(G)

=N.M. > B(v)=NMB(G) (75)
VE€EVhuckets(G)

Where in , we used:

P(Prefix(S; (v), (X)) | X ~ Py, P, ~ Dir(a,))
=B, (v) (76)
P(Prefix(Sy(v),n(Y)) | Y ~P,,P, ~ Dir(ay))

=By (v) (77)
and proofs of and are similar to ((64) — (63)).

Then, to insert data points into matching buckets, the
complexity is ¢insert times the expected number of in-
sertions needed. Using Dirichlet prior, we have

E (Number of insertions) (78)
= F (Number of X_ insertions)
+FE (Number of Y_ insertions) (79)
=N 3 P(Preﬁx(Sw(v),w(X)) | X ~ B,
v€Vhuckets (G)
P, ~ Dir(a)) (80)
+ MY P(Preﬁx(Sy(v),ﬂ(Y)) Y ~P,,
VE€EVhuckets(G)
P, ~ Dir(a)) (81)

= N Z B,(v) + M Z

V€ Vhuckets(G) vE€Vhuckets(G)
—  NB,(G)+ MB,(G) (83)

By (v)82)
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Therefore, holds.
Lemma [2

This completes the proof of

E Proof of Lemma [3

Similar to Proof of Lemma [2] we derive
P(Prefix(S;(v),7(X)) | X ~ PP, ~ Fy) for
bounded density distribution F, as follows

P(Prefix(S, (v), 7(X)) | X ~P,, P, ~ F,)  (84)
:P(wal(l) = Sﬂc(va 1)7 Xﬂ*1(2) = Sac(vv 2)a
<y X‘n'*l(depth(v)) = Sw (Uv depth(v)) |

X ~ Py, Py ~ F,) (85)
depth(v)
I1 P(Xﬂ_l(s) = 8, (v,8) | X ~ Py, Py ~ Fx)
(86)
/ H H Pi;"  fmaxdpry...dpyi (87)
1=17=1
:fmaxﬁ(v-n + 1) = fmaxﬁ(l)A(U) (88)
P(Prefix(Sy(v),n(Y)) | ¥ ~ P, P, ~ F,) and

P(couision(x, Y)| X ~P,Y ~ P, Py ~ Fy, P, ~

Fy) are bounded similar to . This completes the
proof of Lemma

F Intuitions Behind the Selection of
Decision Trees

Now, we consider the problem of maximizing the true
positive rate while minimizing the complexity of a de-
cision tree. In the case of a single band (b = 1), the
expected true positive can be computed using .
However, it is difficult to compute it in the case of
multiple bands (b >1):

TPy(G)
= P(Collision(X ,Y) in at least one of b bands |
(X,Y)~ P, P~ Dir(a)) (89)

as this involves b’th order integration. Therefore, in-
stead of solving the optimization problem

TF(G) (90)
s.t. E(Complexity, (G)) < C (91)

argmax

we solve the easier optimization problem:

are mi E(Complexity, (G))
& TP (G)

(92)

The intuition behind optimizing this heuristic crite-
ria is that we need roughly O(#(G)) bands to push

up the true positive rate from T'P;(G) to nearly one.
Therefore, the complexity is roughly equal to

E(Complexity, (G))
TP (G)

(93)

Note that, while this heuristic criteria based on Dirich-
let prior results in sub-optimal decision trees, in Ap-
pendix we proved that these decision trees pro-
vide sub-quadratic complexity for arbitrary priors with
bounded density distribution.

Intuitively, to minimize (92]) one needs to accept nodes
Alv) A(v) and A(v) are large. In
B()’ B.(v)’ " B, g

Algorithm [2| we presented an approach for designing

decision trees based on the following constraints:

v as buckets if

AW > (log N)MH2MN1+6=n . accept bucket

v)

é()) (logN)k M1-n . prune
((U)) (log N)l M yo=n . prune
depth(v) > 0log(N) : prune

otherwise : branch into
the Kl children

(94)

The algorithm recursively constructs functions A, :
VR B: V>R BY: V>R, and B, : V —
R representing the conditional probabilities defined in
- . We designate a node v as a bucket if

the ratio of conditional probabilities % surpass some

threshold (log N)* T ~2M N1+0=1_and we prune a node

v when g‘((v) and ]?((”) are less than (log N)* ¥ N1=1

and (log N)l k- m. respectively. In Theorem I we
show that these trees are highly sensitive, and have
low complexity.

Remark 6 C, C*, and CY are constants defined in

) , and .

Remark 7 Fach node v in the tree has a k X | ma-
triz v.n which stores frequencies of occurrences of
each pair of characters, and a sequence (Sz,Sy) €
Adepth(v) s Bdepth(v) which stores the path from root
to each node. We start constructing the tree by calling
a DFS function on the root. The time complexity of
this algorithm is equal to O(size(tree)). In lemma|[7
we show that the size of the tree and the complezity of
tree construction is O(N"log(N)). We also, show that
mapping data points to the tree and checking positives
are also efficient.
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G Proof of Lemma [4]

To prove A(X,Y) < 1+ 4, note that ¢(X,Y,1 +

6) = 0 by setting n;; = n."g* and n =
. §log(N) log(N)

min (Qlog(N) A —H(EE) H(%)_H(%y)). To prove
max(1,d) < A

(X Y) note that
max (H(2), H(52)) < H(™L). Therefore, using (40),
e(X,Y,n) < oo only when max(1,0) <n. ®

H Proof of Theorem [1I

H.1 Proof of Theorem [1]
Define n;;’s as the minimizers of ¢(X,Y, ) in , and
anl,---ﬂlkl(Gn)
- {v € Viuerets(G") | v.nzj = n]} (95)

where v.n;; is defined in . Then we have:

n
Voir,omn (G| = 96
l o ( )| <n117~-~7nkl) ( )

Lemma 5 Consider node v in Vg, . n.,, where
{ni1,...,nk } satisfy the conditions in Definition @
Then assuming o;; = 1, node v does not get pruned,
and node v ( or one of its ancestors ) get accepted in
Algorithm [3.

Proof of Lemma [5| is relegated to Appendix
Using Lemma we know that for any node v €
Voar,ng (G"), v has an ancestor in Viyckers(G").
Therefore we can derive a lower-bound on true pos-
itive rate as:

TPXY (G
Z P, (Preﬁx(v.&g7 (X)),

VE€EVhuckets (GM)

Preﬁx(v.Ser(Y))) (97)
[T T 2y
Z Z 1 ‘7 1( 3 LJ)‘ (98)
vEanl,...,,,Lkl(Gn) (S n)u
= > (5L Doy i g
- % I
VEVayy gy (G7) Sz Hj:l (mij — nij)!
S —n ' k_ l,_ mzl
- ( : ) B T L )
s k) S Ty [ (mig = nag)!
- s [Tt (101)
S!Hi IHj 1 (Mg —ngj)ingg!
> (S =y Sy 2 (S —n)(2)"V/2mn

(%) e\FHizl Hj:l(%)mij*nij

ITics L= (522 ™9 \/2mmy;

_ 102

ey/Mij — ng (")} e /i o

k142 i ny i N mys

s (VM () tog(2) n (%) o ()
= e2kl+1 ’

o(S—n) ¥ T log(TH )

e~ (8- ¥ S 1o g;(‘””’J)\/l_inﬁmz1 (103)
S

> e (O oakD) s [T
2 : n—1 V2
—  CNCXY) g (N) T (105)

where we have used Stirling’s formula (129) for facto-
rials above, and we also assumed 91og( ) < 5.

So far we have proved the statement about sensitiv-
ity, and next we are going to prove the complexity
statement. From Lemma [6] presented below, we have

EUEW(G”) A(v) = 1.

Lemma 6 For any
D 0 Viea progen(@) AV) = 1.

decision tree G,

For proof of Lemma [6] see Appendix Therefore,
we conclude that

aG) = S aw (o)
vE€Vpuckets(GM)
< Z A(v) (107)
veV(Gn)
-1 (108)

Using the prune/accept rules in Algorithm [2| we have:

AGT)  Dveviuepensan AW) > (log N)FH=2k y1+3-n
B(G") Z’UGVBucketS(Gn) B(U)

(109)
A(G") _ ZUEVBuckets(G”) Av) > (log N)k*klNl—ﬁ
B, (Gn) ZUEVBuckets(G") By (’U)

(110)
A(Gn) — Z"JGVBuckets(G") A(U) Z (log ]V)l_k)l]\fé_?7
Ey (G’I) ZUGVB’uCketS(G") By (U)

(111)

Therefore, from (109)-(111)) and Lemma (7| presented
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below, we conclude that

E(Complexity; (G"))

= Cprefix-|Vouckets(G")|depth(G™)
+Csearch- (N + M )depth(G")
+Cinsert-(NB. (G7) + MB,, (G"))

+Cenea- N M.B(G") (112)
= O(N"(log N)?)
+N.O(N"log(N) =)
+N°.O(N"%log(N)' =)
Jr]\,1+6.OU\7777175 log(N)kJrl—kl)
= O(N"(logN)?) (113)

where using Lemma (7] below, Viycrets(G") has size
O(N"log(N)). This completes the proof of Theorem
0 m

Lemma 7 Number of nodes in the tree constructed in
Algorithm[9 is at most O(N"log(N)).

For proof of Lemma [7], see Appendix [L:3]

I Further Theoretical Guarantees

Here, we present Algorithm [3] which is based on Algo-
rithm [T]and [2] and given a value A > 0 it finds (nearly)
all A-associated pairs with complexity O(N*log(N)?).
The algorithm is based on constructing decision trees
with parameter n for various values of , 0 < n < A.
Then multiple bands from each tree is recruited, in a
way that all A-associated pairs are discovered, while
the complexity remains O(N*log(N)?)

Definition 8 For H = {ng,...,n.}, (X,Y) is called
(M, H)-associated if

min e(X,Y,n) +n7 < A

114
min (114)

Algorithm 3 Decision Trees with Various Parameters
Input: A\, H = {no,...,n.}, Data points X =
{X1,Xo,.... XN}, Queries Y = {Y1,Ys,..., Y}
Output: (A, H)-Associated Pairs

for n € H do
Ki-1
by C%(log N) = N 7 > See Theorem
G" < MAKE_BUCKETS(n, N, M) > Using
Algorithm

MATCH_-TO_BUCKETS(G", by, X, ))
> Using Algorithm

Obviously, any A-associated pair is also (A, H)-
associated for any set H.

Lemma 8 Consider parameter X > 0 and H =
{no,...,n.} where 0 < ng < ... < n, < 1. Then Al-
gorithm [J with parameters X\ and H finds nearly all
(N, H)-associated pairs. Moreover, the complexity of

Algorithm @ under Dirichlet prior is O(N* log(N)?z).

Lemma 8 proves that it is possible to find nearly all -
associated pairs using Algorithm [3|with the complexity
O(N*log(N)?).

I.1 Proof of Lemma

Assume a (A, H)-associated data pair (X,Y"). The true
positive rate over all the bands is :

TPX,Y
— 1-J[a-7P*Y(Gm)" (115)
neH

1kl by
1—(1—5(ogN) = N—(XXmmin)y 7(116)
1—e®=99.4% (117)
where in (L15) we used Theorem (1} and in (116]) we

used:

where

Nmin = arg min E(Xa Y; 77) + n
neH

Note that, follows from the fact that (1 —2)* <
e% for any positive ¢ and x where x > a. Therefore,
for b bands, complexity is:
E(Complexity, (G))
= Cprefix| Vbuckets|depth(G)
+searchb(N + M )depth(G)
+Cinsert- (0-NBo(G) + b.MB,(G))
+Cenock-b. NM.B(G)
= O(N"(log N)*)
+O(N*"").N.O(N"*log(N)k~kh)
+O(N*1).N°.O(N"~ log(N)' =+
FO(NA1). N+ O(N1=178 Jog (N )k+ =2kl
= O(N"(log N)?) (121)

where in ([121)) we used b = O(N*~"). &

(119)

(120)

J Finding Pairs with High Mutual
Information

Lemma [9] below clarify the relationship between the
mutual information and A-associativity, and Theorem
(2] provides guarantees on the performance of Algorithm
Blbased on mutual information. First we need to define

XX, Y).
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Definition 9 For any pairs of data points X € AS
and Y € B, define A(X,Y) as follow:ﬁ:

- 1 0

MX,Y)=146—I(X,Y) min(H(Y), ) 6)(122)
Lemma 9 \(X,Y) < \X,Y).
J.1  Proof of Lemma
It is sufficient to show that
(X, Y, MX,Y)) =0 (123)

It can be shown that holds by selecting n =

%-log(m and n;; = [ ]. Also note that

n<0.log(N). ®

J.2 Proof of Theorem [2]

Using Lemma@, A(X,Y) < A(X,Y). This makes The-
orem [2] a special case of Lemma

K Further Experiments

K.1 Further Discussion on Experiment 1

Similar to Experiment 1, G" is computed using Algo-
rithm [2| and true positives are calculated using algo-
rithm [0l where b = 1.

K.2 Experiment 3

In this experiment, we run Algorithm [3] for A =
1.1,1.3,1.5 and H = {ny,72,...,n.}, where n; = %,
1 <i <z and z = 100. We sampled data points X
and Y similar to the previous experiment and com-
puted :

)\H<X?Y) = m1n77+€<X,Y,77)

124
min (124)

To compute the expected true positive rates we in-
serted the true positive rates computed on single bands
from into . Figure |8 shows expected and
theoretical lower-bounds on true positive rates versus
AMX,Y) for A = 1.3. The theoretical lower-bounds are
smaller than the expected results, as the bounds used
for deriving theoretical guarantees are not tight.

Remark 8 When computing the true positive rates,
Algorithm[3 suggest

5 kl—1
b, = =(log(NN)) 2
» = 2 (log(N)
3Note that € and A also depend on N, 8, and 6. However,
for the sake of simplicity, we assume that N, ¢, and 0 are
constants.

N1 (125)

Experimental True Positive and Empirical True Positive VS € (n = 1.1)
0

‘e —— Theoretical guarantee
-2 S Experimental results

iy + Empirical results

4

|
I
L

|
o
L

Log(True Positive)

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

&(X,Y,n)
(a)

Experimental True Positive and Empirical True Positive VS € (n = 1.5)

0.0 R B
e T ST Theoretical guarantee
.8 3_'“ . Experimental results

-2.5 1 i +  Empirical results

-5.04

[
o [

o ~
o w

Log(True Positive)

—15.01

=17.5+4

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175

&(Xx,Y,n)
(b)

Figure 7: Experimental and empirical and theoretical
lower-bounds on true positives rates TP (G") for
various data points (X,Y) ~ P, P ~ Dir(a) for n €
{1.1,1.5}.

where % ~ 5000 . Instead of this value, in experiment

2 we used:

]. kl—1
b, = —(log(N)) 2
)= 55 10g(V)
Generally, the lower-bounds by Theorem[]] and[§, and
the parameter settings suggested are pessimistic , and
more practical parameters can be tuned in the theo-
rems.

N7 (126)

K.3 Experiment 4

In this experiment, we verify Lemma [J] by plotting
AMX,Y) versus A(X,Y) for 100 randomly sampled
data points (X,Y) from Dirichlet prior. We also
plot A(X,Y) versus I(X,Y). The results show that
AMX,Y) < AX,Y) as expected by Lemma |§|, and
AMX,Y) <2-1(X,Y) for the binary data as required
by Theorem [2}
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Expected True Positive VS A(X,Y) (A = 1.1)

A(P) VS A(P)

2.0

1.8

1.6

A(P)

1.4

1.2

1.0

10 12 1.4 16 18 2.0
A(P)
(a)

A(P) VS I(P)

1.0 — j=2-2

0.8

0.6

I(P)

0.4

0.2

0.0

1.0 172 1.4 1.6 1.8 2.0
A(P)
(b)

Figure 9: In this figure, A\(P) versus A(P) and I(P) for
distributions P sampled from Dirichlet are sketched.
This figure confirms that A\(X,Y) < AX,Y) and
AX,Y) <2-I(X,Y).

L Proof of Lemmas [5] [6] and [7]

1.09
0.8 1
]
2
= 06
(%]
o
o
U 0.4
=)
—
-
0.2 -
Theoretical guarantee
0.0 4 Expected results
1?0 1?2 114 1?6 1?8 210
AX,Y)
(a)
Expected True Positive VS A(X,Y) (A = 1.3)
1.0 — .,
0.8 1
w .
2 ’
= 0.6
0 <
o
o .
0.4
>
—
-
0.24
Theoretical guarantee
0.0 4 Expected results
1.‘0 1‘.2 1.‘4 116 1‘.8 210
AX,Y)
(b)
Expected True Positive VS A(X,Y) (A = 1.5)
1.0 —————eeee e we o avecrms wose
0.8 4
()]
2
= 0.6
[}
]
a
Q 0.4
>
=
-
0.24
Theoretical guarantee
0.0 4 Expected results
1:0 1:2 1.‘4 1.‘6 1.‘8 2.‘0
AX,Y)
(c)
Figure 8: Expected and theoretical true positives

TPXY (G") for various data points (X,Y) ~ P, P ~
Dir(a), and X € {1.1,1.3,1.5} using Algorithm

L.1 Proof of Lemma [5]

First we show that node v (or any of its ancestors) do

not get pruned by algorithm [2}
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A,
Br
_ Blun+a)f(a”)
- Ba)Bn® +oF) (127)
T1E, T,y (g + gy — DUTTE (o — 1)
15, Ty (g — DT (0F + o — 1)
1} (af — 1)
T, T (auj — 1)
k ! nijtaii—lyn;;4a;;—1
X Lo l;ljzln(era?—i z) p
Hi:1(%)ni +af—-1
2’/T(7l¢j)

e /(D)

Y

(128)

where we used (29) and in (127, and Sterling’s
[128)):

inequality in (128

orn(D) < nl < e\/ﬁ(g)" (129)

(&

Therefore, we have

v

A,
log(—==)
k l 1
Z Z(Tlm + Q5 — ].) IOg(Tlij + Q5 — 5)
=1 =1

k
o1
— Z(nz +af —1)log(n; + of — 5) (130)
i=1
ko o
Cé +ZZnU log(nij) + ngj log(1 + J

T
i=1 j=1 i

1
QG >
+(vij — 1) log(nij) + (cij — 1) log(1 + ——2)

k ot —
- Z n; log(n;) + n; log(1 +

i—1 i

5-3

~(o ~1)log(n;) — (o —1)log(L+ = —2)

C2 4 n(H() = H(D)

R ninij +ni(o; — 3)
22 g los( 1)

== ning; + nij(a; — 3)

k
+(avi; — 1) log(ny) Z af —1)log(n;) (132)

k
+(ai; — 1) log(nij) — Z(Oﬁf —1)log(n;) (133)

(aij — 3) (ai — %)
+ZZ 7—%)_?174_%

ij

=1
> 02 Wiy o Mg
> G2 () - ()
k l 1 1
(@ij — 3) (i —3)
+ _
;;“F(%—%) E niay—3)
J i

i=1
> 3 iy Nij
> O3 n(H(™) ("))
k l 1
(vij — 5) (i — 2)
+ .
;;H(%—%) 14 {2y

i=1

> O3 +n(H(Eh = H(ED)
LR (O‘U - l) 1
+ZZ 1+ (g - o (i =3)

i=1
= Gl n(HC) — H(TD)
koo
+ Z Z(O‘ij 1) log(nij)
i=1 j=1
k
= (a7 = 1)log(n,) (138)
i=1
where C}, C2, and C3 are constants depending only
on o and 6
Now assuming o;; = 1 and using ,
k
=) “(af —1)log(n;) > — (kI —k)log(0log(N)) (139)
i=1
Therefore:
% > C*N'log(N)~ =k (140)

where C” is a constant depending only on k, [, §, and
6.
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Similarly,

A,
>

6— —(kl—-1
5 CYNO " log(N)~ =0

(141)

Therefore, we conclude that for any v €
Voaroomn (G7), the node or its ancestors do not
get pruned by the first two pruning conditions. They
do not get pruned by the third condition either, as
depth(v) = n < flog(N) from ([40). Now we show
that node v or one of its ancestors get accepted:

Ay

B,

_ Blvn+ a)f(a®)B(a?)
 B(e)B(v.n® + a®)B(v.ny + a¥) (142)

[Ty [Ty (n + gy = DT (af — 1)
[T TTy (i — DT (s + 0 — 1)1
Hé 1(0‘ - 1)! (”szz 1ZJ 10 — 1)1

T (g + o = DI Sy ey — 1)
(143)

[T (af = DTy (of — 1)!

Hf:l Hé':l(aij - 1).(2:1_:1 2221 ay — 1)
Hf:l Hé‘:1(%)"m+m_i—1
Hf:1(%)"f+af—1_e' ot 1)
\/27T(nij +a;;—1)

[T, (R +al=1 o 4 a¥ — 1)

Jj=1 e
(144)

\%

Therefore, we have

A’U
log(2Y
os(5")
> Cotn(H(EH) +H(EL) —H(Z))
kol k
+ZZ (ai; — 1) log(nj) Z ¢ —1)log(n;)
i=1j=1 i=1
1
- Z(a? — 1) log(n;) (145)
j=1
Setting a;; = 1, and using :
A S ot log(N)ZF=k=0"(146)

B, —

where C' is a constant depending only on k, [, 4, and
6. Therefore, v (or one of its ancestors) get accepted
in Algorithm 2] This completes the proof of Lemma

L.2 Proof of Lemma

The proof is done by induction on the number of ver-
tices in the tree. For a tree with only one node, the
statement is trivial as

A(root) = 1 (147)
Assume ) v () A(v) = 1 holds for all the trees with
the number of vertices below Z. Consider a tree G
with Z nodes and assume wq is the node in G with
maximum depth. Assume w is the parent of wg, and
wij, 1 <i<kand1l<j <1 are the children of w (
wo € {w;;}). First note that

w.n;; + 155

Z A(wij)

(148)

Now, define a tree G’ as the tree obtained after remov-
ing {w;;} from G. Therefore, G’ has Z — kl nodes, and
induction hypothesis holds for G’. Therefore:

Y Aw)

veV(G)

= > Aw) - JrZAwU (149)
veVi(G’)

G (150)
veVi(G’)

This completes the proof of Lemma [6] B

L.3 Proof of Lemma [T

For all the intermediate nodes, i.e., the nodes that are
neither pruned nor accepted as a bucket, we have

< (log N2kl 1460 151
5o < (M) (151)
A(v) k—kl nr1—
> (log N N1 152
S 2 (eel) (152)
A(U) I—Kl Ar5—
> (log N)' Mo (153)
By(v)
Therefore, for any intermediate node v, we have

A(v) > N~ by multiplying and and di-
viding by . For each leaf node v (either pruned
or accepted), its parent w is an intermediate node.
Therefore, A(w) > N~", and we have

ng +1
A(v) > A(w). min v 2

> N9 og(N) ™.
v.14;70 TL+kl - 0 Og( )

(154)
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Therefore, using Lemma [6}

1= ) Aw) (155)
veV(GN)

> Y NT'(logN)T' (156)
veVI(GM)

= [ViGMINT"0 log N)™" (157)

Therefore, |V;(G")] < 6N7"log(N). On the other
hand, we know that in any homogeneous tree for
which kl > 1, |V(GQ)| < 2|Vi(G)| holds. Therefore, we
have |[V(G™)| < 20N™.

This completes the proof of Lemma [7}H



