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Abstract

We present a novel approximate inference
method for diffusion processes, based on the
Wasserstein gradient flow formulation of the
diffusion. In this formulation, the time-
dependent density of the diffusion is derived
as the limit of implicit Euler steps that fol-
low the gradients of a particular free energy
functional. Existing methods for computing
Wasserstein gradient flows rely on discretiza-
tion of the domain of the diffusion, prohibit-
ing their application to domains in more than
several dimensions. We propose instead a
discretization-free inference method that com-
putes the Wasserstein gradient flow directly in
a space of continuous functions. We character-
ize approximation properties of the proposed
method and evaluate it on a nonlinear filter-
ing task, finding performance comparable to
the state-of-the-art for filtering diffusions.

1 INTRODUCTION

Diffusion processes are ubiquitous in science and engi-
neering. They arise when modeling dynamical systems
driven by random fluctuations, such as action poten-
tials in neuroscience, interest rates and asset prices
in finance, reaction dynamics in chemistry, and popu-
lation dynamics in ecology. In signal processing and
machine learning, diffusion processes provide the dy-
namics underlying classic filtering methods such as the
Kalman filter (Kalman and Bucy, 1961).

Inference for general diffusions is an outstanding chal-
lenge. Each diffusion process defines a probability
distribution that evolves in continuous time; inference
involves solving for the distribution at a future time
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given an initial distribution at the current time. Exact,
closed-form solutions are typically unavailable, and nu-
merous approximations have been proposed, including
parametric approximations (Kalman and Bucy, 1961;
Julier et al., 1995), particle or sequential Monte Carlo
methods (Crisan and Lyons, 1999; Fearnhead et al.,
2008), MCMC methods (Roberts and Stramer, 2001;
Golightly and Wilkinson, 2008) and variational approx-
imations (Archambeau et al., 2007; Vrettas et al., 2015;
Sutter et al., 2016). Each poses a different tradeoff be-
tween fidelity of the approximation and computational
burden.

In this paper, we investigate a novel approximate in-
ference method for nonlinear diffusions. It is based on
a characterization, due to Jordan, Kinderlehrer and
Otto (Jordan et al., 1998), of the diffusion process as
following a gradient flow with respect to a Wasser-
stein metric on probability measures. Concretely, they
define a time discretization of the diffusion process in
which the approximate probability density ρk at the
kth timestep solves a variational problem,

ρk = argmin
ρ∈P(X )

W2
2 (ρ, ρk−1) + 2τf(ρ) (1)

with W2 : P(X )×P(X )→ R being the 2−Wasserstein
distance, f : P(X )→ R a free energy functional defin-
ing the diffusion process, and τ > 0 the size of the
timestep 1. This discrete process is shown to converge,
as τ → 0, to the exact diffusion process.

Exact computation of the time-discretized gradient
step in (1) is intractable in general. Existing numerical
methods rely on discretization of the domain of the dif-
fusion, which restricts their application to spaces with
very few dimensions – typically three or fewer. In this
work, we propose a novel method for computing the
gradient flow that avoids discretization, opting instead
to operate directly on continuous functions lying in a re-
producing kernel Hilbert space. Specifically, we derive a
dual problem to (1) that uses a regularized Wasserstein
distance in place of the unregularized one in (1). We

1P(X ) is the space of probability measures defined on
domain X .
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Figure 1: Regularized Wasserstein gradient flow (Section 3) approximates closely an Ornstein-Uhlenbeck diffusion,
initialized with a bimodal density. Both the regularization and the discrete timestep are sources of error. Shaded
region is the true density.

show that, for a general strictly convex, smooth regular-
izer, this dual problem is an unconstrained stochastic
program, which admits a tractable finite-dimensional
RKHS approximation. This approach is motivated by
a similar observation for the case of entropic regular-
ization of optimal transport in (Genevay et al., 2016).
Our proposed approximation yields an approximate
inference method for diffusions that is computationally
tractable in settings where domain discretization is
impractical.

For reasonable values of the timestep τ , the approxi-
mate inference method described in this paper can give
a close approximation to the density of the diffusion.
In Figure 1, for example, we compute the Wasserstein
gradient flow for an Ornstein-Uhlenbeck diffusion, ini-
tialized with a bimodal density. We see that it follows
the exact density closely.

The rest of this paper is organized as follows. In Sec-
tion 2 we review diffusion processes and discuss related
work. In Section 3 we derive a smoothed dual formula-
tion of the Wasserstein gradient flow, and in Section
4 we use this dual formulation to derive a novel infer-
ence algorithm. In Section 5 we investigate theoretical
properties. In Section 6 we characterize empirical per-
formance of the proposed algorithm, before concluding.

2 BACKGROUND AND RELATED
WORK

2.1 Diffusions, Free Energy, and the
Fokker-Planck Equation

We consider a continuous-time stochastic process Xt

taking values in a smooth manifold X , for t ∈ [ti, tf ],
and having single-time marginal densities ρt : X → R
with respect to a reference measure on X . We are specif-
ically interested in diffusion processes whose single-time
marginal densities obey a diffusive partial differential

equation,

∂ ρt
∂t

= div [ρt∇f ′(ρt)] , (2)

with f : P(X )→ R a functional on densities and f ′ its
gradient for the L2(X ) metric.

f is the free energy and defines the diffusion entirely.
An important example, which will be our primary focus,
is the advection-diffusion process, which is typically
characterized as obeying an Itô stochastic differential
equation,

dXt = −∇w(Xt)dt+ β−1/2dWt (3)

with ∇w being the gradient of a potential function
w : X → R, determining the advection or drift of the
system, and β−1/2 > 0 the magnitude of the diffusion,
which is driven by a Wiener process having stochastic
increments dWt (see (Kloeden and Platen, 2013) for
a formal introduction) 2. The advection-diffusion has
marginal densities obeying a Fokker-Planck equation,

∂ ρt
∂t

= β−1∆ ρt + div[ρt∇w], (4)

which is a diffusive PDE with free energy functional
f(ρ) = 〈w, ρ〉L2(X ) + β−1〈ρ, log ρ〉L2(X ), for scalar po-
tential w ∈ L2(X ). The advection-diffusion is linear
whenever ∇w is linear in its argument.

We note that the current work applies to those dif-
fusions that can be rendered into the form (2) via
a change of variables. In particular, in the case of
advection-diffusion, these are the reducible diffusions
and include nearly all diffusions in one dimension (Äıt-
Sahalia, 2008).

2We assume sufficient conditions for existence of a strong
solution to (3) are fulfilled (Oksendal, 2013) Thm. 5.2.1.
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2.2 Approximate Inference for Diffusions

Inference for a nonlinear diffusion is generally in-
tractable. Given an initial density at time ti, the goal
is to determine the single-time marginal density ρt at
some time t > ti. Exact inference entails solving the
foward PDE (2), for which closed-form solutions are
seldom available.

Domain discretization. In certain cases, an Eule-
rian discretization of the domain, i.e. a fixed mesh, is
available. Here one can apply standard numerical inte-
gration methods such as Chang and Cooper’s (Chang
and Cooper, 1970) or entropic averaging (Pareschi and
Zanella, 2017) for integrating the Fokker-Planck PDE.
A number of Eulerian methods have been proposed
for Wasserstein gradient flows, as well, including finite
element (Burger et al., 2009) and finite volume meth-
ods (Carrillo et al., 2015). Entropic regularization of
the problem yields an efficient iterative method (Peyré,
2015). Lagrangian discretizations, which follow moving
particles or meshes, have also been explored (Carrillo
and Moll, 2009; Westdickenberg and Wilkening, 2010;
Budd et al., 2013; Benamou et al., 2016).

Particle simulation. One approach to inference ap-
proximates the target density by a weighted sum of
delta functions, ρt(x) =

∑N
i=1 wiδx(i)

t =x
, at locations

x
(i)
t ∈ X . Each delta function represents a “particle,”

and can be obtained by sampling an initial location
xti according to ρti , then forward simulating a tra-
jectory from that location, according to the diffusion.
Standard simulation methods such as Euler-Maruyama
discretize the time interval [ti, t] and update the parti-
cle’s location recursively (Kloeden and Platen, 2013).
For a fixed time discretization, such methods are biased
in the sense that, with increasing number of particles,
they converge only to an approximation of the true pre-
dictive density. To address this, one can use a rejection
sampling method (Beskos et al., 2005, 2008) to sam-
ple exactly (with no bias) from the distribution over
trajectories. Density estimation can be used to extrap-
olate the inferred density beyond the particle locations
(Durham and Gallant, 2002; Hurn et al., 2003).

In the context of generative modeling, Liutkus et al.
(2019) investigates an Euler-Maruyama-type particle
method to simulate gradient flows for the sliced Wasser-
stein metric, which is not the same as the Wasserstein
metric investigated here.

Parametric approximations. One can also approx-
imate the predictive density by a member of a para-
metric class of distributions. This parametric density
might be chosen by matching moments or another cri-
terion. The extended Kalman filter (Kalman and Bucy,
1961; Kushner, 1967), for example, chooses a Gaussian

density whose mean and covariance evolve according
to a first order Taylor approximation of the dynamics.
Sigma point methods such as the unscented Kalman
filter (Julier et al., 1995, 2000; Sarkka, 2007) select a

deterministic set of points x
(i)
t ∈ X that evolve accord-

ing to the exact dynamics of the process, such that the
mean and covariance of the true predictive density is
well-approximated by finite sums involving only these
points. The mean and covariance so computed then de-
fine a Gaussian approximation. Gauss-Hermite (Singer,
2008), Gaussian quadrature and cubature methods
(Särkkä and Solin, 2012; Särkkä and Sarmavuori, 2013)
correspond to different mechanisms for choosing the

sigma points x
(i)
t .

Beyond Gaussian approximations, mixtures of Gaus-
sians have been used as well to approximate the pre-
dictive density (Alspach and Sorenson, 1972; Terejanu
et al., 2008, 2011). Variational methods attempt to
minimize a divergence between the chosen approximate
density and the true predictive density. These can
include Gaussian approximations (Archambeau et al.,
2007; Ala-Luhtala et al., 2015) as well as more general
exponential families and mixtures (Vrettas et al., 2015;
Sutter et al., 2016). And for a broad class of diffusions,
closed-form series expansions are available (Äıt-Sahalia,
2008).

3 SMOOTHED DUAL
FORMULATION FOR
WASSERSTEIN GRADIENT
FLOW

Our target is the predictive distribution of a diffusion:
given an initial density ρt, we want to evolve it forward
by a time increment ∆t, to obtain the solution for the
diffusion (2) at time t+∆t. We propose to approximate
this by m steps of the Wasserstein gradient flow (1),
with stepsize τ = ∆t/m. The problem is to compute
approximately this gradient step.

3.1 Regularized Wasserstein Gradient Flow

We start by introducing a proximal operator for the
gradient step, which uses a regularized Wasserstein
distance. The regularizer enforces strict convexity of
the distance with respect to each of the input measures,
which will be critical for tractability of the inference
problem in coming sections. For measures µ, ν ∈ P(X ),
we define the squared, regularized 2−Wasserstein dis-
tance as

W2
γ(µ, ν) = min

π∈Π(µ,ν)

∫
X×X

d2(x,y)dπ(x,y) + γR(π).

(5)
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f(µ) = 〈w, µ〉+ β−1〈µ, logµ− 1〉
f∗(z) = β−1

∫
X exp (β(z(x)− w(x)))

(∇f∗(z)) (x) = exp (β(z(x)− w(x)))(
∇2f∗(z)

)
(x) = β exp (β(z(x)− w(x)))

Table 1: Free energy expressions for advection-diffusion

with d : X × X → [0,+∞) the distance in X , Π(µ, ν)
the set of joint measures on X × X having marginals
µ and ν, and R : P(X × X ) → R a regularizer. We
assume R is Legendre-type (extending (Bauschke et al.,
1997, Def. 2.8)), implying it is closed, strictly convex,
smooth, and proper. We also assume R is separable,
in the sense that

R(π) =

∫
X×X

R̄(dπ(x,y)), (6)

for R̄ : R → R the component function and dπ
the Radon-Nikodym derivative with respect to the
Lebesgue measure on X ×X . In the case of an entropy
regularizer, for example, this is R̄ : u 7→ u(log u − 1).
For an L2 regularizer, this is R̄ : u 7→ u2.

Given a free energy functional f (Section 2.1), we define
the primal objective P γ,τν : P(X )→ [0,+∞),

P γ,τν (µ) ,W2
γ(µ, ν) + 2τf(µ), (7)

for γ ≥ 0, and τ > 0. The primal formulation for the
regularized Wasserstein gradient flow is

prox
Wγ

τf ν = argmin
µ∈P(X )

P γ,τν (µ). (8)

For γ > 0, the map µ 7→ Wγ(µ, ν) is strictly convex
and coercive such that, assuming a convex functional
f in (7), the proximal operator is uniquely defined.

Note that we give all formulas in terms of a general
free energy f . Table 1 gives concrete expressions for
the free energy and its conjugate, in the case of an
advection-diffusion system.

3.2 Smoothed Dual Formulation

Computing the proximal operator (8) directly entails
solving an infinite program over the set of possible
joint measures π ∈ P(X × X ) having ν as the second
marginal. As a step towards a tractable approximation,
we will derive a dual formulation that is unconstrained.

Let Cb(X ) be the set of continuous, bounded functions
on X . The dual objective Dγ,τ

ν : Cb(X )×Cb(X )→ R is

Dγ,τ
ν (g, h) , −τf∗

(
−1

τ
g

)
+

∫
X
h(x)dν(x)

− γR∗
(

max

{
1

γ

(
g + h− d2

)
,∇R(0)

})
,

(9)

with f∗ and R∗ the convex conjugates 3. We have the
following.

Proposition 1 (Strong duality). Let ν ∈ P(X ) and
f : P(X ) → [0,+∞) a convex, lower semicontinuous
and proper functional. Define P γ,τν as in (7) and Dγ,τ

ν

as in (9). Assume γ > 0. Then

inf
µ∈P(X )

P γ,τν (µ) = sup
g,h∈Cb(X )

Dγ,τ
ν (g, h). (10)

Suppose f is strictly convex and let g∗, h∗ maximize
Dγ,τ
ν . Then

µ∗ = ∇f∗(−1

τ
g∗) (11)

minimizes P γ,τν .

Importantly, we have replaced the linearly-constrained
optimization in the primal (8) with an unconstrained
problem (10).

4 INFERENCE VIA STOCHASTIC
PROGRAMMING

4.1 Stochastic Programming Formulation

The unconstrained dual problem (9) is not directly
computable in general. To construct an approximation,
we start by noting that the dual has an interpretation
as a stochastic program. Specifically, let µ0, ν0 ∈ P(X )
be arbitrarily chosen probability measures, supported
everywhere in X . We can express the dual objective
(9) as

Dγ,τ
ν (g, h) = EX,Y d

γ,τ
ν (X,Y, g, h) (12)

for random variables X,Y distributed as µ0 and ν0,
respectively, where the integrand dγ,τν is

dγ,τν (x,y, g, h) = −τ
f̄∗(− 1

τ g(x))

µ0(x)
+ h(y)

ν(y)

ν0(y)

− γ

µ0(x)ν0(y)
R̄∗
(

max
{ 1

γ
(g(x) + h(y)− d2(x,y)),

∇R(0)(x,y)
})
.

(13)

Here, the terms f̄∗ and R̄∗ arise when we express the
conjugate functionals f∗ and R∗ in integral form,

f∗(z) =

∫
X
f̄∗(z(x)), R∗(ξ) =

∫
X×X

R̄∗(ξ(x,y)).

In the case of an advection-diffusion, for example, the
former is

f̄∗(z(x)) = β−1 exp (β(z(x)− w(x)))

for w : X → [0,+∞) the advection potential.

3f∗(z) = supµ∈P(X )

∫
X z(x)dµ(x) − f(µ), R∗(ξ) =

supπ∈P(X×X )

∫
X×X ξ(x,y)dπ(x,y)−R(π).
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4.2 Monte Carlo Approximation

The stochastic programming formulation (12) suggests
a Monte Carlo approximation. If we sample N pairs
(x(i),y(i)) ∈ X ×X independently according to µ0⊗ν0,
we can approximate Dγ,τ

ν by the empirical mean,

Dγ,τ
ν,N (g, h) =

1

N

N∑
i=1

dγ,τν (x(i),y(i), g, h). (14)

This converges to Dγ,τ
ν (g, h) in the limit of large N .

The measure µ0 ⊗ ν0 functions similarly to the impor-
tance distribution in importance sampling. Here, we
expect a low variance approximation requires µ0 ⊗ ν0

to be similar to µ∗ ⊗ ν, with µ∗ the exact primal so-
lution for the gradient step. In practice, it suffices to
choose a hypercube containing the effective support of
µ∗ ⊗ ν, and sample uniformly. This effective support
can be determined by a Gaussian approximation to the
process, such as underlies the extended or unscented
Kalman filter.

4.3 RKHS Approximation

There is one more step to obtain a tractable problem:
we need to restrict the domain of the dual, to ensure a
finite-dimensional solution. We choose a domain G ×G,
with G a compact, convex subset of a reproducing
kernel Hilbert space (RKHS) H defined on X . From a
practical standpoint, this encompasses two settings: the
first is the case in which we choose a finite set of basis
functions {φk}pk=1 ⊂ L2(X ) and let G be contained in
their linear span; the second is the case in which we
choose a reproducing kernel κ : X ×X → R associated
to an RKHS H and assume G ⊂ H. In the second
case, the fact of a finite-dimensional representation
arises from a representer theorem (Proposition 2). In
either case we assume the coefficients are restricted to
a compact, convex set.

Proposition 2 (Representation for general RKHS).
Let ν ∈ P(X ) and γ, τ,N > 0. Let {(x(i),y(i)}Ni=1 ⊂
X × X . Then there exist g∗, h∗ ∈ H maximizing (14)
such that

(g∗, h∗) =

N∑
i=1

(
α(i)
g κ(x(i), ·), α(i)

h κ(y(i), ·)
)
,

for some sequences of scalar coefficients {α(i)
g }Ni=1 and

{α(i)
h }Ni=1, with κ : X × X → R the reproducing kernel

for H.

4.4 Optimization

The Monte Carlo stochastic program can be solved by
a standard iterative methods for convex optimization.

Algorithm 1 Stochastic program approximating
Wasserstein gradient flow

Given: initial density ρt, constant γ > 0, timestep
τ > 0.
Choose sampling densities µ0, ν0 on X .
Sample independently N pairs (xi,yi) ∼ µ0 ⊗ ν0.
Solve g∗, h∗ = argmaxg,h∈G D

γ,τ
ρt,N

(g, h).

The evolved density is ρt+τ = ∇f∗
(
− 1
τ g∗
)
.

Algorithm 1 outlines the resulting inference method.
Note that conditioning of the problem depends on the
regularization parameter γ, which presents a tradeoff
between accuracy of the Wasserstein approximation
(smaller γ) and fast optimization (larger γ).

5 PROPERTIES

5.1 Consistency

The Monte Carlo stochastic program (14) yields a con-
sistent approximation to the regularized Wasserstein
gradient step (8), in the sense that, as we increase the
number of samples, the solution converges to that of
the original dual program (12). This holds under a set
of assumptions including compactness of X × X and
conditions on µ0, ν0 and G (Appendix C). The assump-
tions guarantee that the stochastic dual objective (14)
is L-Lipschitz. Under the assumptions, we get uniform
convergence of the Monte Carlo dual objective (14)
to its expectation (12), and this suffices to guarantee
consistency.

Proposition 3 (Consistency of Monte Carlo approx.).
Let Dγ,τ

ν and Dγ,τ
ν,N be defined as in (12) and (14),

respectively, with γ, τ,N > 0, and suppose Assump-
tions A1-A6 (Appendix C) hold. Let (gN , hN ) opti-
mize Dν,N and (g∞, h∞) optimize Dγ,τ

ν . Then for any
δ > 0, with probability at least 1 − δ over the sample
of size N ,

Dγ,τ
ν (g∞, h∞)−Dγ,τ

ν (gN , hN )

≤ O

(√
(HKL)2 log(1/δ)

N

)
,

(15)

with ‖g‖H ≤ H for all g ∈ G and K =
maxx∈X

√
κ(x,x).

As we discuss in Section 6.1, consistency of the Monte
Carlo approximation is just one piece of the total ap-
proximation of the true diffusion. While convergence
of the exact, time-discretized Wasserstein gradient step
(1) is classical (Jordan et al., 1998), the authors are not
aware of similar characterizations for the regularization
of the Wasserstein metric or the RKHS approximation.
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5.2 Computational Complexity

Complexity of first order descent methods for the
stochastic dual problem is dominated by evaluation
of the functions g and h at each iteration, for each
sample (xi,yi)

N
i=1. Each pointwise evaluation of g at a

point x (and analogously for h at y) requires evaluating
the sum

∑p
k=1 φk(x)αk, with αk being the coefficients

parameterizing the function 4. Hence straightforward
serial evaluation of g and h at each iteration is O(Np),
with p the dimension of G. These sums, however, are
trivially parallelizable. Moreover, for certain kernels
(notably Gaussian kernels), the serial complexity can be
reduced to O(N), by applying a fast multipole method
such as the fast Gauss transform (Greengard and Strain,
1991).

6 EMPIRICAL PERFORMANCE

6.1 Discussion

We note that accuracy of the proposed method can
vary significantly, depending on several factors, includ-
ing the particular density being approximated. Even
given an unlimited number of Monte Carlo samples,
our method gives a biased approximation of the ex-
act diffusion process. There are three sources of bias.
First is the discrepancy between the exact Wasserstein
gradient step and the exact diffusion process, which
only vanishes when the timestep is taken to zero. The
second is the regularization applied to the Wasserstein
distance, which can move the solution away from the
exact Wasserstein gradient step. And the third source
is the space G within which we optimize the dual vari-
ables g and h, which may not contain the true solution.
All three present tradeoffs in accuracy vs. computa-
tional complexity of optimization, with smaller τ and
γ and more expressive G generally degrading the con-
ditioning of the optimization problem. These represent
design choices when applying the method.

6.2 Performance in High Dimensions:
Ornstein-Uhlenbeck Process

We study the accuracy of our proposed inference
method as the dimension of the domain increases. As
we have sidestepped the need for discretization of the
domain, our approximation is at least computable in
arbitrary dimensions. The question is how the accuracy
degrades with the dimension.

As a target, we use the only diffusion process of the form
(4) known to have a computable closed form solution
in high dimensions. This is the Ornstein-Uhlenbeck

4In the case of a kernel parameterization, we have p = N
and φk(x) = κ(x,x(k)).

process, which is a diffusion with a quadratic potential
w(x) = (x − b)ᵀA(x − b), parameterized by matrix
A ∈ Rd×d and offset b ∈ Rd. Given a deterministic
initial condition, the exact solution at time t is Gaussian
with mean and covariance evolving in time towards
their long-time stationary values. We fix β = 1 and
generate random forcing matrices A and offsets b.

As a baseline for comparison, we use the only other
approach for high-dimensional inference that doesn’t
rely on a parametric assumption. This is a standard
particle simulation method 5, coupled with Gaussian
kernel density estimation to obtain the full inferred
distribution.

Figure 2a shows the accuracy of the two methods as we
increase the dimension of the underlying domain X 6,
for a timestep of ∆t = 1. The figure shows median and
95% interval over 20 replicates. We see that our method
scales with the dimension roughly equivalently to the
simulation method, achieving accuracy (in symmetric
KL divergence) comparable to simulation with 1000
particles, through dimension 7.

6.3 Application: Nonlinear Filtering

We demonstrate filtering of a nonlinear diffusion, which
is observed at discrete times via a noisy measurement
process. This is a discrete-time stochastic process Yk,
taking values at times tk, which is related to the un-
derlying diffusion Xt by

Yk = Xtk + vk

with vk ∼ N (0, σ2
Y ) noise. Given a sequence of such

measurements y0:K up to time tK , the continuous-
discrete filtering problem is that of determining the
corresponding distribution over the underlying state,
Pr(Xt = xt|y0:K), at some future time t ≥ tK . For
future times t > tK , this is the marginal prior or
predictive distribution over states, defined by the
dynamics of the diffusion process, satisfying the forward
PDE (2) with initial density Pr(XtK = xtK |y0:K). At
the measurement time t = tK , this is the marginal
posterior, conditional upon the measurements, and is
defined by a recursive update equation

Pr(XtK = xtK |y0:K) =

Pr(YK = yK |XtK = xtK ) Pr(XtK = xtK |y0:K−1)

Pr(YK = yK)
.

5We use the Euler-Maruyama method for simulation,
with timestep 10−3.

6We use an L2 regularizer and set γ = 10−6. We use a
third degree polynomial kernel for approximating g and h
and approximate the objective using 2 · 104 sample points.
We use a timestep of τ = 1/5.
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Figure 2: Empirical performance. (Symmetric KL divergence to the true density.)

The term Pr(XtK = xtK |y0:K−1) is the predictive dis-
tribution given the measurements up to time tK−1. We
assume an initial distribution Pr(Xt0 = xt0) is given.

We assume the underlying state evolves according to
a diffusion in the potential w(x) = 1

π sin(2πx) + 1
4x

2,
having unit diffusion coefficient β = 1. This is a highly
nonlinear process and yields multimodal posteriors,
which will present a challenge for most existing filter-
ing methods. Measurements are made with noise σ = 1.
We apply the Wasserstein gradient flow to approximate
the predictive density of the diffusion, which at measure-
ment times is multiplied pointwise with the likelihood
Pr(yk|xtk) to obtain an unnormalized posterior density
7.

We use five methods as baselines for comparison. The
first computes the exact predictive density by numeri-
cally integrating the Fokker-Planck equation (4) on a
fine grid – this allows us to compare computed posteri-
ors to the exact, true posterior. The second and third
are the Extended and Unscented Kalman filters, which
maintain Gaussian approximations to the posterior.
The fourth method is a Gaussian sum filter (Alspach
and Sorenson, 1972), which approximates the poste-
rior by a mixture of Gaussians. And the fifth baseline
is a bootstrap particle filter, which samples particles
according to the transition density Pr(xtk |xtk−1

), by
numerical forward simulation of the SDE (3) 8.

We simulate 20 observations at a time interval of
∆t = 1, and compute the posterior density by each
of the methods. Figure 2b shows quantitatively the

7We use an L2 regularizer and set γ = 10−6. We use a
Gaussian kernel with bandwidth 0.1 and approximate the
objective with 104 samples. We use a timestep of τ = 1/4.

8For foward simulation, we use an Euler’s method with
timestep 10−3.

fidelity of the estimated posterior to that computed
by exact numerical integration, repeating the filter-
ing experiment 100 times. Appendix F shows exam-
ples of the estimated posterior density of the diffusion.
The Wasserstein gradient flow consistently outperforms
the baselines, both qualitatively and quantitatively,
achieving smaller symmetric KL divergence to the true
posterior. Whereas the multimodality of the poste-
rior presents a challenge for the baseline methods, the
Wasserstein gradient flow captures it almost exactly.

7 DISCUSSION

We have described an approximate inference method
for diffusion processes that circumvents the need for dis-
cretization of the domain of the diffusion by operating
directly in a space of continuous functions. The method
consists of a novel discrete-time approximation of a
Wasserstein gradient flow in a space of probability mea-
sures. In addition to enabling inference in higher dimen-
sions than are typically accessible with discretization-
based methods, the proposed method might motivate
new approaches for lower-dimensional settings where
discretization is nevertheless difficult, such as when
modeling complex physical systems (Náprstek and Král,
2016; Kolobov et al., 2019; Bar-Sinai et al., 2019).

As discussed in Section 6.1, performance of the method
depends on the choice of timestep τ , regularization
parameter γ, and Hilbert space H. The choice of
H, in particular, might offer a fruitful target for in-
corporating prior constraints on the inferred density,
as an alternative to the standard parametric assump-
tions in the literature. Such constraints might derive
from the system dynamics, for example, analogously to
mesh-refinement strategies used in discretization-based
inference.
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Gaussian filtering and variational approximations for
Bayesian smoothing in continuous-discrete stochastic
dynamic systems. Signal Processing, 2015.

Daniel Alspach and Harold Sorenson. Nonlinear
bayesian estimation using gaussian sum approxima-
tions. IEEE transactions on automatic control, 17
(4):439–448, 1972.

Cédric Archambeau, Manfred Opper, Yuan Shen, Dan
Cornford, and John Shawe-Taylor. Variational Infer-
ence for Diffusion Processes. NIPS, 2007.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and
Michael P Brenner. Learning data-driven discretiza-
tions for partial differential equations. Proceedings
of the National Academy of Sciences, 116(31):15344–
15349, 2019.

Heinz H Bauschke, Jonathan M Borwein, et al. Legen-
dre functions and the method of random bregman
projections. Journal of Convex Analysis, 4(1):27–67,
1997.

Jean-David Benamou, Guillaume Carlier, Quentin
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