Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

Appendices

These appendices are structured as follows:

e Appendix A contains an analysis of the adaptive trapezium method. In particular we investigate casting the
method into the Bayesian framework by performing an average case analysis. We present Proposition A.1
which demonstrates the assumptions that underlay the use of the adaptive trapezium method do not carry
through to the Bayesian setting. In addition, we provide an average-case analysis of the number of integrand
evaluations required by AdapTrap (in Proposition A.4 and Corollary A.5).

e Appendix B contains the AdapBC algorithm, the idealised version of the E-AdapBC algorithm that we pre-
sented in the main text where 6 is marginalised rather than optimised.

o Full details for the stochastic process model used in our experiments are contained in Appendix C.

e Aspects of the implementation of all algorithms considered are addressed in Appendix D. These include
details for the marginalisation of € in AdapBC and for the optimisation over # in E-AdapBC.

e Appendix E completes a full description of the experiments that were carried out and reported in the main
text. In addition, the impact of the choice of ¢ and ¢ is empirically assessed in Appendix E.3, while the
AdapBC and E-AdapBC methods are compared in Appendix E.4.

e Finally, for completeness Appendix F recalls standard mathematical definitions that are used in the argu-
ments of Appendix A.

A Average Cases Analysis of AdapTrap

The aim of this section is to discuss how one might naively attempt to create a direct Bayesian analogue of
AdapTrap. To this end we recall the approach of Diaconis (1988), who took a classical cubature rule of the form
(3) and asked “for what prior does (3) arise as the mean of the posterior marginal distribution of the integral?”.!!
Thus, in the context of creating an analogue of AdapTrap, we can follow Diaconis and seek a prior such that the
mean of the posterior marginal for the integral is Trap in (4). Thus we must consider stochastic processes for
which the conditional mean is the piecewise linear interpolant (over the range of z1,...,x,) of the data D,, on
which it is conditioned.

Let C([a, b]) denote the set of continuous real-valued functions on [a, b] and consider the subset F}, ,, .- C C([a, b])
of integrands f* for which AdapTrap, m i fails to achieve its stated error tolerance 7 upon termination, or for
which AdapTrap, i fails to terminate at all (this set is non-empty; e.g. Clancy et al., 2014). From an inferential
perspective, the decision to employ AdapTrap, ., can be regarded as a belief that f* ¢ F, ., ;.. Proposi-
tion A.1, presented next, suggests that stochastic process models giving rise to piecewise linear interpolants are
incompatible with the use of AdapTrap, , , due to assigning non-zero probability mass to F}, ., whenever
7 > 0. This result, whose proof is straight-forward and contained in the supplement, can be interpreted as an
average-case analysis of AdapTrap (Ritter, 2000). Denote the error function erf(z) = ﬁ ffw et dt.

Proposition A.1. Fixa < b, p > 0, m € N and k a positive even integer. Let f* be sampled from a centred
Gaussian process on C([a, b]), whose law is denoted P*, such that the conditional mean f*|D,, is the piecewise
linear interpolant (over the range of 1, ..., x,) of the data D,, on which it is conditioned. If AdapTrap terminates,
denote its error €, k- (f*) := I(f*) —AdapTrap, ,, »(f*,a,b,7), otherwise set €, m k- (f*) := co. Then for every
T>0,

P*(lepmoi,r| > 7) > erf(er) [1 — erf(v/3er)]
where ¢ > 0 is a P*-dependent constant.

Uparaphrased. Conversely, Cor. 2.10 of Karvonen et al. (2018) showed that all non-adaptive cubature rules of the
form (3) arise as the posterior mean of some stochastic process model.

A Locally Adaptive Bayesian Cubature Method

Though the probability mass assigned to F, ,, - can be made small, the fact that it is non-zero for all 7 > 0
calls into doubt whether direct Bayesian analogues of classical adaptive methods can exist, in contrast to the
situation for non-adaptive methods (Karvonen et al., 2018). In Appendix A.2, further average-case analysis is
provided, showing that for mis-specified p the expected number of steps of AdapTrap can be unbounded. Taken
together, our analyses suggest that classical adaptive methods cannot be directly replicated in BC and a different
strategy is needed. In Section 3 of the main text we put forward a de novo BC method, which achieves adaptivity
through a flexible non-stationary stochastic process model.

In Appendix A.1 we introduce our notation, then in Appendix A.2 we provide a detailed average-case analysis of
the expected number of evaluations of the integrand required by the AdapTrap method. Finally, in Appendix A.3
we prove Proposition A.1. The arguments that we present in this appendix exploit definitions and basic results
about full k-ary trees. For completeness, the required background knowledge is set out in Appendix F.

A.1 Notation and Set-Up

In what follows we let C([a,b]) denote the set of continuous functions g : [a,b] — R. The set C([a,b]) can be
endowed with the structure of a measurable space using the Borel o-field generated from the topology induced
by the supremum norm ||g|lec = sup,<,<p|g(z)|. The stochastic processes considered in this work are all
Gaussian measures on the measurable space C([a, b]); we refer the reader to Bogachev (1998) for full mathematical
background.

In the main text we followed the usual convention in numerical analysis that the error of a quadrature method
Qn(-) is defined as € = |[I(f*) — Q.(f*)], i.e. as the absolute value of the difference between the quadrature
rule and the true integral. However, when it comes to performing an average-case analysis, it is more natural
(and convenient) to consider the signed error instead. Therefore we now re-instantiate our notation as per the
statement of Proposition A.1, namely we use the signed error € := I(f*) — Q,(f*) in the sequel.

Following the discussion of Appendix A, we are interested in Gaussian measures on C([a, b]) whose conditional
mean function f|D,, is the piecewise linear interpolant (in the range of z1,...,x,) of the data D,. Diaconis
(1988) noted that the only non-trivial Gaussian measures with this property are based on the covariance function
k(z,y) = Amin(z,y)+-y, where v > —a controls the initial starting point of the process and A > 0 is the amplitude
parameter with mean function m(z) = 0. In other words, the only processes satisfying the preconditions of
Proposition A.1 are shifted and scaled Wiener processes. In the following we therefore consider an integrand f*
that is drawn at random from the Gaussian process on C([a,b]) with mean m(xz) = 0 and covariance k(z,y) =
Amin(z,y) + v where A > 0 and v > —a. The law of this process will be denoted P* and we use E*, V* and C*
to denote expectation, variance and covariance with respect to P*.

Recall that the algorithm AdapTrap was presented as Algorithm 1 in the main text. Note that if we want to
ensure we use previous evaluations of f* at each level of recursion then we only require that m is an integer
multiple of k. This allows computational speed up by memoising the previous iteration’s function calls. A
termination of AdapTrapp,mvk(f*, a,b, T) can be represented as a full k-ary tree.

In what follows let 7% be the set of full k-ary trees. Full background is provided in Appendix F but for illustration
we provide an example of a full 3-ary tree:

(1,0)

(] [en] |6

(2] [@2] [©.2)]

Figure 4: Example of a full 3-ary tree, with levels 0,1,2. Level 1 has the maximum of 3 nodes, while level 2 has
3 of a maximum 9 nodes present.

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

A full k-ary tree T is characterised by its nodes, and the pth possible node at depth ¢ will be represented as
the vector (p,q); c.f. Appendix F. The points z; at which f* is evaluated in AdapTrapp,m’k(fﬁa, b, T) can be
represented as the nodes of a full k-ary tree and we denote this tree by A, n, k.-(f*). That is, each node (p, q)
in Apm,k,-(f*) corresponds to a recursive step in the running of AdapTrap, ,,, ,.(f*,a,b,7), namely the step

a

(bfa])ggp* D kq“)p,mq>- (10)

AdapTrap, ,, ; <f*, a-+

Formally, the full k-ary tree representation defines a map A, .- : C([a,b]) — T* and, with C([a,b]) endowed
with the measure P*, then A, ,, - can be considered as a random variable on T%. Our aim in the remainder is
to study the random variable A, r - and, in doing so, we shall establish Proposition A.1 from the main text.

The notation é»9) = Qép) _ Qgp D will be used to denote the local error estimate computed in the recursive step

in (10), corresponding to node (p,q) of A, k,(f*). From the definition we have that, letting XS’I’Q) = {a;} At

denote the set of ordered (x; < ... < ,+1) abscissae used in the calculation of Qgp"q) and xg)id = %,
b=a X~ o)y L@ 4 S (@in)
epa) — () i i+1 .
= Gk 21 i) ; (11)
- Amkd le |:(f (‘Tmid) f (xl)) (f (lerl) f (xmid))i| .

Thus, with f* ~ P*, é®9 is a random variable on R. By the independent increment property of the Wiener
(@)
mid

Gaussian increment property of the Wiener process, f*(:c(i)) — f*(x) 2 f (wiyr) = f* (:cffl)ld) ~N (O, %),

process, each of the random variables f*(:z:gl)id) — f*(x;) and f*(x;41) — f*(x,,) are independent. By the

mid

where £ is equality in distribution. Thus,

ewa) b_“/\/(o, A(b;a)) = N(o, M) (12)

4dmka k (4m)2k3a
Before addressing Proposition A.1, we will establish results on the expected number of steps of AdapTrap next.

A.2 Expected number of steps of AdapTrap

The first of these intermediate results is an elementary property of the local error random variables €9 . To
present this, let 1”9 be the closed interval over which é®9 is computed and recall that Xgl D is the set of
ordered abscissae used in the computation of Qgp ’q); for instance, with m = 1 and a = 0,b = 1 the tree in
Figure 4 has I(31) = [2/3,1] and Xg’l’l) ={2/3,1}. Then we have the following independence result:

Lemma A.2. Under P*, the local error estimate random variable €9 is independent of the random variable
f*(z) for all z € (R\ I®9) U Xgl’q).

Proof. From joint Gaussianity of the random variables, it is sufficient to show that C* (é(p"I), f*(x)) = 0 for
any © € R\ I?»9 or x € Xgl’q). In fact, since b — a > 0, from bilinearity of C*(-,-) it is sufficient to consider

C* (€(p’q),f* (J;)) = 0 where €9 := %E(WD. Note that 19 = [a, 3] for some a < 3. Consider the three
cases in turn, using (11):

A Locally Adaptive Bayesian Cubature Method

For o <a: C* (€7, f(a ZQC P @), £ (@) = C[f(@a), f@)] = C[f (i), F ()]
= in;?(m:+7) —(Az+7y)-(Az+7) = 0.

For x> f: C* (¢®9, f(z)) = Z2<C* [F* @S0, £1@)] = C [(), £ (2)] = C*[f* (@ina), £ (@)]
= i[/\(l’wl +x) +29] = Az +7) — (Azipa +7) = 0.

Jj—1
Forz =z; € X(p 9. (E(p’q),f(x)) = ZC*[Qf*(Ig)id) = f (i) = f(@ig), £ (25)]
i=1

+Z(C* 21 (x0y) = f*(x:) = [(@inr), F*())]

j-1
= M@ +3) +27 — Az +7) — Owigs +7)
i=1
+22(/\1‘j +7)— (Az; +79) — (Azj+7v) = 0.
i=j
This completes the proof. O

Our next intermediate result concerns the probability of obtaining any given full k-ary tree T" as the value of the
random variable A, , 1 -(f*):

Proposition A.3 (Probability of A, 1, = T). Let k be an even positive integer and let T € T* be finite.
Denote by D, L; and V; the height of T', the number of leaves of T at depth ¢ and the number of inner nodes of
T at depth i, respectively (recall that these definitions are reserved for Appendix F). Then

D
P (Apmpr =T) = [(1 — i)™,

o 4mr(K*/2p)*
where a; = Probz.ar0,1) (|Z| < VAb—a)®)

Proof. Let T € T* be finite, so that we seek to compute
P*(Apmir = T) :/ [F* € AL, ()] dP*(f%).

Note that from a given full k-ary tree 7" we know the local error tolerance intervals g D = [—7p2, Tp? and
whether the local error estimates éP0 € P9 or &r:0) ¢ P9 for each node (p,q) € T. That is, if (p,q) is a
leaf then €9 ¢ Iﬁp’q) and if (p,q) is an inner node then é®9) ¢ Igp’q). Define

gpa) .— I(p’q) if (p,q) is a leaf in T,
R\ I7 ea) - if (p,q) is an inner node in 7T

Further, let ((p;,q;))XY, be the preorder traversal of T' (see Definition F.4 in Appendix F). For notational
convenience in the following we will denote v; := (p;, ¢;), € := €”* and S; := S¥*. Thus, returning to our original

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

problem, we have

P*(Apmpir=T) H 1[¢ £pa) ¢ 5(p7q)] dP* (f*)
(p,9)€T
/ / 61,..., del dENy
SN S1
where p(€;,...,€y) is the joint density function of €, ..., éx.

Now, motivated by the factorisation

N—-1

p(Er,... . éN) = H pEN—i|EN—i=1,... &),
i=0

we make the following claim (whose proof is provided immediately after the present proof):

Claim: For i€ {0,...,N — 1} and k an even positive integer we have p(Eny_; |€n—i—1,...,€1) = p(En—i).

Using the claim, we have that

P*(Aympr = T) = / /
S

Recalling that n; is the depth of node v;, the integrals in the final product can be expressed as

N
Hp (&)déy ... déxy = H/ (&) dé;.
i=1"5i

14=1

. (&) dé;, if v; is a leaf in T,
/ p(&)d& = { e ;f(x)& o .
S; 1- /" o p(&;) dé;, if v; is a inner node in T.

By (12) we have,

Tp"i L
/ p(€;)dé; = / pz(z)dz,
—Tpni —L

/ ng
where p(z) is the demsity function of Z ~ MN(0,1) and L = Amr (k2 7o) Letting a; =

VA(b—a)3

Proby (0,1 (|Z| < AWTU;\/LP)):) we have,

N
P*(Aympr=T)= H ~1(vi€L(T)) q _ &i)lfﬂ(vieL(T)),

where L(T) is the set of leaves in T. By noting that @; only depends on the depth n; of each node v;, we can
rearrange this product by multiplying by depth instead of by the preorder traversal. Thus,

D
P*(Apmir =T) = [Joi (1= 0™,
i=0

/ i
where a; = Probg., Z| < dmT(k2/2p)! , L; and V; are the number of leaves and inner nodes at depth 4
Z~N(0,1) < | m 1Y

respectively and D is the height of T. O
The claim used in the above proof is established as follows:

Proof of Claim. Let X! be the abscissae used in the computation of €; and let N; = {v1,...,v;_1}. By Lemma A.2
and bilinearity of C*(-,), if XN X = () for i # j, then ¢ is independent of ;. This immediately implies that &

A Locally Adaptive Bayesian Cubature Method

is conditionally independent of all €n,\asc(v;) €iVen €age(v,), Where asc(v;) are the nodes in T that are ascendants
of v;. Thus we are left to prove that € is independent of any €; with j € asc(v;).

Let p be the parent node of v; and let d be the depth of v;. We will prove that X! N X? C X, 3’1 and by induction
and the application of Lemma A.2 the result will be established.

Note that X{ is an affine transformation of X? = {z + gz-r }?7), where z is the left-hand end point of the
subinterval, of the form!? X! = %(Xg —)+ +nk~? for some n =0,...,k— 1. Furthermore, both X! and X?
are affine transformations of the set {5-}?7. Thus it is enough to prove that {5 }27 N {
{Ziin ?;0'

7 2m i m
Shm Jim0 & Ukm Jie0 =

Let 2m = ak + b where 0 < b < k. Then {5 }2m N {Zi}2m = {Jk}a = and so, if k is even then

{k,2k,...,ak} C {2i}!", and we are finished. By the definition of a preorder traversal we have, for each
i, asc(v;) C N; and further N; N desc(v;) = @, where desc(v;) are the descendants of v;. Thus we have
D(EN—i | EN—i-1,-..,€1) = p(En_;) as required. O

The main result in this section shows that there are settings (albeit not the standard setting of p = k=) for
AdapTrap for which the expected number of steps is unbounded:

Proposition A.4 (Expected number of steps of AdapTrap). Let a < b and let f* be drawn at random from
any centred Gaussian process on D = [a,b] whose whose conditional mean function f|D,, is the piecewise
linear interpolant (in the range of x1,...,x,) of the data D,,. Let E* denote expectation with respect to this
random integrand. Let N, ., x(f*,7) be the total number of integrand evaluations incurred in the running of
AdapTrapp’m’k(f*, a,b, 7). Then for every k € N and k a positive even integer, there exists C' > 0 such that for

every 7 < C and any p < k~3/2 we have E*[N,, ,,, x(f*,)] = oo.

Proof. Let V,, be the number of inner nodes of T" at depth n. Then, by Proposition A.3,
E* [Vn | Vn—l] = k‘(l - an—l)vn—l-

By the law of total expectation, induction and noting that E*[Vj] = 1 — ap, we have
n—1
E*[Vo] = B [E* (Vo |[Vaall = k(1 — an-0)E* [Vua] = J] B -).
i=0

Note that if we have E*[V,,] - 0 as n — oo then this implies E*[N,,, r(f*, 7)] = oco. Thus studying the
convergence properties of the infinite product H;’io k(1 — ;) with varying p, k, 7 and X is sufficient to prove the
result.

For p = k:d% we have a; = a = Probzar(o,1) <|Z| < 4"”). Then the product simplifies to E*[V,,] =

\/A(b—a)3
k™(1 — «)™. This implies that if 7 and A are selected such that o < %, then E*[X,] -» 0. This is the case if
and only if

- _<I>_1 (=))\(b—a)3.

13
- 4m (13)
Note further that for p < leﬂ we have «; < «. Thus, for p < 193% we have,
n—1
E(1—o) 2 k(1—a) = [[k0 -a)>k"(1-a)"
i=0
So, if T satisfies (13) then for any p < 57 we have E[V,,] - 0. This completes the proof. O

Our final contribution is to provide a closed form for the probability of non-termination in the case k = 2:

2Here we are using the standard notation aX + b= {az + b|z € X}.

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

Corollary A.5 (Probability of non-termination for k¥ = 2). Let T, be the set of full k-ary trees with infinite

depth. For k=2, p = ksl/z and 7 satisfying (13) then the probability of non-termination is

1-2
P*(Apmir € Too) = @

)

l-«a
where a = Probz.ar(0,1) <|Z| < \//\4(’:_77“)3) Further, for p < kg% we have

1 -2«

P (Apmir € To
(p,,k,e)>1—a

, (14)

Proof. Assume that p = # and that 7 satisfies (13). The probability of an outcome being a full k-ary tree
with kn + 1 (for n € Ng) nodes is

P*(|Ap | = kn+ 1) = CPark=DHq _ q)n

where C’,(Lk) = m (”nk) is the number of k-ary trees with n nodes (see Theorem F.2). Define the probability

of termination function

Pe(e) =Y P (|Apmkr| = ki+1).
=0

Recall the generating function of the standard Catalan numbers (18),

- L 1-1T—4x
OQ(CC) = ZCEQ).IZ = T
1=0

Thus, by noting that
oo
Py(o) =) CPfa(l -)],
i=0

we have

Py(a) = aCy(a(l — a))
1-/T—dal=a) _ 1-/@a=1)> _1-[2a—1] _ { o for a € [0,0.5),

_ — T—a’
2a(1 —) 2(1 —) 2(1 — «) 1, for a € [0.5,1].

The inequality (14) can be derived by noting that for p < W% and for every ¢ we have o; < a. Thus,

P*(|Aymanr] =2n4+1) > CPa" (1 - a)",

since g(x) = z"(1 —)"~ ! is monotonically increasing'? for 0 < z < 3. O

As a final remark, note that using the same approach we can show that, for k£ > 5, the probability of termination
1 — Pi(«) does not have a closed form. Note that

Pi(a) = aCi(a(l — a)),
where C}, is the generating function of the k-Catalan numbers. Cj obeys the following functional equation
Cr(z) = 1+ z[Cy(2)]".

Thus expressing C}, as a function of x in closed form is equivalent to solving a degree k trinomial. This has no
algebraic solution for k > 5 with general 2 and so one cannot express Py(«) in closed form for k > 5.

13This can be shown by noting ¢'(z) = nz" (1 —2)" ' — (n—)z"(1 —2)" 2 =2""1(1 — 2)" 2(n + z(1 — 2n)).

A Locally Adaptive Bayesian Cubature Method

A.3 Proof of Proposition A.1

This section contains the proof of Proposition A.1 from the main text. Recall that we aim to perform an average-
case analysis of the AdapTrap method which is simply the composite trapezoidal rule on a non-uniform grid of
abscissae under the aforementioned prior measure P*. We have,

n

b 1
)= [£ @) o Trap(£7,0,0,) = 5 YU) + £ (@) —

i=1

with X = {2;}7]' a given set of n + 1 ordered abscissae such that a = x; < . S T = b. Then the error of
the trapezoidal rule is €3 F(f*) = I(f*) — Trap(f*,a,b, X). Under P*, the error €x* can now be considered a

random variable. Let f*(X) = (f*(z:))

Recall that, due to Diaconis (1988), the mean of f*|D,, is the piecewise linear interpolant of the data D,,. Thus,
by (7), E*[I(f*)| f*(X)] = Trap(f*, a, b,X) and by Gaussianity of P* we have ex - | f*(X) ~ N(0,02) for some
0% > 0. By (8) note that under P*, o2 is only dependent on the set of abscissae X. Before directly proving
Proposition A.1 we derive the variance of x| f*(X). In the following we use the notation f == f*| f*(X)
and [~ GP(mp, kp).

Proposition A.6. We have

TraP|f <OZO.>7
A

where 0 = 2 (41 — ;)® and with X = {z;}"]' a given set of n + 1 ordered abscissae such that a = 1 <

< x, =0
Proof. Define ¢; = [f5 () dz — §[f5(xip1) + f5(2:)][xiy1 — 2:]. Then x| f*(X) = 30, . Note that

by the Markov property of f* for z € [z;, zi+1], f5H(2) D (@) | f*(@is1), f*(z;) and so € ~ N(0,0?), where
o? =V*(e).

For z,y € [z;, xit1] we have f*(x)| f*(xiy1), f*(x:) ~ GP(my(z), ki(z,y)) where m;(z) is the linear interpolant
between (z;, f*(x;)) and (zi4+1, f*(zi+1)) and, for z < y,

. _ (s _ Kz o) knzien) \ _ T
) = ko) = o) o, 0] (o) P o))). b)
1
=AY — e [(ATig1 — Az)(Az; —Az) (A
z+y e [(ATiy1 — Az)(Azi +7) + (Az — Azq) (Ay +)]
A

=\r — Pp—— [(@it1 —)i + (2 — 20)Y]

_ Tl = BT — T +TTi — Y+ Ty (i1 — 2)(y — ;)

o Tit1l — T4 B Tit1 — X4 .

Thus we have,

= V*(
Ti4+1 ‘TL+1
/ / (z,y)dxdy

Tit1 Tit1 Y . _ — 7.
)\ xl+1 (y)d dx+/ /)\(x’b+1 y)(fI; xl) dflfdy

Tit1 — xz Ti+1 — T4

2)\/’E1+1/ xH_l xz) dydm
x1+1 — Xy

Ti41
/ S g (x1+1 +22;) + o(—2x 412 — x?) + xiﬂxf dz

i i

Ti41 — T4
)\(.731'_;,_1 — 1‘7;)3

= 7)[1+1 4.13%,'_11‘1 + 61‘14_11‘ 4.1:14'_1%' + xXT:] = 12

12(.’Ei+1 — X

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

The final part to prove is that for ¢ # j we have C*(¢;,€;) = 0. Since E*[¢;] = E*[¢;] = 0, we have

(C*(El', Gj) = E* [€i€j]

—u | [o = mtoras [gt it dﬂj
=FE* /%J’-H /%H—l [f%(x) - mz(l‘)][f%(y) - mj(y)] dzx dy‘| .

By Fubini’s theorem we can interchange the expectation and the integral. We obtain,
Tjtl [Titl
Clae)= [[kot dedy.
xj X

By the Markov property of the Wiener process we have kp(x,y) for « € [z;,x,11] and y € [z, 2j41]. Thus the
¢; are independent and our results follows. O

Recall that we defined the error distribution at termination of the AdapTrap algorithm as €, ,,, .- (f*) = I(f*) —
AdapTrapp7m7k(f*,a,b, 7). From now on we will denote the error of AdapTrap as € := €, k. Lhus, letting
X = {x;}M, be the set of M ordered abscissae used in the computation of AdapTrap, ,, .(f* a,b,7) and
(X)) = (f*(x:))M,, we have the following result.

Proposition A.7. Let T € T* be finite. Then for any f* drawn at random from any centred Gaussian process
on D = [a, b] whose conditional mean f*|D,, is the piecewise linear interpolant (in the range of x1,...,x,) of the

data D,, such that A, ,, - (f*) =T, we have €| T L P | FH(X).

Proof. A termination T of AdapTrap corresponds to a set S C RM such that f*(X) € S. Note that for any
f* € C([a,b]) such that f*(X) € S we have

AdapTrap, ., ,(f*,a,b,7) = Trap(f*,a,0,X) = €(f*) = EXP(F).
In the following we identify f; = f*(x;). Thus'?,

PeIT) = gy [ol fip(i e fi) e

* * * . * * * d raj * * raj * * .
where £* = (ff,..., f;). Since, for any f*(X) €S, €| fi, ..., fi; = ex | fi,. o, fip and p(eX® | fiy ..., fi) is
only a function of X, we have p(e| f1,..., fr;) = g(e, X). Thus,

1
Pl T) = e X) g [oUSiven o fin) e
P(T)
_g(e,X)P*(T)
=9(e, X)
For any f*(X) € S we have g(¢, X) = p(e| f*(X)) which implies that €| T < | (X). O

Finally we turn our attention to the proof of Proposition A.1. The distribution of the error of AdapTrap can be
computed as
ple)= > ple|)P (T) + 8(00)P* (Apm ki € Too),
TeT*\Too
where we have formally defined the event of non-termination as having infinite error (i.e. for T € Ty,). We can

now directly prove Proposition A.1:

MLet X,Y be real random vectors and let Sx, Sy be events of X and Y respectively. Note that P(X € Sx|Y € Sy) =

P(XeSx,YeSy) _ 1
P(YXGSy) == P(YESy) fsx fsy p(x|y)p(y) dz dy.

A Locally Adaptive Bayesian Cubature Method

Proof of Proposition A.1. For any p,m,T and k an even integer we have

PO= Y ple|TIP(T)+5(00)F" (Apum,r € Too),
TeTF\To

then for any finite ' € T* we have P*(|e| > 7) > P*(|e| > 7|T)P*(T). Let Ty be the full k-ary tree with 1
node. Then, by Proposition A.3 we have P*(T1) = ap where ap = Probzar0,1) (|Z| < 4"”) and further

(b—a)?
by Proposition A.7, we have €| T} ~ N(0,0?) and so
P*(le| > 7) > P*(le| > 7| T1)P*(T1)

By Proposition A.6 we have

Thus we have

P*(Je| > 7) > P*(le| > 7| T1)P*(T1)
_ [1 ot (W”)] ot (Wm) |
b —a)? b —)3

where erf(z) = ﬁ ffl e~t" dt is the error function. This completes the proof, with P*-dependent constant
ci=2v/2mA\"Y2(b —)73/ O

It is clear that the Tj-based bound employed in the proof of Proposition A.1 can be improved by taking into
account a larger number of terms; however we were unable to find an elegant bound when proceeding in this
manner and therefore we present only the simplest bound.

B The AdapBC Algorithm

The AdapBC algorithm, in which 8 = (c¢,0,£(-)) is marginalised instead of being optimised, is displayed in
Algorithm 3.

Lines 4 and 8 each require MCMC to be used. As such, AdapBC demands that the user carefully monitors the
convergence of a Markov chain and, in turn, requires more technical knowledge on the part of the user compared
to E-AdapBC.

Here M is the number of samples of f|D,,_1 and for each m = 1,..., M and each z € Dy, K is the number of
samples of 6 | D,,—1 U {x, f;n(x)}. Note that to estimate V[I(f)|D,] we used the law of total variance, that is

VII(f)| D] = E[VI(f) | D, 6]] + VIE[I(f) | Du, 6]
< 2 VI Do 4] + 0. ({EL) | B buI}).
k=1
where s.v.(X) is the sample variance of the set X.

C Details on the Non-Stationary Model

In this section we provide full details of the non-stationary stochastic process model that our algorithms employed
for the experimental assessment. In particular, we employed a hierarchical Gaussian process model f|§ ~
QP(mg, kg) on [0, 1]d C R? with

me(x) = c, ko(z,y) = 021—[7%(901‘,%)» (15)

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

Algorithm 3 Adaptive Bayesian Cubature

1: procedure ADAPBC(f*,7)

2 n< 1, €+ o0

3 while € > 7 do

4 Sample (f)M_; ~ f|Dn_y >M>1
5: for each x in D,, do

6 form=1,...,M do

7 Dn eDn_lu{(x mg x))}

8 Sample (6)K_ ~ 0| D, >K>1
9: VE < V[I(f)\Dn,Gk]

10: Ek <—IE[(f)|Dn,9k]

11: f/m 7 LS vk

12: Ep + & Zf | EF,

13: Vi () ¢ Vo + 2 05 (EE, — E,)?

14: (1') MZm 1 m()

15: Pick z,, € argmlnieD E(z)

16: Dp + Dp1 U{(zp, f (J:n)}1

17: n<n+1, €« V[I(f)|D,]z

18: return I(f)|D,

where z = (z1,...,24),y = (y1,...,ya) and the k;(z;,y;) are symmetric positive definite functions defined over

[0, 1] of the form

\/é (z4) +€ (yi)? \/Z ()2 4+ £;(y;:)?

where ¢ : [0,00) — R is a symmetric positive definite radial basis function and ¢; : [0,1] — (0,00) is a length
scale function. Thus the parameters to be inferred are 0 = {c, 0, ¢1(-), ..., la(-)}.

Radial Basis function: In the computational experiments detailed in the paper the choice of radial basis
function ¢ was the standard Matérn radial basis function with smoothness parameter v = 3/2. Recall that the
Matérn radial basis function for v = a + 1/2 for some a € Z7 is of the form

o (d) = exp (—dv/2a + 1) 2@,22,““ (2dv32a +1)" (17)

a—z

For fixed 6, the kernel kg reproduces a Sobolev space of dominating mixed smoothness; see e.g. Dick and
Pillichshammer (2010). The impact of this choice is explored in Appendix E.2.

Lengthscale Field: The lengthscale field can be parameterised in arbitrarily complex ways. In particular, we
highlight the recent work of Roininen et al. (2019) who focussed on performing computation with a hierarchical
parametrisation of a Matérn kernel. In that paper, sophisticated MCMC samplers were proposed, along with an
acknowledgement of the difficulty of the computational task. Since sampling methods are not the focus of our
work, for computational tractability we specified a simple and transparent parameterisation for each i =1,...,d,

n—1
691- (xl) _ 61,]-’1—1 Bl,] Bz,j-‘rl Bz,] —

- Tij + Bi-
= Zij+1 — j Zij+1 — Tiyj
Thus ¢;(-) = 4£p,(-) is the piecewise linear interpolant of a finite number of fixed reference points
(i1, 0i1)s -+ (Zim, Bin) with Z;7 = 0 and Z;, = 1 and thus the parameters to be inferred are 6, =
(Bixs---,Bin). This is computationally tractable since the number of parameters can be controlled and both the

4;(+) and £;(-)~! have closed form integrals (which we used in the regularisation of E-AdapBC in Appendix D.4).
Positivity of ¢;(x;) is ensured by taking 3; ; = exp(«; ;) and inferring the «; ; € R. In all of our experiments we
re-parametrise the domain to be D = [0,1]¢ and we took n = 11 and z; ; =]—, which allowed for sufficient

A Locally Adaptive Bayesian Cubature Method

expressiveness of the associated stochastic process model whilst controlling the complexity of the auxiliary com-
putational task of estimating the c; ;. The total number of parameters associated with the lengthscale field ¢(-) is
therefore 11d. The impact of using this parametrisation of the lengthscale field was investigated in Appendix E.3.

D Computational Details

It still remains to provide full computation details for AdapBC (Algorithm 3) and E-AdapBC (Algorithm 2) in each
of the experiments performed. In this section the generic aspects of these details are provided. However, we note
that certain details are particular to one or more of the experiments and these remaining experiment-specific
details are clarified in full in Appendix E, where the experiments are described.

D.1 Generic Aspects of AdapBC and E-AdapBC

First we discuss the computational details that both AdapBC and E-AdapBC have in common before discussing
their differing aspects individually.

Initial Data: The set Dy of points on which our integrand f* is a priori evaluated must be specified. In this
work we avoided the “obvious” choice Dy =) since it is unreasonable to expect any inferential approach to
provide well-calibrated uncertainty assessment at such low values as n = 2,3 etc. Therefore, we took Dy to be
an experiment-specific small set of mesh points in D. The specific choices are reported in Appendix E.

Point Set Selection: The point set D,, is the set over which we optimise the objective function = — E(z) (for
E-AdapBC) or x — E(z) (for AdapBC). These objectives are non-convex in general and thus a global optimisation
method must be employed. Since this auxiliary computation is assumed negligible with respect to evaluation of
the integrand, we employed brute force grid search with D,, used to define the grid.

In one dimension, D,, was taken to be the following: Let {z;}X | be the set of abscissae on which f* has been
evaluated after iteration n of the algorithm has completed. Then we set

n={(x; +xi41)/2]i=1,..., K — 1}.

Although the “natural” generalisation of this approach to dimension d > 1 is a Voronoi point set, we instead
preferred to endow D,, with a structure commensurate with the tensor product form of the kernel kg in (15).
Thus, in dimensions d > 1, D,, was taken to be a randomly sampled subset of cardinality K,, .= K + 1 —n for
some K € N of a uniform grid of points on D. The computational convenience of the grid structure is explained
in further detail in Appendix D.2.

More precisely, let U = {uy,...,u;} C [0,1] be a uniform grid of points on [0,1] and define D; = U? \ Dy and
Dy11 = Dy \ {x,}, where z,, is the point selected at step n of the integration method. Then D,, was taken to
be a random sample without replacement from D,, such that |D,| = K,,.

D.2 Consequences of the Tensor Product Set-Up

Note that, at iteration n, the evaluation of the objective functions E(z) (for E-AdapBC) and E(z) (for AdapBC)
requires the computation of integrals of the conditional mean and covariance of f|0, D,, to be performed. In the
discussion that follows we focus on E-AdapBC for simplicity, where in principle K separate d-dimensional integrals
are required to evaluate F(zx). Further, the approximate computation of argmin,., FE(z) that we perform
requires the computation of K x |D,| of these d-dimensional integrals. However, since the kernel ky in (15) is a
tensor product, then at most dK x | D, | univariate integrals are necessary for computation of argmin, ., F(z).
Furthermore, if the chosen point set D,, is some subset of a uniform grid {us,...,u;}? C [0,1]¢, we can perform
memoisation of the univariate integrals at each u;. This reduces the computation of argmin,.p FE(z) to only
require dk univariate integrals. If the chosen univariate kernels are of the form in (16), then the integrals are of

the form
/ 89 69 (uk) ¢ \x — uk| de
\/59 —|—€9 uk \/fg —|—€9 uk)

If the length scale function is piecewise linear, this integrand is piecewise as smooth as the choice of ¢ and
further has no closed form integral. Thus to integrate these functions we integrated each piece separately using

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

a standard Python quadrature'® function in scipy. In the cases where the integral of the kernel was available
in closed form then this was used instead.

To return I(f)|D,, we need to compute the mean and variance of the integral of the posterior process (see
equations (7) and (8) in the main text). The computation of these terms requires computing |D,,| d-dimensional
integrals and |D,,| 2d-dimensional integrals. The univariate integrals were computed in the same way as before.
For similar reasons to those outlined in the previous paragraph, the use of the tensor product reduces this
requirement to d|D,| bivariate integrals. If the chosen univariate kernels are of the form in (16), then the
integrals are of the form

/1 : (@)o.(y) ¢< [z 4
0 Jo \/

Ly,
g dz dy.
g@i (‘r)Q + 691 (y)2 \/691 (l‘)Z + e@i (y)2> /

This integrand is smooth over square subregions of [0,1]? and so is computed by integrating over each of these
subregions separately using the standard double quadrature function in scipy. Again, if this integral was
available in closed form then this was used instead.

D.3 Details Specific to AdapBC

It remains to explain how MCMC was used to facilitate the computation on lines 4 and 8 of Algorithm 3
describing the AdapBC method. These details are now provided.

Sampling from 6|D,: Due to the difficulty in directly sampling from 6 | D,, we used a Metropolis-Hastings
algorithm. Note that

p(0|Dy) < p(0)p(Dy | 0),

where p(f) is the prior density of 6 (yet to be specified) and we have D,, |6 ~ N(cl, ko x x). Define ¢(0) =
p(8)p(Dy, | 6), then our Metropolis algorithm is as follows:

Algorithm 4 Metropolis-Hastings Algorithm

1: procedure METROPOLIS(fg, 1, s)
0« 90
fori=1,...,ndo
Sample 0* < 60;_1 + N(0, s*I)
Sample u ~ U(0,1)
if logu < log q(0*) — log q(6;—1) then
else
91' — (91'_1

return (6;),

._.
e

The proposal distribution here is thus N (0, s?I). Figure 5 contains typical trace plots of Metropolis output.

Sampling from [|D,_;: In order to obtain a sample f from the posterior marginal f | D,,—1 we used ancestral
sampling; i.e. we first sample 6 from 6| D,,_; and then we sample f from f|D,,_1,0. To obtain the sample 6 we
used the aforementioned Metropolis algorithm.

Computing E[I(f)|0x, D,] and V[I(f)|0y, Dn]: To compute E[I(f)|0x, D,] we used the 1d integration method-

ology discussed in Appendix D.2. In order to compute V[I(f)|0k,D,] we approximated the 2d integral in (8)

with
1 01 | XX
/O/Okek(%y)dl’dy%ﬁzzk%(zia%)a

i=1 j=1

15The function being scipy.integrate.quad which, depending on input, calls a QUADPACK routine. In our case it calls
QAGS, an adaptive quadrature based on 21-point Gauss-Kronrod quadrature within each subinterval. See Piessens (1983).

A Locally Adaptive Bayesian Cubature Method

1 c log(o) 1 a1 10 a2 ais
10
5 5 5 s
0 0 ° 0
s -5 -3 s
-10 1o -10

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

a1,4 a1,5 a1,6 1,7 LS}
10 10 10
5 5 5
5 5
0 0
0 0 0
_ -5
-5 -5 5 =5
—10 -10
-10 -10 -10
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
1,9 @1,10 a1,11
10 10 10
5 5 5
0 0 0
-5
_5 -5

-1
-10 0

-10

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

Figure 5: Trace plots for components of the parameter 6 obtained using Metropolis under the prior 6§ ~
N(—1,2I) with data Do = {(i/5, f*(i/5))}?_, with f* as in Figure 10.

where z; = =L for some N € Z*.

Returning I(f)|D,: To compute E[I(f)]|D,] we use the following approximation, by the law of total expec-
tation,

where (Hj)jzl is sampled from Metropolis and the expectation is computed using the methodology in Ap-

pendix D.2. To compute V[I(f)|D,] we use the following approximation, again using the law of total variance,

VII(f)|Du] = E[VI(f)| Dn, 0]] + VIE[(f) | Dn, 0]

km—‘

J
Z)1 Du, 03] + s.v. ({ELL() | Das 03]1}7-1)

where s.v.(X) is the sample variance of the set X. To compute the double integral in the computation of
VII(f)| Dy, 0] we used the 2d integration methodology discussed in Appendix D.2.

D.4 Details Specific to E-AdapBC
It remains to be explained how the marginal likelihood p(D,,_1]0) was penalised to facilitate line 4 of Algorithm 2
describing the E-AdapBC method.

Line 4 of Algorithm 2 relates to computing the maximum of the (penalised) marginal likelihood 6 +— p(D,,—1|60)—
r(6). The likelihood function itself is derived from the Gaussian finite dimensional distribution of f under the
stochastic process model:

[fx — 01} [fX cl]
2)

where X is the abscissae of D,,_; and kg x x is the matrix kx x based on the kernel k = ky.

n 1
logp(Dr—160) = 3 log(27) — B log[det(ko, x,x)] —

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

It was demonstrated in Briol et al. (2019) that the empirical Bayesian approach to kernel parameters can lead
to over-confident uncertainty quantification at small values of n in the context of a standard BC method. The
issue is more pronounced in E-AdapBC due to the increased dimension of the kernel parameter § compared to
StdBC. For this reason we included a penalty term () on line 2 to regularise the non-asymptotic regime (only)
and to try to avoid over-confident estimation under the proposed E-AdapBC method. The regularisation term we
used in d-dimensions was the following

d
r(8) = TT Oullo, ()l +A2ll1/€6, () 11)

i=1

where ||g|l1 := [}, [g(x)|dn(x). The specific form of regularisation was heuristically motivated (only) and many
other choices are possible - to limit scope these were not explored. The regularisation term includes two param-
eters, A1 and Ao, which are used respectively to ensure the length scale doesn’t get too large or small when the
number n of data is small. Specific values of A; and Ay are reported in Appendix E. To optimise the (logarithm
of the) penalised marginal likelihood the standard BFGS method was used.

E Detalils for the Experimental Assessment

In this section all remaining experiment-specific details are provided.

E.1 TIllustration of Adaptation

In this section we detail the integration problem and how it was solved by AdapTrap, StdBC and E-AdapBC in
the production of Figure 1.

The integrand in Figure 1 was randomly sampled according to the procedure in Appendix E.2 with parameters
(to 3s.f.) C=0.554, R =0.0726, H = 1.64, F = 2.65 and P = 1.

AdapTrap parameters: For AdapTrap we used p = 0.5,m = 5,k = 2 and with global error tolerances (from
left to right) 7 = 0.06, 0.04,0.02.

StdBC setup: In our StdBC arrangement we used the following Gaussian process model: Using the same Matérn
(v = 3/2) radial basis function as we used for E-AdapBC, we took f|c,0,f ~ GP(c, koe(x,y)), where

xr —
ka,f(xhy) = 02¢K4at (| ¢ y|) .

In our implementation of StdBC we used the E-AdapBC algorithm with this stationary Gaussian process with
0 = (c,0,0), r(0) = 0, with initial data Dy = {(55, f* (75))}i2, and the point selection algorithm as detailed in
Appendix D.1.

E-AdapBC setup: In our E-AdapBC implementation we used the non-stationary model detailed in Appendix C,
where /1 is a piecewise linear function defined on n = 11 uniform knots. Our regularisation term r(6) was
detailed in Appendix D.4, we took A\; = 30 and Ay = 1. We further used the initial data Dy = {(1107 r (%0)) i
and the point selection algorithm as detailed in Appendix D.1.

E.2 Synthetic Assessment
In this section we detail how our results in Section 4.2 were created.

Synthetic Integrand Generation: Our synthetic integrands in d dimensions are generated as follows: First,
we sample

1. C=(Cy,...,Cq) ~U(0.1,0.9)%,
2. R=(Ri,...,Ry) ~ Beta(5,2)?,

A Locally Adaptive Bayesian Cubature Method

-
-
o ok N W

ok N W

N)

plisn
T

15

1.0

0.5

o B N W
ok N W
ok N W

0.0

-0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: 25 randomly generated synthetic functions in 1d.

3. H=(Hy,...,Hy) ~U(0.5¢,1.5¢)%,
4. F = (Fy,...,F;) ~U(0,5)4,
5. P=(Py,...,P;) ~ Bernoulli(0.5)%.

Then we let

~

L 1 0, x| > 1,
@)= e mn @)= exp{ﬁ +COS(F7r|x|)}, 2] < 1.

Our synthetic integrand is then

d
. 1 :
@) = T[Hiam (los = G} + (070172 = hGai =)
i=1 g
with = (21 ...,24). In Figure 6 we plot 25 randomly sampled synthetic integrands. To obtain the true integrals

of these synthetic integrands we compute

/[0,1]d [(x)de = f[/ol Higr, (é[xi — Ci]) + (=) [1/2 = h(z; — C;)] da;

and for each of the 1d integration problems we integrate each term separately using scipy.integrate.quad
with its absolute error and relative error parameters taken as 10719,

Experiments in 1d: For our experiments in 1d we sampled 100 integrands according to our synthetic integrand
generation procedure discussed in the previous paragraph and used the same implementations of StdBC and
E-AdapBC discussed in Appendix E.1.

Experiments in 3d: For our experiments in 3d we sampled 100 integrands according to our synthetic integrand
generation procedure discussed in the previous paragraph. For both our implementations of StdBC and E-AdapBC
we used the E-AdapBC algorithm with slight variations with each implementation. For both StdBC and E-AdapBC
we took Dy = {(z, f*(7))}rec where G = {0,1/5,2/5,3/5,4/5,1}3 and we used the point set selection algorithm
discussed in Appendix D.1 with U = {i/40}4%, and K; = 8000.

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

£:0.13 £:0.0318 £: 9.34e-05

z-score: 2.73 z-score: 1.05 z-score: -0.00777
n: 11 n: 21 n: 41 2
0.314 0434 0.553 0.672 0.791 0.402 0.477 0.553 0.628 0.704 0.493 0.523 0.553 0.583 0.613

1/2

Matern, v

£:0.033 £:0.00362 £:0.000442 3
z-score: 1.69 z-score: -0.74 z-score: -0.829
- n: 11 n: 21 n: 41 2

0.436 0.499 0.563 0.626 0.69 0.524 0.539 0.555 0.571 0.587 0.55 0.551 0.553 0.555 0.557

=3/2

Matern, v

| i Lot I T T T S I TRV TYRTTR TR Y

£:0.0753 £:0.0718 £:0.000551 3
z-score: 3.78 z-score: -14.2 z-score: -0.589
n: 11 n: 41 2

n: 21
0.473 0.563 0.653 0.742 0.832 0.533 0.555 0.578 0.601 0.624 /\h 0.549 0.553 0.558 0.562 0.566

U 0

| | | | | | | | | | | [| | | | [I I | T N B | | [N B N WA T T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

5/2

Matern, v

Figure 7: Each row corresponds to a different radial basis function with E-AdapBC run on the same integrand.
The integrand was generated randomly from our synthetic integrand generation procedure with parameters (to 3
s.f.) C =0.835,R=0.111, H = 3.50, F = 1.63, P = 0. [Here — represents the true integrand f*, — represents
the mean of the conditional process f|D,, and O represents pointwise credible intervals. The tick marks | Illl |
indicate where the integrand was evaluated. For each radial basis function the error € := |, (f*) — I(f*)|, the
z-score [, (f*) — I(f*)]/on(f*) and the number of integrand evaluations n are reported. Inset panels compare
the true value I(f*) ~ 0.156 to the distribution I(f)|Dy,.]

For our implementation of E-AdapBC the underlying Gaussian process follows what we detailed in Appendix C
and the regularisation term follows what was detailed in Appendix D.4 with A\; =9, Ao = 0.9.

For our implementation of StdBC the underlying Gaussian process was f | ¢, 0,0 ~ GP(c, ko o(x,y)) where,

3
Ti — Yi
ka,f(xay)zo'anbK/Iat(l £y|)
i=1 ¢

where ¢ = ({1,02,03),x = (21,22,23),y = (y1,¥2,y3) and v = 3/2. We further took r(0) = 2(|¢1| + |€2] + |¢3]),
where 6 = (¢, 0, /).

E.3 Variations of the Non-Stationary Model

In this section we explore variations in our non-stationary model specification in the use of the Algorithm 3.

Different Choice of Radial Basis Function: As discussed in Appendix C the radial basis function ¢ was
taken to be the standard Matérn radial basis function with smoothness parameter v = 3/2 in all the experiments
in the main text. In Figure 7 and Figure 9 we explore the robustness of E-AdapBC under different choices of radial
basis function in our non-stationary model. In these experiments all other settings used in our non-stationary
model (detailed in Appendix C) were kept the same. The radial basis functions that we chose were the Matérn
radial basis function (17) with smoothness parameters v = 1/2,3/2,5/2.

Different Lengthscale Fields: In the following we explore the behaviour of E-AdapBC for different choices
of lengthscale function in our non-stationary model. In these experiments all other settings used in our non-
stationary model (detailed in Appendix C) were kept the same. The lengthscale functions that we compared

A Locally Adaptive Bayesian Cubature Method

4
o
% £:0.165 £:0.0408 £:0.00221 3
i z-score: 11.9 z-score: -4.58 z-score: 0.619
5 n: 11 n: 21 n: 41 2
O |049 053 056 06 063 052 054 056 058 061 054 055 056 057 058
8 1
2
9]
[v] 0
9]
2
-1
1 e 1 1 1 1 1 1 1 1 1 1 1 1 1 e
4
H €:0.141 £:0.0153 £:0.00757 3
9 z-score: 23.5 z-score: -2.4 z-score: -3.36
5 n:11 n: 21 n: 41 2
© |052 055 057 06 o062 052 055 057 06 062 055 056 056 057 058
2 1
9]
v
2 0
a
-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | S I | I | 1 1 1 | I I N B I B | [}
4
F
(9] £:0.143 £:0.00617 £:0.00115 3
£ z-score: 21.1 j z-score: -1.19 z-score: -0.626
; n: 11 n: 21 n: 41 2
U 047 051 055 059 063 049 052 055 058 061 053 055 056 057 058
2
] 1
o
9
a 0
o
3
) -1
]]]]]]]]]]]]] 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 IRNRNNTIT (IWRNN
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

Figure 8: Each row corresponds to a different length scale function with E-AdapBC run on the same integrand.
The integrand was generated randomly from our synthetic integrand generation procedure with parameters (to 3
s.f.) C =0.882, R = 0.0892, H = 3.61, F = 4.73, P = 0. [Here — represents the true integrand f*, — represents
the mean of the conditional process f|D,, and O represents pointwise credible intervals. The tick marks | Illl |
indicate where the integrand was evaluated. For each length scale function the error € := |u, (f*) — I(f*)|, the
z-score [tn(f*) — I(f*)]/on(f*) and the number of integrand evaluations n are reported. Inset panels compare
the true value I(f*) = 0.156 to the distribution I(f)|D,,.]

were piecewise linear, piecewise constant
n
6 (@) = Y Big i1y /g my (@),
j=1
where 1 4(z) is the indicator function, and the exponential of piecewise linear

n—1
Bij+1 — Bij i Bij+1 = Bij -

exp _
(P () = oxpq Y Lt By, Pl P
Li,j+1 = Lij Li,j4+1 = Lij

i.j + Bij
j=1

For the piecewise constant lengthscale, to ensure positivity we took f; ; = exp(w; ;) and inferred the ¢; ; € R.
For the piecewise constant lengthscale we took n = 10 and for the other lengthscale functions we took n = 11.
See Figure 8 and Figure 9 for our results.

E.4 Full Bayes vs Empirical Bayes

In the following we test the differences in behaviour between AdapBC (Algorithm 3) and E-AdapBC (Algorithm 2).
For this test we ran both methods on the same integrand which was generated randomly from our synthetic
integrand generation procedure detailed in Appendix E.2. Results are shown in Figure 10s.

For our implementation of E-AdapBC we used the same settings as detailed in Appendix E.1.

For our implementation of AdapBC we used the same initial data Dy = {(1—’6, f* (1%)) 10, the same point set
selection algorithm and the same non-stationary Gaussian process as our implementation of E-AdapBC used.
Our choice of prior was 6 ~ N(—1,2I). When sampling the 6|D,, and the §|D,_;, to ensure a tolerable
acceptance rate in the output from Metropolis, at each step of AdapBC we set s = 0.3 —0.07n for n =0, ..., 30,

so our proposal distribution used in Metropolis at step n was N (0, (0.3 —0.07n)%I) In our approximation of

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

10° 10°
T g
w
2 107t ~107*
* *
Ly 38}
1072 1072
1.0 1.0
'55 J\/ [
(@)} (@)
-
q>) 0.5 > 0.5
(]]
S =
* *
L 58}
0.0 0.0
20 30 40 50 20 30 40 50
n n

(a) (b)

Figure 9: Synthetic assessment in d = 1 of E-AdapBC with (a) different choices of radial basis function and (b)
different choices of lengthscale function. Plot (a) Matérn v = 1/2 (—), Matérn v = 3/2 (—) and Matérn
v = 5/2 (—), where 100 integrands were randomly generated. Plot (b) piecewise constant (—), piecewise
linear (—) and exponential of piecewise linear (—), where 100 integrands were randomly generated. Top row:
the mean relative error against the number of evaluations n. Bottom row: the coverage frequencies for 95%
credible intervals for each method. The notional coverage (- --) is indicated. [Standard errors displayed.]

V[I(f) |0k, Dn] we set N = 101. For our parameters M and K that control the number of samples of f|D,_,
and 6 | D, in AdapBC respectively, we took M = K = 8. All the output obtained from Metropolis was preceded
by a length 1000 burn in and was thinned by 5. The 6y in each run of Metropolis was taken as the last sample
from the previous Metropolis output and at step 0 was taken to be the mean of the prior on ¢. In outputting
I(f) | D,, we took J = 50.

Figure 10 suggests that AdapBC provides locally adaptive behaviour similar to E-AdapBC, but that AdapBC has
better-calibrated uncertainty (in line with the previously documented over-confidence of Empirical Bayes in this
context; Briol et al., 2019). However, the auxiliary computational cost associated with AdapBC is substantial - to
produce Figure 10 the AdapBC method required 24 hours of CPU time whereas E-AdapBC required approximately
one minute of CPU time. In addition, the need to carefully control the MCMC algorithm within AdapBC makes
this method less attractive compared to E-AdapBC.

E.5 Autonomous Robot Assessment

In this section we detail our autonomous robot experiment. The autonomous robot that we studied is due to
Chrono (2019b).

Details of Robot: In the following we provide the necessary details on the robot and how the actuators give
motion. The robot was simulated in the open source physics engine Chrono (2019a). The robot has 6 legs with
each leg consisting of 3 actuators which control the walking motion of the robot; see Figure 11. Each leg has
3 associated actuators that are depicted in Figure 12. Each actuator has a predefined loop. For each period
T = |o,] (lasting 5 — a = 2 seconds) of the loop the actuators are controlled as follows:

e Legs 1, 3 and 5:

(a) Actuator A:

fa(z) =0.2sin (r(x — a)) .

A Locally Adaptive Bayesian Cubature Method

2.0

15

J\

0.0459 00112 0.0682 0.125

1.0

0.0379 0.0154 0.0688 0.122 0.0187 0.0456 0.0725 0.0995

AdapBC

0.5

£0.0715 £:0.0376 £:0.0179 0.0

z-score: 5.84 z-score: 3.28 z-score: 3.1
n: 11 n: 21 n: 41
-0.5
i 1 i 1 i 1 i 1 i 1 i i 1 i 1 L [R T N N R TR N W T TR AT IR R I R R 11 R N |
2.0
15
8 J
g. 1.0
© [0.0142 00229 00599 0. 0.0578 -0.00289 0.052 0.107 0.0503 0.0663 0.0733 0.0
2 05
u
£:0.0695 £:0.00801 £:0.00488 0.0
z-score: 16.9 z-score: -1.31 z-score: 6.29
n: 11 n: 21 n: 41
-0.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 L W 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: The upper and lower rows correspond to AdapBC and E-AdapBC respectively, run on the same integrand.
The integrand was generated randomly from our synthetic integrand generation procedure with parameters (to
3sf) C =0.520,R = 0.0897,H = 1.87,F = 3.04, P = 1. [Here — represents the true integrand f*, —
represents the mean of the conditional process f|D,, and [represents pointwise credible intervals. The tick
marks | Il | indicate where the integrand was evaluated. For both methods the error € := |, (f*) — I(f*)|, the
z-score [, (f*) — I(f*)]/on(f*) and the number of integrand evaluations n are reported. Inset panels compare
the true value I(f*) ~ 0.0764 to the distribution I(f)|D,,.]

—
d

Figure 11: Elevated view of the robot, with each leg annotated.

(b) Actuator B:
—0.2Sig(z —), x € [a,a + 0.5],
fe(x) =1 -0.2, z € [a+0.5,a+ 1.5],
0.2Sig(z —a —1.5), z€[a+1.5,0].

(¢) Actuator C:
f(;(ac) =0.

e Legs 2, 4 and 6:

(a) Actuator A:
ga(z) = —0.2sin (m(x — a))

(b) Actuator B:
—0.2, x € [a,a + 0.5],
0.2Sig(x —a —0.5), z € [a+0.5,a+1],
95(x) = —0.2Sig(z —a—1), z€[a+1,a+1.5],
z €]

0.2, a+1.5,4].

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

Figure 12: Detailed view of robot leg with each actuator labelled. Actuator A controls the rotation of the leg in
the horizontal plane. Actuator B controls the up/down retraction of the leg. Actuator C controls the left/right
extension of the leg.

(¢) Actuator C:
go(z) = 0.

Here Sig(z) is a polynomial smooth ramp such that Sig(0) = 0 and Sig(0.5) = 1.

Robot Experimental Details: In our robot experiment we investigated the distribution of spatial location
of the robot after a prescribed time of movement under uncertainty in the parameterisation of the functions that
control the actuators in leg 1 of the robot. Our functions that controlled the actuators in leg 1 subject to our
parameterisation are as follows, for each period T' = [a, 3]:

fa(z) = sin(n(z — @),
—(0.2 4 p1) Sig(z — o), z € [a,a+ (1 —p2)/2],

fe(z) = fe(z) = ¢ —(0.2 + p1), x€la+(1—p2)/2,a+ (3+p2)/2],
(0.2+p1)Siglx —a—1.5), z€a+ (3+p2)/2,0].

fo(x) = ps,

Thus p; controls the how far the leg travels up and down in each period, ps controls how long the leg is down for
in each period and p3 controls the extension of the leg. In our experiment we took (p1, p2, p3) ~ N (0, %I 3x3) and
so after reparameterisation we have x = (x1, z2,x3) ~ N (0, I3x3) such that each x; = \/%—Opi- In our experiment
z1(x) and zz(x) were the spatial coordinates of the robot after 10 seconds of movement. In our implementation
we used Chrono’s inbuilt Barzila-Borwein solver with a discretisation time step of 0.005s.

For both our implementations of StdBC and E-AdapBC we used the E-AdapBC algorithm with slight vari-
ations with each implementation. For both StdBC and E-AdapBC we took Dy = {(z, f*(x))}zec where
G = {1/5,2/5,3/5,4/5}% and we used the point set selection algorithm discussed in Appendix D.1 with
U = {i/40}3%, and K; = 8000. For each integrand we ran both methods to evaluate the integrand 200 times
and thus at termination we were using 264 points.

For our implementation of E-AdapBC the underlying Gaussian process follows what we detailed in Appendix C
and the regularisation term follows what was detailed in Appendix D.4 with A\; = 10, A2 = 0.8.

For our implementation of StdBC the underlying Gaussian process was f |c, 0,0 ~ GP(c, ko o(x,y)) where,

3
Ti— Y
ka,f(xay) = 02 H¢Kdat <|€y|) .

i=1

A Locally Adaptive Bayesian Cubature Method

f* StdBC E-AdapBC

Z1 | fn = 0.1095, 0, = 0.02129 | p, = 0.06451, o, = 0.008535
zo | pm = —5.760, 0, = 0.03812 | w, = —5.4913, 0, = 0.02373
22 | pn = 0.1643,0, = 0.01897 | p, = 0.1252, 5, = 0.007559
22 | pn =32.93,0, = 0.3969 [= 32.43, 0, = 0.1562

Figure 13: Autonomous robot experiment output to 4 s.f.

where ¢ = (01,02,03),x = (z1,22,23),y = (y1,Y2,y3) and v = 3/2. We further took r(0) = 2(|¢1| + |l2| + |43]),
where 8 = (¢, 0,¢). The output of the experiments can be seen in Figure 13.

F Full k-ary Trees

This section provides supporting material on the combinatorial results used in the average case analysis of the
adaptive trapezoidal rule in Appendix A. In addition to basic definitions, it contains Theorem F.2 which was
used in the proof of Corollary A.5.

Definition F.1 (Rooted tree). A rooted tree is a (possibly infinite) tree where one node is specified to be the
root.

The depth d(v) of a node v in a rooted tree is the length of the path from the root to v. A node v is a child of
a node u if v and v are connected by an edge and the depth of v is 1 greater than the depth of u. A leaf of a
rooted tree is a node with degree 1. An inner node of a rooted tree is a node with degree greater than 1. The
height of a rooted tree T is sup,cp d(v).

Definition F.2 (k-ary tree). A k-ary tree is a rooted tree such that every node has at most k children.

A full k-ary tree is a k-ary tree where every node has exactly k children or 0 children. We define the null tree to
be a k-ary tree but not a full k-ary tree. Note that a tree with a single node is both a k-ary tree and a full k-ary
tree. The set of all full k-ary trees is denoted 7. One can always create a full k-ary tree from a k-ary tree:

Definition F.3 (Extension of a k-ary tree). Let S be a non-null k-ary tree. The extension of S is the full
k-ary tree S obtained by adding leaf nodes to S such that every node in the original tree S C S has precisely k
children. The extension of the null k-ary tree is taken to be the single node full k-ary tree.

Note that this extension function S + S forms a bijection from the set of k-ary trees to the set of full k-ary
trees.

Theorem F.1 (Full k-ary tree theorem). Let S be a k-ary tree with n nodes and let S be its extension. Then
S has nk + 1 nodes.

Proof. The proof is by induction. The base case is trivial: Consider the null tree with 0 nodes, the extension
of this tree has 1 node. Assume now that every k-ary tree with n nodes has, in its extension, nk + 1 nodes.
Note that any k-ary tree with n + 1 nodes can be formed by adding an additional node and edge to a k-ary tree
with n nodes. We can only add this extra node and edge to a node of degree at most k. In any of these cases
the number of extra nodes added in this new tree’s extension is k. That is, in this new tree of n + 1 nodes, the
number of nodes in its extension is nk+ 1+ k= (n+ 1)k + 1. O

)

1. k—1
2=L inner nodes and %

1
. "+l Jeaves.

Thus a full k-ary tree with n nodes has

Next we consider the problem of counting the number of k-ary trees with a given number of nodes. Let Cflk)
be the number of k-ary trees with n nodes with corresponding generating function Ci(z) =Y .0 C’i(k)a:i. From
(Graham et al., 1994), the ¥ follow the recurrence relation

1 = > che® ok,
ni+nz+...+ng=n

This recurrence relation yields the following functional equation,

Cr(z) =1+ z[Cu()]".

Matthew A. Fisher!, Chris J. Oates"?, Catherine Powell®>, Aretha Teckentrup*

For k& = 2 this has the solution
1—-v1 -4z
2x '
Theorem F.2 (Number of k-ary trees with n nodes). The total number of k-ary trees with n nodes is

1 nk
k) - -
Cn (k—l)n—i—l(n)7

where C,gk) is the nth k-Catalan number. Note that for k£ = 2, we get the standard Catalan numbers.

CQ(J?) =

Proof. Use the Lagrange inversion theorem on the generating function’s functional equation. See (Graham et al.,
1994). O

Since the extension function defines a bijection from the set of k-ary trees to the set of full k-ary trees, the above
result also counts the total number of full k-ary trees with nk + 1 nodes as C,(Lk).

Definition F.4 (Preorder traversal). Let T € T* be finite. A preorder traversal of T is a sequence of nodes
(v;)X | that is defined by the following steps:

1. Visit the root.

2. Fori=1,... k, traverse the ith subtree from the left.
For example, consider the following full 3-ary tree:

(1,0)

|(1,1)| |(271)| |(371)|

(2] [E2] [©.2)]

[(19,3)| [(20,3)] [(21,3)]

The preorder traversal of this tree is the sequence (1,0), (1,1), (2,1),(3,1), (7,2), (19, 3), (20, 3), (21, 3), (8, 2), (9, 2).

