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Abstract

Finding associations between pairs of vari-
ables in large datasets is crucial for vari-
ous disciplines. The brute force method for
solving this problem requires computing the
mutual information between

�N
2

�
pairs. In

this paper, we consider the problem of find-
ing pairs of variables with high mutual in-
formation in sub-quadratic complexity. This
problem is analogous to the nearest neigh-
bor search, where the goal is to find pairs
among N variables that are similar to each
other. To solve this problem, we develop a
new algorithm for finding associations based
on constructing a decision tree that assigns a
hash to each variable, in a way that for pairs
with higher mutual information, the chance
of having the same hash is higher. For any
1  �  2, we prove that in the case of bi-
nary data, we can reduce the number of nec-
essary mutual information computations for
finding all pairs satisfying I(X,Y ) > 2 � �

from O(N2) to O(N�), where I(X,Y ) is the
empirical mutual information between vari-
ables X and Y . Finally, we confirmed our
theory by experiments on simulated and real
data. The implementation of our method
and experiments is publicly available at
https://github.com/mohimanilab/HashMI.

1 Introduction

Improvements in data collection and storage have led
to the creation of massive datasets. However, cur-
rently there is no fast approach to find strong asso-
ciations between all variables in these datasets. Find-
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ing interesting connections between sets of variables in
large datasets is an essential tool in various domains
[Reshef et al., 2011], including analyzing gene expres-
sion data for discovering interactions between genes
based on multiple expression measurements [Fried-
man et al., 2000], connecting each marker with the
disease phenotype in genome-wide association stud-
ies (GWAS) [Brinza et al., 2010], and finding as-
sociations between metabolomics and metagenomics
datasets [Melnik et al., 2017, Cao et al., 2019].

To find dependencies between variables using a brute-
force approach, one method is to compute the mutual
information for each pair among N variables with a
complexity of O(N2) which is impractical for massive
datasets. In this paper, we introduce a new algorithm
to find all discrete variable pairs X and Y satisfy-
ing I(X,Y ) > 2 � � with complexity O(N�), where
I(X,Y ) is the empirical mutual information computed
on the empirical probability distribution of X and Y

(See Definition 6). Our algorithm hashes variables in
a way that pairs of variables with higher mutual infor-
mation tend to have the same hash with higher proba-
bility. This way, one can avoid computing the mutual
information for a large portion of pairs by limiting it
to the pairs with the same hashes.

2 Related Work

Chow and Liu [1968] introduced an algorithm for fit-
ting a multivariate distribution with a tree . In this
model, they assume there are only pairwise dependen-
cies between the variables, and the graph of these de-
pendencies is a spanning tree. While there are N (N�2)

tree structures for N variables, the Chow-Liu algo-
rithm requires O(N2) computations of mutual infor-
mation between pairs of variables, and currently is the
state of the art method for learning the structure of
graphical models [Friedman et al., 1997, Pearl, 2014,
Heckerman et al., 1995]. The question we address in
this paper is whether it is possible to find high mu-
tual informations between pairs of variables in sub-
quadratic runtime. Meila [1999] introduced an accel-
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erated method for computation of mutual information
for sparse data, that avoids explicitly computing mu-
tual information for each pair of data . Qiu et al. [2009]
sped up the computation of pairwise mutual informa-
tion by avoiding repeated calculations. However, this
method remains quadratic in N and currently there is
no sub-quadratic method in the general case.
Mutual information is not the only measure for the
dependency of distributions. Distance correlation is
another measure of dependency [Székely et al., 2009],
and it is shown that for some distributions, it is more
noise robust than the mutual information criteria [Si-
mon and Tibshirani, 2014]. Currently, the runtime
of computing distance correlations between N vari-
ables grow quadraticly with both N and the dimen-
sion. Chirigati et al. [2016] introduced DataPolygamy,
a topology-based framework to find statistically signif-
icant relationships between spatio-temporal data sets.
However this approach involves comparing all the pairs
of variables. Boidol and Hapfelmeier [2017] provided
an algorithm to estimate mutual information between
a pair of data on data streams. Lin et al. [2014] used
decision trees to provide supervised hashing for near-
est neighbor search. Lin et al. [2010] used entropy to
learn a hash function for nearest neighbor search which
is not relevant to this paper.
In this paper, we propose a new algorithm based on
hashing, that requires a subquadratic number of mu-
tual information computations. The naive method for
computing mutual information for each pair of data
points has O(S) complexity, where S is the dimension
of data points. There are methods to compute mu-
tual information of a pair of data points faster based
on sampling instead of going over all the dimensions
of each data points [Keller et al., 2015, Vollmer and
Böhm, 2019]. Note that these methods are comple-
mentary to the approach proposed here, and they can
be used to make our method even faster.

3 Definitions

Definition 1 (Alphabets) Define two alphabets A

and B as sets of characters:

A = {a1, a2, · · · , ak} (1)

B = {b1, b2, · · · , bl} (2)

for some natural numbers k and l. Moreover, define
a ”data point” as a sequence of S characters of an
alphabet, i.e. X 2 A

S or Y 2 B
S. Moreover, assume

the product probability distribution:

P : AS
⇥ B

S
! [0, 1], P(X,Y ) =

QS
s=1 p(xs, ys) (3)

for X = (x1, · · · , xS) 2 A
S and Y = (y1, · · · , yS) 2

B
S. Note that, we assume the same probability dis-

tribution p(x, y) for each dimension 1  s  S. Here

we use i.i.d assumption to limit the number of parame-
ters, which is widely used [Reshef et al., 2011]. Define:
p(xs = i, ys = j) = pi,j satisfying:

kX

i=1

lX

j=1

pi,j = 1 (4)

Definition 2 (Empirical Mutual Information)
The empirical distribution P̂X,Y , is defined as a k ⇥ l

matrix for a pair of (X,Y ):

[P̂X,Y ]i,j =
mij

S
(5)

and P̂x and P̂y are the marginals of P̂X,Y , where m
x
i ,

m
y
j , and mij are defined as follow:

m
x
i = |{1  s  S | Xs = ai}| (6)

m
y
j = |{1  s  S | Ys = bj}| (7)

mij = |{1  s  S | Xs = ai and Ys = bj}| (8)

for all 1  i  k and 1  j  l, where Xs is the
s’th character of sequence X, and |V | is the size of

the set V . Note that,
Pk

i=1

Pl
j=1 mij,

Pk
i=1 m

x
i and

Pl
j=1 m

y
j are equal to S. Then, we define empirical

entropies and empirical mutual information as

H(X) = H(P̂x) (9)

H(Y ) = H(P̂y) (10)

I(X,Y ) = I(P̂x,y) (11)

For further details on the definitions of entropy H(p),
mutual information I(px,y) and Kullback-Leibler Di-
vergence, i.e., DKL(p||q) = H(p, q) � H(p), see Ap-
pendix A.

Definition 3 (Bounded Density Distribution)
A random variable1 has a bounded density distribution
if there exists a finite positive constant fmax such that
the probability distribution function exists everywhere
and is bounded by fmax.

Notation Dir(↵) stands for a Dirichlet distribution
with parameter ↵ and �(.) stands for beta function,
see Appendix B for details.

4 Problem Statement and Model

Given X = {X1, X2, ..., XN} ✓ A
S and Y =

{Y1, Y2, ..., YN} ✓ B
S , our goal is to design a fast algo-

rithm to discover all pairs of data points (X,Y ) with
high empirical mutual information I(X,Y ) for X 2 X

and Y 2 Y. Here our goal is to design a method for

1In this paper, we refer to variables as data points,
which corresponds to a set of S samples from the variables.
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finding all data points that have high mutual infor-
mation in sub-quadratic runtime with respect to N .
A similar problem has been investigated in the near-
est neighbors search literature [Indyk and Motwani,
1998]. In this problem, we have a set of data points
{X1, X2, ..., XN} and a data point Y , and the goal
is to find all data points Xi that are most similar to
Y , i.e. d(Xi, Y ) is less that a threshold, where d is
a distance metric. Our problem is analogous to this
problem with the di↵erence that we attempt to maxi-
mize mutual information I(Xi, Y ) instead of minimiz-
ing a distance metric. We consider the following gen-

Figure 1: We assume the data points are coming either
from a dependent (with probability pd) or independent
(with probability 1�pd) model. We model the depen-
dent distribution with prior Dir(↵) for generating a
joint probability distribution P, from which the data
points are sampled. In the independent model, we as-
sume marginal probability distributions Px and Py are
sampled independently from Dir(↵x) and Dir(↵y),
and data points X and Y are independently sam-
pled from Px and Py. We further show log-likelihood
of Dirichlet distribution for each data point is pro-
portional to their mutual information, While we use
Dirichlet model for setting our parameters, in Section
8 we prove the guarantees hold for any distribution.

erative model for data points X 2 A
S and Y 2 B

S .
We assume (X,Y ) are either generated from a joint
(dependent) probability distribution Pk⇥l with proba-
bility pd, or generated independently from probability
distributions Px

k⇥1 and Py
l⇥1 with probability 1�pd.

P itself is generated from Dirichlet prior with parame-
ter ↵k⇥l, while Px and Py are generated independently
from Dirichlet priors ↵k⇥1

x = ↵⇥1 and ↵1⇥l
y = 1⇥↵.

Dirichlet prior is commonly used as a prior for prob-
abilistic models [Blei et al., 2003]. Moreover, Dirich-
let prior simplifies the computation of the posterior
probabilities. Note that, while our model assumes a
Dirichlet prior, in Section 5, we prove that presented
algorithms also work for non-Dirichlet data (arbitrary
prior with bounded density distribution).
Now, we pose the following problem. Given X and
Y , how can we decide whether the pair(X,Y ) is being
generated from the dependent model ↵ or the inde-

pendent models ↵x and ↵y? In order to answer this,
a natural approach is to compute the conditional prob-
ability of the pair generated through each model:

AX,Y = P (X,Y | ↵) =

Z
P (X,Y | r)P (r | ↵) dr

=

Z
1

�(↵)

kY

i=1

lY

j=1

rij
mijrij

↵ij�1
drij (12)

=
�(m+↵)

�(↵)
(13)

BX,Y = P (X,Y | ↵x
,↵y) =

Z
P (X | r

x)P (Y | r
y)

P (rx | ↵x)P (ry | ↵y)drxdry (14)

=
�(mx +↵x)

�(↵x)

�(my +↵y)

�(↵y)
(15)

where

m = [mij ], mx = [mx
i ], my = [my

j ] (16)

where mi, mj , and mij are defined in (6), (7), and
(8). From now on, we assume uniform Dirichlet prior,
i.e., ↵ is a matrix of ones, (↵ = 1) and tune all the
parameters based on it. Later, we show that for any ar-
bitrary prior with bounded density distribution our al-
gorithm works in sub-quadratic complexity. The pos-
terior probability of model ↵ generating data points
X and Y is computed using the Bayesian rule:

P (↵ | X,Y ) =
pdAX,Y

pdAX,Y + (1� pd)BX,Y
(17)

Optimal classifier would classify (X,Y ) as dependent
if P (↵ | (X,Y )) exceeds a threshold � in (17), i.e.,

AX,Y

BX,Y
>

�(1� pd)

(1� �)pd
(18)

The following lemma, shows the connection between
this log likelihood ratio and mutual information.

Lemma 1 log
⇣

AX,Y

BX,Y

⌘
is approximately equal to

I(X;Y )S. More precisely, we have

| log

✓
AX,Y

BX,Y

◆
� I(X;Y )S |

 O(kl!) + |k + l �
1

2
� kl| logS (19)

Proof of Lemma 1 is relegated to Appendix C. A brute
force approach to this problem computes AX,Y

BX,Y
for each

pair of data points X and Y . However, this approach
has a runtime of O(MNS), where N and M are the
numbers of data points and queries, and S is the di-
mension of the data points. 2 In order to find depen-
dent pairs more e�ciently, we use a hashing strategy

2In practice pairwise computation of mutual informa-
tion can be done faster than O(S) through sampling. Our
algorithm can take advantage of these techniques as well.
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based on a decision tree structure, to avoid compar-
ing majority of the pairs and restrict the search to
pairs that hash to the same indices. Our strategy fa-
vors pairs for which AX,Y

BX,Y
is large. While using only

a single decision tree might result in loss of sensitivity
(i.e. many of the dependent pairs might be missed), we
show that it is possible to design sub-quadratic algo-
rithms with near-perfect sensitivity (e.g. they capture
nearly all the true pairs) by using multiple random
permutations of data points, called bands.

5 Structure of the Decision Tree

Consider a decision tree G(V,E, f), where V is the
set of nodes, Vl is the set of leaf nodes , E is the set
of edges, and f : V/Vl ⇥ A ⇥ B ! V are decisions,
where f(v, a, b) is a child of v, for each v 2 V , a 2 A

and b 2 B. Assume Vs ✓ V is the set of nodes at
depth s in the decision tree. This introduces a natural
mapping Sx : Vs ! A

s and Sy : Vs ! B
s defined in

the following recursive way:

Sx(root) = ? (20)

Sy(root) = ? (21)

Sx(f(v, a, b)) = [Sx(v), a] (22)

Sy(f(v, a, b)) = [Sy(v), b] (23)

where [S, a] stands for the concatenation of string
S with character a. We further define depth(v) as
the depth of v in the decision tree, and depth(G)
= maxv depth(v).

Consider a subset Vbuckets ✓ Vl. Members of Vbuckets

are referred as bucket nodes. Each decision tree
G and each permutation ⇡ : {1, ..., S} ! {1, ..., S}
defines a natural hashing of data points to bucket
nodes as follows. Given a data point X 2 A

S , X

hashes to a bucket node v 2 Vbuckets if and only if
Sx(v) is a prefix of ⇡(X), where ⇡(X) 2 A

S stands for
the permutation of data point X 2 A

S . Hashing for
data points Y 2 B

S is defined similarly. Moreover, we
define Prefix(S1, S2) as the event where string S1 is a
prefix of string S2. Here, hashing is not unique, i.e.
the same data point might hash to multiple buckets
under the same decision tree and permutation, as
multiple buckets might have the same string Sx.

6 Searching for Dependent Pairs

Using Decision Trees

Given a decision tree G = (V,E, f), along with buck-
ets Vbuckets, Algorithm 1 present an approach for e�-
ciently finding the pairs of data points with high de-
pendency. In this algorithm, we first build a prefix tree

for nodes v 2 Vbuckets based on Sx(v), and then given
a data point X 2 A

S and a permutation ⇡, we search
for bucket nodes v for which Sx(v) is a prefix of ⇡(X)
using the prefix tree, and insert X into those buckets.
Similarly, we insert data points Y 2 B

S into buckets.
Finally, we report the pairs of data points X and Y

falling into same buckets as positives (see Figure 2).

Algorithm 1 Matching Data Points to Buckets

Input: Decision tree G = (V,E, f), buckets Vbuckets,
number of bands b, data points
X = {X1, X2, ..., XN}, queries Y = {Y1, Y2, ..., YM}

Output: Dependent pairs based on the tree and the
buckets

procedure match to buckets(Vbuckets, b,X ,Y)
Build prefix trees T1 based on v.S

x
, v 2 Vbuckets

Build prefix trees T2 based on v.S
y
, v 2 Vbuckets

. preprocessing
for 1  i  b do

Select a random permutation ⇡

Matching(Vbuckets,X ,Y,⇡)

procedure Matching(Vbuckets,X ,Y,⇡)
for X 2 X do

mX  
�
v 2 Vbuckets | Prefix(v.Sx,⇡(X))

 

. using prefix tree T1

for v 2 mX do
v.bucketx.insert(X)

for Y 2 Y do
mY  

�
v 2 Vbuckets | Prefix(v.Sy,⇡(Y ))

 

. using prefix tree T2

for v 2 mY do
v.buckety.insert(Y )

for v 2 Vbuckets do hills
for X 2 v.bucketx do

for Y 2 v.buckety do
Call (X,Y ) a positive

Remark 1 As a post processing step, we can filter
positive calls using various criteria, e.g, only keeping
pairs satisfying I(X,Y ) higher that a threshold.

Note that Algorithm 1 requires a decision tree G, along
with a list of buckets Vbuckets. Care should be taken
in selection of the tree and buckets in order to max-
imize the sensitivity and minimize the complexity of
the algorithm. In Section 7, we compute sensitivity
and complexity of algorithm 1, and in Appendix F we
present an algorithm for designing decision trees with
low complexity and high sensitivity.
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(a)

(b)

Figure 2: The figure illustrates (a) mapping data
points to buckets through the decision trees. The
paths for data points X1 = 101... and Y1 = ⌅ ⌅ ⌅...
are shown in blue and purple, respectively. (b) check-
ing data points in each bucket, in algorithm 1. The
complexity of the algorithm involves insertion of data
points X 2 X (here 6 insertions), insertions of data
points Y 2 Y (here 8 insertions), and checking each
pair X and Y in each bucket (here 11 checks).

7 Complexity Analysis of Algorithm 1

Complexity of Algorithm 1 consists of three parts:

• Matching data points X 2 X to buckets.

• Matching data points Y 2 Y to buckets.

• Verifying the dependency for each pair.

Lemma 2 describes the complexity and true positive
rate of Algorithm 1 for Dirichlet inputs, and Lemma 3

reports the complexity for data coming from arbitrary
prior with bounded density distribution.

Figure 3: Running Algorithm 1 for each band usually
results in a large number of false negatives. In order
to reduce the number of false negatives, we randomly
permute elements of data points b times (one per each
band). Then, we insert the permuted data points into
decision trees, and check all collisions in each band.

Lemma 2 Under Dirichlet prior, the expected overall
complexity of Algorithm 1 for b bands is:

E(Complexityb(G))  cprefix.|Vbuckets|.depth(G)

+csearch.b.(N +M)depth(G)

+cinsert.b.
�
NBx(G) +MBy(G)

�

+ccheck.b.N.M.B(G) (24)

and the chance of dependent pairs falling in the same
bucket in a single band, referred as TP1(G) is:

TP1(G) = A(G) (25)

cprefix, csearch, cinsert, and ccheck are constants, and
A(G), B(G), Bx(G), and By(G) are defined as follows:

A(G) =
X

v2Vbuckets(G)

A(v) (26)

B(G) =
X

v2Vbuckets(G)

B(v) (27)

Bx(G) =
X

v2Vbuckets(G)

Bx(v) (28)

By(G) =
X

v2Vbuckets(G)

By(v) (29)

A(v) =
�(v.n+ 1)

�(1)
(30)

Bx(v) =
�(v.nx + 1x)

�(1x)
(31)
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Continuing branch

Accepted node as a bucket

Pruned node

Figure 4: An illustration of the decision tree constructed for k = l = 2 and binary alphabets (A = {0, 1} and
B = {⇤, ⌅}). Examples of an accepted, a pruned, and a branched bucket are shown.

By(v) =
�(v.ny + 1y)

�(1y)
(32)

B(v) = Bx(v).By(v) (33)

where

v.n
x
i = | {1  s  depth(v) | Sx(v, s) = ai} | (34)

v.n
y
j = | {1  s  depth(v) | Sy(v, s) = bj} | (35)

v.nij = | {1  s  depth(v) | Sx(v, s) = ai,

Sy(v, s) = bj} | (36)

v.n = [v.nij ], v.nx = [v.nx
i ], v.ny = [v.ny

j ] (37)

and Sx(v, s) and Sy(v, s) are the s’th characters
in Sx(v) and Sy(v) respectively, for 1  s 

depth(v). Note that,
Pk

i=1

Pl
j=1 v.nij =

Pk
i=1 v.n

x
i =

Pl
j=1 v.n

y
j = depth(v).

Lemma 3 For any arbitrary priors with bounded den-
sity distribution, the expected overall complexity of Al-
gorithm 1 for b bands is bounded by

E(Complexityb(G))

cprefix|Vbuckets|depth(G)

+ fmaxcsearch.b.(N +M)depth(G)

+ fmaxcinsert.b.
�
NBx(G) +MBy(G)

�

+ f
2
maxccheck.b.N.M.B(G) (38)

Proof of Lemmas 2 and 3 are relegated to Appendices
D and E, respectively.

Now, the question is how we should design decision
trees in a way that the complexity is minimized while
the true positive rate is high, e.g., nearly 99%. As-
suming M = N

�, Algorithm 2 provides an approach
for designing decision trees, and in the next section we

prove these decision trees are highly sensitive and have
low complexity. Starting from the root, at each step,
Algorithm 2 either accepts a node as a bucket, prunes
a node, or branches a node into kl children based on
specific constraints. The intuition behind these con-
straints are described in Appendix F.

Algorithm 2 Constructing the Buckets

Input: ⌘, N,M, ✓

Output: Decision tree, Vbuckets

procedure construct buckets(⌘, N,M, ✓)
Make a new node root

root.n = [0]k⇥l, root.Sx = root.S
y = ? . (20)

construct tree (root, ⌘, log(N)
log(M) , ✓)

return root, Vbuckets

procedure construct tree(v, ⌘, �, ✓)
for any 1  i  k do

for any 1  j  l do
Make a new node w

w.n = v.n, w.Sx = v.S
x and w.S

y = v.S
y

f(v, ai, bi) w . Make w child of v
w.nij  w.nij + 1

Aw  
�(w.n+1)

�(1) . See (29)

B
x
w  

�(w.nx+1
x)

�(1x) . See (31)

B
y
w  

�(w.ny+1
y)

�(1y) . See (32)

Bw  B
x
w.B

y
w . See (33)

w.Sx.append(ai) . See (20)
w.Sy.append(bj) . See (21)

if Aw
Bw
� C(logN)k+l�2kl

N
1+��⌘ then

Vbuckets.insert(w) . See (94)

else if Aw
Bx

w
 C

x(logN)k�kl
N

1�⌘

or Aw

By
w
 C

y(logN)l�kl
N

��⌘

or depth(w) > ✓ log(N) then
Prune w . See (94)

else
construct tree(w, ⌘, �, ✓)
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8 Theoretical Guarantees

In this section, we first provide theoretical guarantees
on runtime and true positive rate of Algorithm 1 and
2 in the case of single band (b = 1). We then present a
new algorithm for achieving nearly perfect true posi-
tive rate using multiple bands, and provide theoretical
guarantees for it.

Definition 4 Pairs of data points X and Y are called
�-associative if the following holds:

�(X,Y ) = min
0⌘

✏(X,Y, ⌘) + ⌘  � (39)

where
✏(X,Y, ⌘) = min

nij

✏ (40)

8
>>>>>>>>><

>>>>>>>>>:

n.DKL(
nij

n ||
mij

S )
+(S � n)DKL(

mij�nij

S�n ||
mij

S ) � �✏ logN

�H(nij

n ) +H(ni
n ) +H(nj

n ) � (1+��⌘) logN
n

�H(nij

n ) +H(ni
n ) � (1�⌘) logN

n

�H(nij

n ) +H(nj

n ) � (��⌘) logN
n

n  ✓ log(N)P
nij = n

where mij is the frequency matrix as defined in (8).
The optimization is done on ⌘ and nij. If no ⌘ satisfies
(40), we define ✏(X,Y, ⌘) =1.

Remark 2 The intuition behind this definition is that
in our decision tree, a node is pruned if A(v)

Bx(v)
and

A(v)
By(v)

are small and accepted if A(v)
B(v) , is large. On

the other hand, A, Bx, and By are beta functions.
Therefore, using sterling inequality, A

Bx
is equivalent

to exp(H(nij

n )�H(ni
n )). Similar equivalences hold for

A
By

and A
B . Taking logarithms from both sides results

in conditions of the definition.

The following lemma provides lower and upper bounds
on �.

Lemma 4 max(1, �)  �(X,Y )  1 + �

Remark 3 Intuitively, X and Y have a higher asso-
ciation with each other if they are �-associated with a
lower �. Later, we show that �-associated pairs can be
discovered with complexity O(N�).

Remark 4 Note that � and ✏ depend on ✓ and �, and
we should show them as �✓,� and ✏✓,�. However, we
drop ✓ and � subscripts, and in the rest of the paper
we assume ✓ and � are constants.

The following theorem provides lower-bound guaran-
tees on sensitivity of Algorithm 1, where tree and buck-
ets are constructed using Algorithm 2.

Theorem 1 Consider a tree G
⌘ constructed by Algo-

rithm 2 with parameter ⌘. Then any pair (X,Y ) can
be discovered by algorithm 1 (using decision tree G

⌘)

with probability at least C0(logN)
kl�1

2 N
�✏(X,Y,⌘) and

the time complexity is O(N⌘ log(N)2).

Proof of Theorem 1 is relegated to Appendix H.1. The-
orem 1 above provides lower bounds on true-positive
rate of Algorithm 1 and Algorithm 2 in the case when
a single band is used (b = 1). Currently the relation-
ship between �-associativity and mutual information is
not clear. The following theorem provides guarantees
on finding pairs with high mutual information using
Algorithm 3 in Appendix I.

Here, we present Algorithm 3, which is based on Algo-
rithm 1 and 2, and given a value � > 0 it finds (nearly)
all �-associated pairs with complexity O(N� log(N)2).
The algorithm is based on constructing decision trees
with parameter ⌘ for various values of ⌘, 0 < ⌘ < �.
Then multiple bands from each tree is recruited, in a
way that all �-associated pairs are discovered, while
the complexity remains O(N� log(N)2)

Definition 5 For H = {⌘0, ..., ⌘z}, (X,Y ) is called
(�,H)-associated if

min
⌘2H

✏(X,Y, ⌘) + ⌘  � (41)

Theorem 2 Consider M = N(� = 1), A = B, and
X = Y. Then for any pairs of data points satisfying
I(X,Y ) � log(k)(2 � �), Algorithm 3 in Appendix I
with parameters �, z = 1, H = {�}, and ✓ = 1 can
discover (X,Y ) with probability nearly one. The com-
plexity for this case is O(N� log(N)2)

For proof of Theorem 2, see Appendix J.2.

Remark 5 When A = B = {0, 1}, all pairs with
I(X;Y ) � 2� � can be discovered in O(N� log(N)2).

In the next section, we experimentally evaluate the
theoretical guarantees provided in this section.

9 Experiments

In this section, we run algorithm 1, 2 and 3 in Ap-
pendix I on various simulated datasets, and compare
the results to guarantees given in Theorems 1 and 2.
Experiment 1. We computed the tree G⌘ for ⌘ = 1.1,
1.3, and 1.5 andN = 1000 using Algorithm 2. Then we
sampled 1000 probability distribution P from Dir(↵)
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where ↵ = 1, and for each probability distribution P,
we sampled a pair of 1000 ⇥ 1 data points X and Y .
For each tree G

⌘ and each pair of data points X and
Y , we computed empirical true positive rate by select-
ing random permutations ⇡ : {1, ..., S} ! {1, ..., S},
and computing the ratio of permutation for which data
points X and Y map to the same bucket using Algo-
rithm 1 (b = 1). The expected true positive rates is:

TP
X,Y
1 (G⌘)

=
X

v2Vbuckets(G)

P (Prefix(Sx(v),⇡(X))

,Prefix(Sy(v),⇡(Y ))) (42)

=
X

v2Vbuckets(G⌘)

Qk
i=1

Ql
j=1

(mij)!
(mij�v.nij)!

S!
(S�v.n)!

(43)

where probability is computed over random permuta-
tion ⇡. We also computed the lower-bounds on the
true positive rates predicted by Theorem 1. Figure
5 illustrates empirical, expected and theoretical lower-
bounds on true positive rates as a function of ✏(X,Y, ⌘)
for ⌘ = 1.3. The figure shows that empirical and ex-
pected true positive rates are very similar. Moreover
these rates are higher than the lower-bounds predicted
by Theorem 1, as the bounds used for deriving Theo-
rem 1 are not tight.

Figure 5: Experimental, empirical and theoretical
lower-bounds on true positives rates TP

X,Y
1 (G⌘) for

various data points (X,Y ) ⇠ P , P ⇠ Dir(↵) for
⌘ = 1.3. Here, G⌘ is computed using Algorithm 2, and
true positives are calculated using algorithm 1 where
b = 1. Similar data for ⌘ = 1.1 and ⌘ = 1.5 is shown
in Figure 7 in Appendix K.1.

Experiment 2. In this experiment, we use Algorithm
3 to find all pairs with mutual information above 0.5.
To this end, we use parameter � = 2� 0.5 = 1.5, and
use the brute force method and Algorithm 3 for finding

associated pairs. We repeat this experiment for M =
N = 1000, 3000, 10000, 100000. The following figure
shows the runtime of Algorithm 3 versus brute force for
each N . Algorithm 3 is capable of finding about 95%
of all true positives for N = 1000, 3000, 10000, 100000,
respectively.

13X

38X

Figure 6: Comparing the runtime of our method
with brute force, for various values of N. Our method
reaches 95% true positive rate in each case and is ⇠ 40
times faster than brute force, when N = 100K.

Experiment 3. In this experiment, we used our
method on a single cell dataset [Alavi et al., 2018] with
8424 genes and 1000 cells to find pairs of genes (Gi, Gj)
with mutual information higher than I(G1, G2) > 0.8.
This is crucial step for reconstructing the gene regula-
tory network from the data. We compared our method
to brute force, and the result is as follows: Our method

Number of Pairs Time(s)
Brute Force 154 25200
Our Method 153 99

results in 250X speedup compared to brute force while
maintaining similar sensitivity.

10 Conclusion

In this paper, we propose a new method for computing
mutual information between all pairs of data points in
a large database. Our method is based on hashing
data points to leaf nodes of decision trees, in a way
that data points with higher mutual information are
mapped to the same bucket with higher probability.
We use Dirichlet prior assumption for setting param-
eters. However, our theoretical results show these pa-
rameters work for any bounded density distribution.
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